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Abstract: Analyzing the factors influencing traffic congestion is essential for urban planning and
coordinated development. Previous research frequently focuses on the internal aspects of traffic
systems, often overlooking the impact of external factors on congestion sources. Therefore, this study
utilizes a geospatial dataset and mobile signaling data, firstly applying the Fuzzy C-Means (FCM)
algorithm to identify congested roads of different levels and trace the localization of travelers’ origins
on regional congested roads. Furthermore, it employs the LightGBM method to study the influence of
the built environment of various congestion sources on network-level congestion. The findings are as
follows: (1) There is a positive correlation between traffic congestion and geographical location, with
congestion predominantly caused by a few specific plots and demonstrating a concentrated trend in
city centers. (2) Residential population density is the most critical factor, accounting for over 12%
of the congestion contribution, followed by road density and working population density. (3) Both
residential and working population densities show a non-linear positive correlation with congestion
contribution, while the mixture of land use displays a non-linear V-shaped influence. Additionally,
when residential population density is between 8000 and 11,000, it notably exacerbates congestion
contribution. Significantly, by emphasizing land use considerations in traffic system analysis, these
findings illuminate the intricate linkages between urban planning and traffic congestion, advocating
for a more comprehensive approach to urban development strategies.

Keywords: congestion traceability; built environment; LightGBM; multi-source

1. Introduction

As urban populations and vehicle ownership increase, traffic congestion emerges as a
global challenge. European Union statistics indicate that congestion results in economic
losses of up to nearly 100 billion euros annually. In China, data from the Ministry of
Transport suggest congestion directly causes economic losses amounting to 5–8% of GDP,
up to 250 billion yuan [1]. Additionally, congestion contributes to environmental pollution
and energy waste [2]. A study from the 1990s in London revealed that 74% of atmospheric
nitrogen oxides originated from vehicle exhaust, with low-speed driving and frequent
stops and starts exacerbating energy consumption, emissions, and noise pollution [3].

Given the pivotal role of efficient transportation systems in fostering sustainable
urban development [4,5], various solutions have been implemented to alleviate congestion,
such as expanding subway lines and boosting public transport capacity. However, these
solutions often face challenges like long implementation periods, high construction costs,
and lack of flexibility, making them unsuitable for the rapidly evolving urban traffic
landscape. Other measures, like congestion pricing and traffic restrictions, have also been
adopted to ease congestion [6]. Regardless of the approach, understanding the mechanisms
and origins of traffic congestion is essential.

Congestion sources can be identified at both demand and supply levels. From a
demand perspective, this involves pinpointing travelers’ congregation points and their
abnormal movement timings, identifying specific travelers as congestion sources [7–14].
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On the supply side, road infrastructure and intersection signal strategies are analyzed to
identify causes of network congestion, with congestion propagation analysis revealing the
sources or critical nodes [15,16]. Research related to internal congestion detection is closely
related to the analysis of congestion propagation and evolution within traffic networks.

However, this focus on internal factors such as traffic flow and road infrastructure
may not fully explain the increasing trend of urban traffic congestion. To gain a more
comprehensive understanding, it’s necessary to consider external factors of the transporta-
tion system, like population density, socio-economic factors, and land use, which may
influence urban residents’ travel demand and, consequently, the overall traffic situation.
These factors may affect urban residents’ travel demand, thereby impacting the overall
traffic situation.

This paper approaches the root causes of congestion from the external perspective
of the traffic system, adopting a comprehensive view. Firstly, it identifies traffic conges-
tion based on the Fuzzy C-means algorithm and identifies congested roads for different
road levels, tracing their geographical origins. Considering that each road congestion is a
coupled state of traffic formed by travel trajectories, the number of travelers for each con-
gestion source, i.e., the congestion contribution, is obtained. Finally, the impact of external
factors of the traffic system on network-level congestion is explored using the LightGBM
model. This research provides decision-making support to alleviate the phenomenon of
traffic congestion.

