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Abstract: The extraction of real geological environment information is a key factor in accurately
evaluating the vulnerability to geological hazards. Yanghe Township is located in the mountainous
area of western Sichuan and lacks geological survey data. Therefore, it is important predict the spatial
and temporal development law of landslide debris flow in this area and improve the effectiveness and
accuracy of monitoring changes in landslide debris flow, this article proposes a method for extracting
information on the changes in landslide debris flows combined with NDVI variation, which is
based on short baseline interferometry (SBAS-InSAR) and optical remote sensing interpretation.
In this article, we present relevant maps based on six main factors: vegetation index, slope, slope
orientation, elevation, topographic relief, and formation lithology. At the same time, different
remote sensing images were compared to improve the accuracy of landslide debris flow sensitivity
assessments. The research showed that the highest altitude of the region extracted by multi-source
remote sensing technology is 2877 m, and the lowest is 630 m, which can truly reflect the topographic
relief characteristics of the region. The pixel binary model’s lack of regional restrictions enables
a more accurate estimation of the Normalized Difference Vegetation Index (NDVI), bringing it
closer to the actual vegetation situation. The study uncovered a bidirectional relationship between
vegetation coverage changes and landslide deformation in the study area, revealing spatial–temporal
evolution patterns. By employing multi-source remote sensing technology, the research effectively
utilized changes in multi-period imagery and feature extraction methods to accurately depict the
development process and distribution characteristics of landslide debris flow. This approach not
only offers technical support but also provides guidance for evaluating the vulnerability of landslide
debris flow in the region.

Keywords: SBAS-InSAR; NDVI; landslide debris flow; information extraction; susceptibility evaluation

1. Introduction

Landslide debris flow is a geological disaster that usually occurs in mountainous or
hilly areas with steep terrain and steep slopes. The flow speed of this type of debris flow is
usually very fast, reaching tens of kilometers per hour or even higher. At the same time, it
usually propagates swiftly along river channels and valleys, posing threats to surrounding
areas over long distances. Debris flow is a fluid mixed with water, soil, rocks, trees, and
other impurities. Most landslide debris flows occur in the rainy season or heavy rain
weather. Therefore, heavy rainfall and long duration of rain are also the main reasons for
the occurrence of landslide debris flows.

As the demand for higher accuracy in predicting geological disasters continues to
rise, remote sensing technology has been widely applied by numerous scholars in various
aspects [1–3], including high-resolution image acquisition, temporal analysis, construction
of digital elevation models (DEM) and 3D terrain analysis, thermal infrared remote sensing,
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and spatial analysis. Remote sensing technology enables more precise and efficient monitor-
ing, early warning, and post-disaster assessment of geological hazards. The current remote
sensing has formed a multi-level, multi-perspective, and multi-domain observation system
that extends from the ground to the air and even to space. It encompasses information data
collection, processing, interpretation, analysis, and application, enabling global detection
and monitoring. Remote sensing has become an important means of obtaining information
about Earth’s resources and environment.

In the case of landslide-type debris flow, NDVI serves as an indicator of vegetation
health and coverage changes, allowing monitoring of NDVI alterations. Typically, healthy
vegetation exhibits higher NDVI values due to its strong reflection in the near-infrared
band. Conversely, landslide debris flow often results in vegetation loss and land cover
alteration. Large-scale vegetation decay or disappearance induced by debris flow can
significantly decrease NDVI values in affected areas, indicating vegetation absence. This
article focuses on Yanghe Township as the research area, considering its unique terrain
and complex ecological environment. Utilizing multi-source remote sensing technology, a
method is proposed to study the dynamic changes in the development of landslide-type
debris flows, focusing on aspects such as vegetation coverage area and vegetation growth
variation. This method addresses the limitations of lacking geological data and the single
direction of landslide research.

2. Materials and Methods
2.1. Study Area

Yanghe Township, situated within Leshan City, Sichuan Province (Figure 1), spans
123.8 square kilometers. The area’s river system has been shaped by regional geological
structures and the course alterations of rivers like the Dadu River. Additionally, the region
experiences abundant annual precipitation, leading to frequent summer floods. The study
area exhibits significant topographic contrasts due to multi-stage tectonic movements, with
a noticeable transition between the basin and the marginal mountain area (Figure 2). The
mountainous structure in this region has been greatly influenced by numerous strong
earthquakes [4–7], providing ample evidence for earthquake-induced landslide debris
flows. Based on the available data provided by the Copernicus Data Space Ecosystem and
according to incomplete statistics provided by the China Natural Disaster Database, from
2016 to 2023, there were 26 landslides and 3 debris flows in this area.