2. Literature Review
2.1. Congestion Recognition

Traffic congestion is a phenomenon that arises when the road network cannot accom-
modate the current volume of traffic. Scholars have extensively studied indicators for
assessing the degree of road congestion, such as vehicle travel speed, travel delay, and
journey time [17–20]. Moreover, research has also utilized other improved indicators for
determining congestion. Zhu Xinglin et al. [21] introduced fuzzy theory into the division of
traffic operation conditions based on speed thresholds. Yuan [22] proposed a Space-Time
Congestion Index (SI) on the basis of traditional evaluation indicators. Zhang [23] devel-
oped a congestion probability discrimination indicator that can be applied to probabilistic
forecasting results.

In the research on methods for identifying traffic congestion, most scholars analyze
from a micro perspective. Zhao et al. [24] devised a model based on an enhanced clustering
algorithm to predict lane congestion. Yang [25] created an internal grid congestion model,
and Kong et al. [26] developed a model based on floating car data to identify congested
roads. Liu et al. [27] proposed a real-time congestion detection algorithm for urban inter-
sections. However, macro-level road network congestion studies are less common. Zhang’s
study of regional correlation and congestion area identification methods [23], and Zeng’s
analysis of urban traffic flow state evolution [28], offer important macro perspectives.

Unlike previous micro-focused research, this study takes a macro view, employing the
Fuzzy C-Means (FCM) model to discern network-level congestion. It also considers road
hierarchy in congestion categorization for more precise congestion analysis.

2.2. Analysis of Factors Influencing Traffic Congestion

To deepen the understanding of the built environment’s impact on congestion, many
scholars have employed models based on linear assumptions to study their relationship.
Wang et al. [29] used a multivariate linear regression model to analyze the impact of land use
layout on traffic congestion in Zhengzhou, highlighting significant effects from residential,
office, and commercial land densities, road length, and network density on congestion.
Zhang et al. [30] established a multivariate linear regression model between congestion
duration and different land uses, concluding significant correlations between land use
proportions and congestion times. Yang and Debbage [31] conducted a quantitative analysis
on the relationship between urban development patterns and traffic congestion in 2011
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US city regions from 1998 to 2001, finding a close link between increased urban land use
intensity and worsening congestion. Sun and Lu [32] assessed the contributions of socio-
economic factors and governance policies to congestion changes, finding socio-economic
factors contributed 25% to congestion increases and 66% to decreases. Additionally, Bao
et al. [33] studied the temporal heterogeneity of land use factors in urban traffic congestion,
discovering negative impacts of dining land use during peak times. In Toronto, Rothman
et al. [34] found significant correlations between school vicinity congestion and double-
parking, reversing, and vehicle parking. Moreover, studies in smaller Chinese cities have
identified a significant positive correlation between educational land use and increased
traffic pressure [15,35].

However, linear models have limitations in addressing the complexity of the real
world, especially their neglect of non-linearities. Thus, some researchers have turned to
non-linear methods to analyze the relationship between congestion behaviors and external
factor changes. Wang et al. [36] explored the correlation between built environment factors
and urban congestion patterns using the XGBoost algorithm, identifying residential land
use and population density as having the most significant impact on urban congestion.
Moreover, Liu and Xiao [37] used the random forest method to study the impact of built en-
vironment characteristics on commuting time, and Li et al. [38] investigated the non-linear
effects of subway commuting and non-commuting flows using Gradient Boosting Regres-
sion Trees (GBRT). These studies indirectly indicate the potential impact of environmental
characteristics on traffic congestion.

Although previous research has extensively explored the relationship between the
built environment and traffic congestion, focusing primarily on the direct impacts of the
built environment on surrounding traffic congestion, it falls short in tracing and analyzing
the geographic sources of congestion. In contrast, this study delves into a more macro-
level exploration, thoroughly analyzing the characteristics of congestion sources and their
traceable relationships with network traffic congestion.

3. Materials and Methods
3.1. Study Area

Xi’an, with a total area of 10,108 square kilometers and a permanent population of
12.9959 million, is a central city in the northwest region of China. The number of vehicles
in Xi’an increased from 180,000 in 1997 to 4.02 million by 2021 due to the rapid expansion
of urban roads and a substantial influx of population. This study focuses on the area
within Xi’an’s 3rd Ring Road, which is a prominent urban center characterized by dense
population and commercial activities, as well as facing serious congestion issues. To
thoroughly analyze the congestion in this area, we divided the study area into 680 separate
plots based on the main road network and land properties. After a meticulous selection
process to exclude smaller units, 520 effective plots were identified as the subjects of this
study, as illustrated in Figure 1.

3.2. Data Introduction

In this study, land use data and mobile signaling data were used from the perspectives
of traffic planning and congestion mitigation, offering new insights into individual travel
trajectories and land distribution under different activities. The integration and analysis of
these datasets primarily aimed to investigate the root causes of congestion from external
factors of the transportation system. Specifically, mobile signaling data can identify travel
trajectories, congested roads, travel OD (Origin-Destination) volumes, and residential
population numbers, while POI (Point of Interest) can pinpoint the spatial distribution of
different land uses. By analyzing these multi-source datasets, this research reveals potential
causes of congestion, identifies the main external factors contributing to traffic congestion,
and proposes targeted strategies to alleviate congestion in urban areas.
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Figure 1. Study area.

(1) The land use data primarily reflects the land development status within the study
area, including POI and road network data. POI data, such as businesses, restaurants,
financial institutions, etc., are sourced from the Gaode development platform. Additionally,
road network data are obtained from OpenStreetMap.

(2) Mobile signaling travel data are provided by the “Smart Footprint” company, with
the original data coming from China Unicom. To ensure data security, the platform sets the
user ID as a prohibited field (not accessible by users), allowing only aggregated data to be
exported for users. The data description is illustrated in Table 1, where the time extracts
the time of entry into the road section, the route_id identifies the road section, the rn_seq
recognizes the trajectory sequence, the is_start indicates whether it is the start of the trip,
the is_end indicates whether it is the end of the trip, and the trip_id indicates the sequence
number of the trip within a day for a user.

Table 1. Data description.

Item Type Explanation

Uid String The unique identifier of a user
time Timestamp The time when a user enters the road

route_id Int The unique identifier of road
rn_seq Int The sequential order of a road within the trip
is_start Binary Is it the starting point of the trip?
is_end Binary Whether it is the endpoint of the trip
trip_id Int The unique identifier for a user’s trip

3.3. Built Environment Variables

In this paper, 12 variables were selected from land use, transportation-related, and
socio-economic aspects. The land use variables included shopping center density, com-
munity services density, recreational density, catering density, financial institutions den-
sity, company enterprise density, educational services density, and land-use mix. The
transportation-related variables included road density and transit station density, and the
socio-economic variables included residential population density and working popula-
tion density. To analyze these variables, we calculated the Mean and Standard Deviation
(Std) for each, and further computed the Variance Inflation Factor (VIF). The results of
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VIF indicated that all variables had VIF values less than 5, suggesting the absence of
multicollinearity issues. The descriptive statistics of the variables are shown in Table 2.

Table 2. Descriptive statistics for variables.

Variables Description Mean Std VIF

Dependent variable

Congestion Contribution The ratio of a plot’s congestion contribution to its
area (persons/km2) 105.71 148.61 1.67

Independent variable: land use variables

Shopping Center Density Ratio of the number of shopping centers to the area
of the plot (units/km2) 195.02 261.98 2.98

Community Services Density Ratio of number of amenity services to the area of the
plot (units/km2) 100.50 97.83 2.88

Recreational density Ratio of the number of recreational uses to the area of
the plot (units/km2) 8.430 17.51 2.89

Catering Density Ratio of the number of food and beverage
establishments to the area of the plot (units/km2) 138.64 149.87 4.47

Financial Institutions Density Ratio of the number of financial institutions to the
area of the plot (units/km2) 11.96 20.76 2.16

Company Enterprise Density Ratio of the number of corporate enterprises to the
area of the plot (units/km2) 59.89 111.81 1.98

Educational Services Density Ratio of the number of KES to the area of the plot
(units/km2) 37.13 38.53 3.94

Land Use Mix Entropy index of POI types within the plot 1.91 0.33 3.07

Independent variable: transportation-related variables

Road Density Ratio of the length of the road network to the area of
the plot (km/km2) 54.35 109.73 1.37

Transit Stations Density Ratio of the number of bus stops and metro stations
to the area of the plot (units/km2) 1.01 2.48 1.29

Independent variable: socio-economic variables

Residential Population Density Ratio of the total population living in the plot
(persons/km2) 13,600.53 11,342.62 4.21