The ongoing urbanization process has led to the proliferation of artificial surfaces, con-
tributing to heightened stormwater runoff. Various agricultural practices may further exac-
erbate soil erosion by expanding the arable land area. Additionally, inappropriate land use
can also exacerbate soil erosion, thereby increasing the risk of landslide debris flows. Hence,
this paper devised distinct remote sensing interpretation criteria for diverse surface objects
through meticulous examination of image characteristics within the study area. This approach
ensures the precision and reliability of land use remote sensing data. Leveraging insights from
numerous experts and scholars who have employed remote sensing technology to investigate
land use from various perspectives, this paper drew inspiration for its research [8–10]. The
development of landslide debris flow is not only affected by topographic factors and human
activities but also by the formation lithology [11–15].
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Typically, older geological formations undergo extended periods of weathering and
erosion, leading to diminished stability. Rocks within older strata are prone to greater
susceptibility to natural forces, with the potential for increased formation of fractures and
joints over time. These factors contribute to heightened fragility within the rock mass,
facilitating the occurrence of landslide debris flows [16,17]. The new geological stratum
remains relatively dynamic, with materials being relatively fresh and more responsive
to water permeability and fluctuations in groundwater levels, influencing surface runoff
formation. Due to the lack of extensive weathering and stabilization, geotechnical materials
within the new formation tend to be less compact and more susceptible to external factors
such as rainfall, thereby heightening the likelihood of landslides [18–20].

The exposed strata in this area are mainly Mesozoic and Cenozoic continental strata,
the thickest of which is 7000 m, and among which the Triassic is the oldest exposed strata
in the study area, with a thickness of 1900 m. The lower strata are calcareous siltstone,
and the calcareous limestone and dolomite interlayers can be seen. In the middle are
limestone and clay rocks. The upper part is layered calcareous siltstone with thin layers
of dolomitic limestone. The Jurassic strata developed with a thickness of up to 3450 m,
the angular unconformity covered the lower Triassic strata, and there were obvious fault-
cutting phenomena in some areas. The fluctuation of elevation made obvious changes in
climate and hydrological conditions in the whole region, resulting in the characteristics of
the development of ground fractures [21–24]. The quaternary system was dominated by
loose deposits (Figure 3).
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The study area has undergone multiple episodes of movement and is concurrently
influenced by precipitation and other factors, resulting in high-volume debris flows. The
development and progression of landslide debris flows are influenced by numerous ge-
omorphic features, with steep slopes being a crucial factor. Higher slopes render surface
soil and rock more vulnerable to the effects of gravity and landslides, and varying slope
orientations may experience disparate impacts from rainfall and sunlight. The topography
of the study area is varied, and the surface morphology can be divided into medium
mountain (1000 to 3500 m above sea level) and low mountain (500 to 1000 m above sea
level) according to the elevation and relief (Figure 4). Areas with significant topographic
relief, such as steep cliffs and hillsides, are more susceptible to landslides and debris flows,
serving as the driving force and origin for mountain collapses and landslides. Heavy and
prolonged rainfall exacerbates the likelihood of debris flow development and severely
compromises the stability of the regional geological environment, resulting in heightened
risk of geological disaster occurrence.
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Due to the particularity of the study area, this article adopted support vector machine
classification as the method of land use in the study area [25–28].

In this study, high-resolution remote sensing images were used as data sources, an
artificial neural network classification method was adopted, and land use data statistics
were used to obtain the trend chart of land use type area change in the study area from
2020 to 2023. Based on previous studies, this article divided the land use of the study area
into five categories: forest land, meadow, plowland, construction land, and unutilized land.
We obtained the land use classification results of four phases in 2020, 2021, 2022, and 2023
(Figure 5).

In order to solve the difficulty of efficiently obtaining and solving the deformation
information of landslide debris flow due to lack of basic data support and single technol-
ogy [29–31], this paper used SBAS-InSAR technology and optical remote sensing technology
as research methods and combined optical remote sensing data and SAR data to extract
landslide debris flow. This allowed for the establishment of a research system of multi-
source remote sensing technology fusion and complementary advantages so as to accurately
evaluate the development of landslide debris flow.
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2.2. Data and Preprocessing