Working Population Density Ratio of the total number of the population working
in the plot (persons/km2) 7343.87 7360.35 4.36

3.4. Research Methodology

Figure 2 presents an analytical framework for investigating the distribution character-
istics and influencing factors of congestion sources. Initially, mobile phone signaling data
was mapped onto the road network to construct travel trajectory matrices. Subsequently,
the data underwent time-slice processing to calculate the undirected weight values of roads
in each time slice. The Fuzzy C-Means (FCM) clustering method was then applied to iden-
tify congested sections on expressways, main roads, and secondary roads. Following this,
the origins of congested sections were traced to analyze the distribution characteristics of
different source plots. Lastly, the LightGBM method was employed to study the impact of
various factors on congestion contribution, revealing the non-linear relationships between
these factors and congestion contribution.
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3.4.1. Construction of Network Weights

In this study, we used the undirected weight value µij to simplify the road network
structure. For bidirectional traffic segments: if Kij < 2

3 , it is assumed that the traffic
distribution is balanced in both directions, and thus the segment’s undirected weight value
is the average of the bidirectional weights. Conversely, if Kij ≥ 2

3 , it is assumed that the
traffic distribution is significantly imbalanced, and in this case, the undirected weight value
of the segment is taken as the weight value of the direction with heavier traffic load. For
unidirectional traffic segments, the undirected weight value is the sole directional weight
value. This is expressed in Equation (1).

uij =


aijwij + ajiwji, aij = 1 or aij = 1, aji=0

wij+wji
2 , aij = aji = 1 and Kij <

2
3

max
{

wij, wji
}

, aij = aji = 1 and Kij ≥ 2
3

(1)

In the formula, wij(wji) represents the weight value of the edge from node i to node j
(or from node j to node i). aij indicates whether the network is connected from node i to
node j. Kij denotes the directional distribution coefficient.

3.4.2. Fuzzy C-Means

The Fuzzy C-Means (FCM) algorithm is a clustering method for soft clustering,
which establishes the affiliation of each sample data to all cluster centers by optimiz-
ing the objective, and classifies the sample data based on the size of the affiliation. Given
the dataset X = {x1, x2, · · · , xn}, it is assumed that the number of clusters is m, with
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K = [k1, k2, · · · , km]
T denoting the cluster center. A = [uij]n×m represents the fuzzy clas-

sification matrix, where uij denotes the sample data xi to the clustering center k j. The
essence of the FCM algorithm is an iterative process that converges the objective function
by continuously updating the cluster centers K and the membership degree matrix A. The
objective function is shown in Equation (2).

J(A, K) = ∑n
i=1 ∑m

j=1 ut
ij
∥∥xi − k j

∥∥2 , 1.0 ≤ m ≤ ∞ (2)

In this equation, t represents the weighted exponent, which is commonly set to t = 2.
The algorithm steps are as follows:

(1) Determine the number of cluster centers m, set the iteration count l = 0, and
initialize the classification matrix A = [uij]n×m.

(2) Calculate the affiliation matrix A (Equation (3)).

µij =
1

∑m
C=1 (

∥xi−kj∥
∥xi−kC∥

)

2
t−1

(3)

(3) Update the cluster centers k j. (Equation (4)).

k j =
∑n

i=1 µt
ij · xi

∑n
i=1 µt

ij
(4)

Choose an appropriate norm ε > 0. If the condition
∥∥∥Al+1 − Al

∥∥∥ < ε is satisfied,
terminate the operation; otherwise, let l = l + 1 and repeat steps (3) and (4) until the
condition is satisfied.

The classification coefficient is commonly used to evaluate the effectiveness of cluster-
ing algorithms. For a given number of clustering centers m and a classification matrix A,
the classification coefficient is defined by Equation (5).

F =
1
n

n

∑
i=1

m

∑
j=1

u2
ij (5)

The classification coefficient is a standard indicating the fuzziness of clustering results;
the closer F is to 1, the better the clustering effect.

3.4.3. Traceability of Congested Segments

In this study, we define P as the set of all plots within the research area. For any two
plots a and b, we are concerned with the set of travel ODs (Origin-Destination) from plot a
to plot b, denoted as (a, b). Additionally, crowd represents the set of congested roads in the
area. Based on this, qab is defined as the number of travelers from plot a to plot b, and rab
represents the set of paths taken by these travelers. Specifically, rl

ab(rl
ab ∈ rab, l ∈ crowd)

denotes the set of travel trajectories passing through a specific congested segment l. The
number of travelers passing through congested segment l from plot a to plot b is Qabl . The
contribution of plot a to congested segment l during the selected time period is expressed
in Equation (6).

COl(a) = ∑
b∈P

∑
rl

ab

Qabl (6)

3.4.4. LightGBM Model

LightGBM is an advanced iterative decision tree algorithm, exhibiting significant
advantages in efficiency and space usage compared to traditional models like GBDT. This is
primarily attributed to its integration of two innovative technologies: Gradient-based One-
Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). GOSS significantly reduces
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computational load by retaining samples with larger gradient values while randomly
sampling those with smaller gradients, thus enhancing the model’s efficiency. On the
other hand, EFB, leveraging the sparsity of high-dimensional data, combines exclusive
features, ensuring both the integrity of information and a reduction in feature dimensions.
Additionally, LightGBM employs a histogram-based strategy for node splitting in decision
trees, effectively identifying and splitting features that offer the maximum information
gain. It also utilizes a leaf-wise growth strategy with depth limitations, which not only
ensures efficiency but also effectively prevents overfitting by choosing the leaf with the
maximum splitting gain for splitting. The structure and main experimental procedure
of the LightGBM model are elaborately illustrated in Figure 2. This algorithm excels in
handling large-scale datasets, particularly suitable for machine learning tasks that demand
high efficiency and accuracy. The structural details and primary experimental flow of the
LightGBM model are depicted in Figure 3.
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In this study, the dataset was randomly divided into a training dataset and a vali-
dation dataset at a ratio of 7:3, with the training dataset being utilized for model fitting.
Subsequently, the Grid Search algorithm was employed to adjust several hyperparameters,
including the lambda_l1, lambda_l2, min_data_in_leaf, num_leaves, and feature_fraction,
to identify the optimal parameter combination. Thereafter, the predictive capability of the
LightGBM model was assessed using the validation dataset. The model’s performance
was evaluated through statistical metrics such as the coefficient of determination (R2),
Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). Finally, the model was
interpreted through feature importance and partial dependence plots.

4. Results
4.1. Congestion Identification Results

The time of 20 July 2021 was chosen for analysis due to the significant traffic congestion
caused by heavy rainfall on that day. The data of the three types of roads were clustered in
Python using the FCM algorithm and the results are shown in Table 3. The congestion levels
were classified into four categories: smooth traffic, mild congestion, moderate congestion,
and severe congestion. The table reveals that the clustering centers for the three road types
are not significantly different, but the threshold decreases as the road grade lowers.
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Table 3. Range of congestion thresholds.

Road Class Smooth Traffic Mild
Congestion

Moderate
Congestion

Severe
Congestion

expressway [1, 0.8515) [0.8515, 0.6200) [0.6200, 0.3376) [0.3376, 0)
trunk road [1, 0.8128) [0.8128, 0.6077) [0.6077, 0.3562) [0.3562, 0)

secondary road [1, 0.7755) [0.7755, 0.5448) [0.5448, 0.2964) [0.2964, 0)
The value of 1 is considered of a free-flow state, with smaller values indicating increasing congestion.