Small Baseline Subset InSAR (SBAS-InSAR) technology enables the monitoring of
surface deformation in an all-weather and multi-temporal manner, thereby extending the
effective monitoring period for debris flow events [32,33]. Because of its high timeliness and
abundant spectral information, optical remote sensing can directly illustrate the distribution
characteristics of various topographic factors in the low-frequency coefficient space [34,35].
During the research, to achieve pixel-level fusion and feature-level fusion analysis, two
remote sensing analysis platforms, ESASNAP and ENVI, were integrated for more detailed
processing and analysis of remote sensing data in the study area. ESASNAP platform
was utilized to process the acquired SAR data, which was subsequently imported into
ENVI software (version 5.3). Subsequently, appropriate data formats and band information
were selected, and the data were calibrated accordingly. This ensured data quality and
alignment with other remote sensing datasets, facilitating ongoing research. This paper
utilized multi-source and multi-temporal high-resolution Sentinel-1A data, along with
revised NDVI data. These high-resolution datasets spanned five phases from 2018 to 2022
and were employed to filter and identify changes in elevation and slope. Throughout the
study, SAR images were acquired in VV polarization mode with a resolution of 10 m, with
specific parameters detailed in Table 1.

Table 1. Basic parameters of SAR data.

Orbital
Direction

Imaging
Mode Band Wavelength

/cm
Resolution

/m
Revisit

Period/d
Polarization

Mode

Orbital
descent IW C 5.6 15 12 VV

Given that the low-frequency coefficient effectively captures the dynamic changes
within the study area, this paper employs NDVI data from 2018 to 2022 to compute the
low-frequency coefficient (Equation (1)) and conducts statistical analysis to derive the
fundamental statistical characteristics of NDVI and terrain factors (Table 2). This approach
addresses the limitations of threshold values associated with SBAS-InSAR technology. The
formula (Equation (1)) is expressed as follows:

NDVI =
NIR − R
NIR + R

(1)

where NIR represents the reflectance of the near-infrared band and R represents the re-
flectance of the red band.

Table 2. The basic statistical characteristics of NDVI and terrain factors.

Terrain Factor Number of
Pixels Area/m2 NDVI

Maximum
NDVI

Minimum
NDVI

Average
NDVI Standard

Deviation

Slope/◦

88,630 8,863,000 0.1627 0.8511 0.7792 0.0691
116,060 11,606,000 0.1094 0.8515 0.7838 0.0579
145,271 14,527,100 0.1788 0.8527 0.7865 0.0511
140,076 14,007,600 0.1458 0.8559 0.7885 0.0459
142,277 14,227,700 0.1460 0.8565 0.7908 0.0421
124,224 12,422,400 0.2072 0.8537 0.7924 0.0378
95,045 9,504,500 0.2611 0.8572 0.7912 0.0364

104,238 10,423,800 0.2262 0.8570 0.7850 0.0337
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Table 2. Cont.

Terrain Factor Number of
Pixels Area/m2 NDVI

Maximum
NDVI

Minimum
NDVI

Average
NDVI Standard

Deviation

Elevation/m

71,262 7,126,200 0.1094 0.8360 0.7299 0.1021
105,149 10,514,900 0.1615 0.8461 0.7658 0.0560
129,471 12,947,100 0.1810 0.8531 0.7758 0.0462
147,937 14,793,700 0.1922 0.8559 0.7817 0.0395
163,318 16,331,800 0.2725 0.8565 0.7961 0.0239
142,563 14,256,300 0.5329 0.8531 0.8041 0.01689
98,462 9,846,200 0.5118 0.8493 0.8057 0.0166
77,478 7,747,800 0.5972 0.8531 0.8102 0.0145

After radiation calibration, data with a 10 m resolution in bands 4 and 8 were chosen for
image processing. The classification system for coverage range comprises five levels, which
are low coverage area (<10%), medium-low coverage area (10–30%), medium coverage
area (30–50%), medium-high coverage area (50–70%), and high coverage area (70–100%).
As the vegetation growth in the majority of the study area exhibited minimal changes
over time, and considering the actual conditions depicted in the images, the conventional
classification method was enhanced and reorganized into four levels: lower (<20%), low
(20–33%), medium (33–73%), and high coverage area (73–100%) (Table 3).

Table 3. Classification of vegetation coverage levels.

Grade Lower
Coverage Area

Low
Coverage Area

Medium
Coverage Area

High
Coverage Area

Coverage range 0–0.19 0.19–0.33 0.33–0.73 0.73–1

2.3. Research Method

To proficiently observe the evolving dynamics of landslide debris flow, the methodol-
ogy for monitoring landslide debris flow changes, as proposed in this paper and based on
multi-source remote sensing data extraction technology, primarily encompasses three key
aspects (Figure 6), namely basic geographic data screening, SBAS-InSAR data extraction,
and optical remote sensing data processing.