The spatial distribution and frequency characteristics of congestion status at different
times were further analyzed, as shown in Figure 4. Figure 4a reveals the spatial autocorrela-
tion numbers for each time node, with a time granularity of 20 min. The study utilized the
Fuzzy C-Means (FCM) method to ascertain that the traffic congestion status within Xi’an’s
third ring road is fundamentally correlated with space and exhibits a positive correlation
throughout the day. Specifically, during the morning rush hour, the spatial distribution
exhibits the highest degree of clustering and the highest level of congestion, with the peak
Moran’s index observed at 10:00 a.m. This phenomenon suggests that targeted congestion
management strategies during these peak hours could be highly effective, especially in
clustered areas where congestion is most pronounced. As time progresses, the correlation
between congestion intensity and spatial distribution remains stable, with certain clustering
characteristics in the spatial distribution. Figure 4b illustrates the frequency of occurrence
for each congestion level, using a 24-h daily granularity. From 0:00 to 6:00 a.m., the traffic
network is at a low due to the rest period, with fewer residents traveling and the conges-
tion level generally remaining unimpeded. Starting from 7:00 a.m., with the onset of the
morning rush hour, the frequency of unimpeded road sections gradually decreases, and
the level of congestion progressively increases, peaking around 10:00 a.m. Post noon, the
congestion status undergoes slow changes until 18:00, when the congestion trend starts to
intensify significantly, reaching its peak around 21:00. The sharp increase in congestion in
the evening highlights the necessity for efficient public transit systems and real-time traffic
management. The observed pattern of congestion intensification and subsequent easing
further underscores the need for dynamic congestion management systems that can adapt
to changing traffic conditions throughout the day.
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4.2. Distribution of Congestion Sources

In response to the pronounced traffic congestion during the evening rush hour, this
study selected this time period for a source analysis. After identifying the congested
roads during the evening peak hours, the study further analyzed the origin distribution
of travelers. As illustrated in Figure 5 (based on 20-min average travel flows), although
the origins of travelers on congested roads are widespread, most areas contribute only
limited travel flow. In contrast, there are fewer sources that significantly influence the main
traffic flow, primarily concentrated within the city’s first ring and the residential areas
on the right side between the first and second rings. The practical implications of these
findings are profound, offering a nuanced understanding of congestion contributions. By
identifying the primary sources of congestion, policymakers can tailor their approaches
to address the specific needs and characteristics of the most impactful areas, thereby
improving the efficiency of the transportation network. For example, promoting public
transportation options or encouraging alternative modes of travel in these areas can help
alleviate congestion throughout the entire region.

Land 2024, 13, x FOR PEER REVIEW 11 of 16 
 

 
Figure 5. Distribution of congestion sources in the evening peak. 

4.3. Impact Evaluation Results 
4.3.1. Parameter Experiments 

In this study, the suitable parameter combination for the LightGBM model is identi-
fied using the Grid Search algorithm (Table 4). This combination effectively prevents 
model overfitting and significantly enhances the model’s predictive accuracy by control-
ling parameters such as the lambda_l1, lambda_l2, min_data_in_leaf, num_leaves, and 
feature_fraction. Additionally, the robustness of the LightGBM model optimized through 
Grid Search is further evaluated using Five-fold Cross-validation. This involves calculat-
ing R2, RMSE, and MAE for each test set, with results shown in Table 5. Among the five 
subsets, the R2 values ranged from 0.55 to 0.71, RMSE values are between 124.69 and 
162.99, and MAE values vary from 91.57 to 121.15. These results demonstrate that the 
LightGBM model exhibits good robustness. 

Table 4. The tuning parameters of the LightGBM model. 

Hyperparameter Range Value 
lambda_l1 [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.7] 0.1 
lambda_l2 [0.5, 0.6, 0.7, 0.8, 0.9, 1] 0.6 

min_data_in_leaf [10, 20, 30, 40, 50, 60] 30 
num_leaves [10, 20, 30, 40, 50, 60, 70] 20 

feature_fraction [0.4, 0.5, 0.6, 0.7] 0.5 

Table 5. Results of five-fold cross-validation. 

Five-Fold Cross-Validation RMSE MAE R2 
0 149.48 97.08 0.71 
1 162.99 114.61 0.56 
2 137.83 115.02 0.69 
3 153.26 121.15 0.55 
4 124.69 91.57 0.58 

4.3.2. Ranking of Independent Variable Importance 
Table 6 presents the mean relative importance (MRI) of different independent varia-

bles on the contribution to network-level congestion. The results indicate that socio-eco-
nomic variables have the highest average importance, accounting for 11.69%, signifying 
their most significant impact on congestion contribution. This is primarily because areas 
with more developed economies typically have higher travel demands, leading to 

Figure 5. Distribution of congestion sources in the evening peak.

4.3. Impact Evaluation Results
4.3.1. Parameter Experiments

In this study, the suitable parameter combination for the LightGBM model is iden-
tified using the Grid Search algorithm (Table 4). This combination effectively prevents
model overfitting and significantly enhances the model’s predictive accuracy by control-
ling parameters such as the lambda_l1, lambda_l2, min_data_in_leaf, num_leaves, and
feature_fraction. Additionally, the robustness of the LightGBM model optimized through
Grid Search is further evaluated using Five-fold Cross-validation. This involves calculating
R2, RMSE, and MAE for each test set, with results shown in Table 5. Among the five subsets,
the R2 values ranged from 0.55 to 0.71, RMSE values are between 124.69 and 162.99, and
MAE values vary from 91.57 to 121.15. These results demonstrate that the LightGBM model
exhibits good robustness.

Table 4. The tuning parameters of the LightGBM model.

Hyperparameter Range Value

lambda_l1 [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.7] 0.1
lambda_l2 [0.5, 0.6, 0.7, 0.8, 0.9, 1] 0.6

min_data_in_leaf [10, 20, 30, 40, 50, 60] 30
num_leaves [10, 20, 30, 40, 50, 60, 70] 20

feature_fraction [0.4, 0.5, 0.6, 0.7] 0.5
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Table 5. Results of five-fold cross-validation.

Five-Fold Cross-Validation RMSE MAE R2

0 149.48 97.08 0.71
1 162.99 114.61 0.56
2 137.83 115.02 0.69
3 153.26 121.15 0.55
4 124.69 91.57 0.58

4.3.2. Ranking of Independent Variable Importance

Table 6 presents the mean relative importance (MRI) of different independent variables
on the contribution to network-level congestion. The results indicate that socio-economic
variables have the highest average importance, accounting for 11.69%, signifying their
most significant impact on congestion contribution. This is primarily because areas with
more developed economies typically have higher travel demands, leading to network-
level congestion. In comparison, the importance of traffic-related characteristics is slightly
lower, at 9.16%. Furthermore, the average importance of land-use characteristics is 7.29%,
suggesting that land features also influence network-level congestion to a certain extent.

Table 6. Order of importance of independent variables.

Category Variable Rank MRI (%) Mean (%)

Land use variables

Shopping Center Density 7 7.55 7.29
Community Services Density 10 6.04

Recreational Density 9 7.13
Catering Density 6 7.61

Financial Institution Density 8 7.25
Company Enterprise Density 5 8.46
Educational Services Density 12 4.84

Land Use Mix 4 9.43

Transportation-related
variables

Road Density 2 12.27 9.16
Transit Stations Density 11 6.04

Socio-economic variables
Residential Population Density 1 12.93 11.69

Working Population Density 3 10.45

On the level of individual variables, residential population density is of the highest
importance, with a significance of 12.93%, followed by road density at 12.27%. Working
population density ranks third among all built-environment variables, with an importance
of 10.45%. Additionally, land use mix, company enterprise density, catering density, and
shopping center density also demonstrate significant predictive capabilities.

4.3.3. Non-Linear Relationships between Variables and Congestion Contributions

The four most important factors affecting the amount of congestion contribution were
extracted and analyzed in a partial dependency diagram (PDP, Figure 6). These factors
are residential population density, road network density, workforce population density,
and land-use mix. The plots reveal a clear threshold effect of these four built-environment
variables on congestion contribution.
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Figure 6a illustrates the N-shaped correlation between residential population density
and congestion contribution. The analysis reveals a significant increase in the impact of
residential population density on congestion contribution as it escalates from 4000, peaking
at 11,000. Beyond this peak, the trend inversely declines until reaching 20,000, indicating
a complex interplay where additional population density does not linearly translate to
increased congestion. It suggests that certain thresholds of population density may activate
more efficient use of available transportation infrastructure, or a saturation point where
the incremental impact on congestion diminishes. Subsequently, the trend witnesses
a pronounced increase once more as the density escalates to 26,000. This resurgence
underscores the overwhelming effect of very high residential population densities. Even
with increased public transportation usage, the significant growth in travel demand leads
to an increase in congestion contribution.

Figure 6b reveals the relationship between road density and congestion contribution,
displaying a sharp downward trend. This decline peaks at a road density of 50, then
stabilizes, indicating that higher road densities provide more route options, thus reducing
congestion. This inverse correlation suggests that strategic increases in road infrastructure
in densely trafficked areas can effectively alleviate congestion. However, the stabiliza-
tion of this trend beyond a certain density highlights the diminishing returns of simply
adding more roads, pointing towards the necessity for smarter traffic management and
infrastructure development strategies that go beyond road expansion.