Optical pixel offset was employed to extract surface deformation data. To ensure the
map aligns closely with the authentic features of the local valley ridgeline, vector data
representing slope units were computed from the digital elevation model (DEM) using
hydrological analysis [36–38], and elevation (Figure 7a) and slope factor (Figure 7b) were
extracted by using ArcGIS software (version 10.7). The highest elevation in the region is
2877 m, the lowest is 630 m, and the height difference is large. The change in NDVI based
on the influence of elevation and slope was selected as the index parameter to analyze the
development of landslide debris flow [39–41].
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In the case of landslide-type debris flow, NDVI serves as an indicator of vegetation
health and coverage changes, allowing monitoring of NDVI alterations. Typically, healthy
vegetation exhibits higher NDVI values due to its strong reflection in the near-infrared
band. Conversely, landslide debris flow often results in vegetation loss and land cover
alteration. Large-scale vegetation decay or disappearance induced by debris flow can
significantly decrease NDVI values in affected areas, indicating vegetation absence. The
spatial distribution map of NDVI directly depicts the non-uniformity of vegetation cover
and reflects areas impacted by debris flow. To ensure an accurate reflection of vegetation
growth across various months and years within the same monitoring area, the study
selected a timeframe from January 2018 to September 2022, with each year divided into five
observation periods: June 2018, August 2019, May 2020, March 2021, and July 2022. Based
on the NDVI distribution evolution trend observed during these five periods, statistical
analysis was conducted to assess the frequency distribution of NDVI pixels. The frequency
distribution of NDVI pixels across the five periods exhibited characteristics consistent with
a normal distribution (Figure 8).
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In 2018, the maximum pixel frequency was recorded at 9335, correlating with an NDVI
value of 0.8998. Over the years, with seasonal vegetation growth and artificial vegetation
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management practices, the maximum NDVI value associated with the pixel frequency has
exhibited an upward trend. This trend indicates the progressive increase in vegetation
greenness and the effectiveness of guided artificial vegetation management measures.
Furthermore, the rising NDVI values also signify favorable meteorological conditions and
improvements in land development and vegetation restoration efforts.

SBAS-InSAR relies on the matrix singular value decomposition method. In this study,
five sets of Sentinel-1A orbital descending image data for the study area were acquired, and
the minimum norm solution for surface deformation velocity was computed. Following
the untangling of multiple views, differential interferograms were generated to address
the space–time incoherence issue, thereby enhancing the accuracy of data processing. The
primary processing steps were as follows:

• Interference pair combination. The time and space baselines were calculated for
the multi-scene SAR images in different time periods in the coverage area, and the
appropriate time and space baseline threshold was selected to select the interference
pair (Table 4). The 12-day time baseline was taken as the threshold, interference pairs
with poor coherence were excluded, and the estimated results met the experimental
requirements. The generated connection diagrams of time baseline and space baseline
are shown in Figures 9a and 9b, respectively.

• Interference pair treatment. Interference processing was carried out on all paired
interferogram pairs, including interferogram generation, flattening, filtering, coher-
ence calculation, and phase unwinding. All data pairs were registered to the main
image so as to obtain the interferogram (Figure 10a), coherence coefficient diagram
(Figure 10b), and phase unwinding diagram (Figure 10c) after filtering and flattening
each interference relative pair, which could prepare the data for the next step of orbit
refining, rerunning, and SBAS inversion.

Table 4. Basic parameters of interference pair.

No. Primary Image
Acquisition

Secondary Image
Acquisition

Time Baseline
/Day

1 2018.01.18 2018.05.14 121
2 2018.09.11 2019.01.09 121
3 2019.05.21 2019.09.18 121
4 2020.01.16 2020.05.15 121
5 2020.09.12 2021.01.10 121
6 2021.05.22 2021.09.19 121
7 2022.01.17 2022.09.14 121
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• Inversion. The residual constant phase and phase ramp after unwinding were esti-
mated and removed. In the initial inversion, deformation rate and residual topography
were estimated. In the subsequent inversion, displacement on the time series was
calculated, and atmospheric filtering was applied to estimate and eliminate atmo-
spheric phase effects, enhancing the accuracy of the final displacement results on
the time series. SAR coordinates were converted to geographic coordinates, and the
experimental results were overlaid onto Google images for visualization.

Utilizing remote sensing data-derived vegetation coverage data and NDVI values for
each pixel, along with the pixel count of vegetation areas across different time periods, the
proportion of landslide-type debris flow occurrences within various vegetation coverage
areas was determined.

P =
∑n

i=1 Aai

∑m
j=1 Asj

× 100% (2)

where P is the proportion of debris flow, expressed in percentage. Aai is the area of debris
flow in the i-th pixel. Asj is the total area of the j-th pixel. n is the number of pixels
containing debris flow in the study area. m is the total number of pixels in the study area.