Figure 6c shows the relationship between working population density and congestion
contribution, exhibiting a positive correlation with a distinct threshold effect. The conges-
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tion contribution decreases around a working population density of 8000 but significantly
increases beyond 12,000, peaking at approximately 16,300. This pattern reflects the critical
role of the working population’s movement patterns, especially during rush hours, in exac-
erbating congestion. It underscores the potential benefits of policies aimed at dispersing
work start times or promoting remote work arrangements to ease peak congestion pres-
sures. Moreover, this insight into the congestion contribution of the working population
can guide targeted interventions in urban transport planning, such as the enhancement of
public transit services or the development of new mobility solutions tailored to the needs
of working individuals.

Figure 6d demonstrates the relationship between land use mix and congestion con-
tribution, overall displaying a V-shaped pattern. Specifically, the congestion contribution
sharply declines in a near-linear fashion within the land-use mix range of about 1.6–1.7.
Beyond 1.73, the congestion contribution significantly increases, peaking around 1.9. How-
ever, the congestion contribution rises again beyond a land-use mix of two. Given the
continuous increase thereafter, caution should be exercised with land-use mixes above 1.8.

5. Discussion and Conclusions

In summary, this study identified the congestion and traced its origins, exploring
the explicability of different factors in network-level congestion contributions. Com-
pared to previous research [25–27], our study discriminated congestion from a macro
perspective and considered network structure, offering new insights into the dynamics of
traffic congestion.

Our work shows that congestion clustering centers, which represent the degree of
traffic congestion, are influenced by road levels, with congestion thresholds decreasing
as road levels lower. Despite congestion being a ubiquitous issue across all road types,
its severity becomes more pronounced on lower-level roads. Moreover, a stable positive
correlation between congestion status and geographic location was observed, indicating
significant spatial clustering. This suggests that congestion is not random but closely linked
to specific geographic areas, emphasizing the importance of location-specific strategies in
congestion mitigation for urban planners and traffic managers.

In addition, we traced the geographic origins of congestion, identifying the location
where the travelers who participate in the network congestion primarily originate from. In-
terestingly, we found that a few spots are responsible for the majority of network congestion,
primarily located in city centers and their surrounding areas. Therefore, optimizing traffic
flow within these areas is essential for improving overall traffic efficiency. For example,
promoting public transportation options in these areas or alternative routes to divert traffic
from these congested hotspots could help alleviate congestion in the entire region [10,11].

Furthermore, we delved into the explicability of different factors contributing to
network-level congestion. Unlike previous studies that focused on internal factors like
traffic facilities and signal control [15,16], our study reveals the impact of external factors on
congestion. The results indicate that residential population density is the most significant
factor causing congestion. Additionally, road density, working population density, and
land use mix also have considerable impacts on congestion. Notably, our study uncovered
significant non-linear relationships between some built environment variables and conges-
tion factors, notably the thresholds for residential population density and land use mix.
This highlights the complex interplay between urban planning decisions and congestion
outcomes, suggesting a more comprehensive approach to urban development strategies
that consider how population dynamics, infrastructure capacity, and land use patterns
collectively impact congestion. We recommend that efforts to mitigate congestion should
not only aim to expand road capacity but also manage demand through housing planning,
zoning regulations, and the promotion of mixed-use developments to reduce the necessity
for long commutes.

In the end, this study has some limitations. First, congestion is considered not only in
terms of the impact of the built environment variables but also requires further examination
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of specific aspects or influencing factors of congestion to explore the causes of congestion
from a more comprehensive perspective. Second, this study highlights the significant
impact of residential population density and working population density on congestion.
Future research could delve deeper into how the travel patterns of different population
groups (such as commuters, students, etc.) affect urban congestion. Finally, this study
observes cyclical variations in congestion levels at different times of the day. Future research
could further explore the spatiotemporal characteristics of congestion over longer periods
or during special events (such as heavy rain or large-scale events) to provide a more detailed
understanding of congestion dynamics.
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