3. Results

Based on the changes in vegetation coverage with elevation in the study area (Figure 11a),
it is evident that in areas with lower coverage, vegetation concentration occurred within
the elevation range of 1600 to 2500 m. In regions with low coverage, vegetation cover
was concentrated between 700 to 1500 m, 1800 to 2100 m, and 2400 to 2700 m elevation.
In areas with medium coverage, two peaks were observed between 700 and 1500 m and
2300 and 2800 m, corresponding to vegetation coverage rates of 0.4–0.6. In regions with
high coverage, the maximum coverage reached 0.65 to 0.81, occurring between elevations of
700 and 1700 m, with a peak observed at 1700 m, gradually declining thereafter. Regarding
the gradient differentiation rule of vegetation NDVI changes (Figure 11b), it is observed
that from 2018 to 2022, vegetation coverage reached its peak value within the slope range
of 14◦ to 38◦, with the corresponding peak value recorded at 0.78.

From 2018 to 2020, there was a decreasing trend in the area of high and medium
vegetation coverage, albeit at a relatively slow pace. Meanwhile, the area covered by
low and lower vegetation coverage increased steadily year by year. The declining trend
in high and medium vegetation coverage areas intensified notably from 2020 to 2021,
only to reverse slightly from 2021 to 2022. During the observation period from 2019
to 2020, there was a significant increase in the low cover area in the southern part of
the study area (highlighted in red). This increase signifies a decline in vegetation cover
and degradation of vegetation health attributed to factors such as land use changes (e.g.,
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agricultural expansion, urbanization), extreme weather events, soil erosion, and heightened
human activities (Figure 12). The research findings align closely with the susceptibility of
landslide debris flow in the region. Through the calculation of each pixel’s classification
area, it was determined that the lower and low coverage areas in the northern region
represent the high-incidence zones of landslide debris flow, comprising 12% of the total
area. Additionally, the medium development areas are dispersed across regions exhibiting
sharp declines in vegetation coverage throughout the township, accounting for 9.7% of the
total area (Equation (2)).
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According to the analysis of landslide-type debris flow development locations in the
study area from 2018 to 2022 (Figure 13), it is evident that the locations prone to landslide-
type flow align with the expansion of areas with low vegetation cover. This correlation
indicates an elevated risk of landslide debris flow formation and development in regions
with increased low vegetation coverage.
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Figure 13. Statistical map of the prone parts of landslide debris flow in the study area from 2018 to 2022.

Moreover, construction projects within areas of medium coverage and lower to low
coverage are primarily concentrated along road edges near water bodies. This concentration
facilitates the precise identification of the morphology of debris flow formation areas, flow
paths, and accumulation zones (Figure 14). Each pixel in the image serves as an estimator
of backscattering within a specific ground range. Consequently, brighter pixels in the
image correspond to higher backscattering energy, while darker pixels indicate lower
backscattered energy.
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Optical remote sensing technology employs electromagnetic radiation within visible
and infrared bands to capture high-resolution images of surface features, recording spectral
information pertaining to surface reflection or radiation. On the other hand, SBAS-InSAR
derives surface deformation information through differential analysis of SAR interfero-
grams across multiple time periods. By leveraging the strengths of both methods, the
consistency in monitoring the development sites of landslide debris flow is affirmed.

Aerial optical images, obtained through sensors mounted on aircraft or drones, offer a
visual representation of the landscape, capturing details of surface features, land cover, and
vegetation. In the context of landslide debris flow, these images can reveal visible signs such
as soil erosion, vegetation damage, and changes in terrain morphology. The high-resolution
nature of aerial optical images allows for detailed analysis of the affected area, aiding in the
identification and delineation of landslide debris flow features (Figure 15a). On the other
hand, SAR images, acquired using active radar technology from remote sensing satellites,
provide information about surface roughness, soil moisture, and terrain characteristics.
SAR images are particularly valuable for monitoring changes in the Earth’s surface, in-
cluding the detection of ground deformation associated with landslide debris flow events.
Unlike optical images, SAR images are not affected by weather conditions or time of day,
allowing for consistent monitoring even in adverse weather conditions (Figure 15b). By
comparing the forms of landslide debris flow extracted from the corresponding aerial
optical images and SAR images, the roots of plants play a role in soil stabilization, and
the reduction in vegetation coverage in the study area has exacerbated soil erosion and
increased groundwater flow. During periods of continuous rainfall, the accumulation of
rainwater and surface runoff, combined with hydrological conditions, can exacerbate the
impact on geological faults. As a result, the stability of the soil layer is compromised,
leading to visible denudation of the exposed rock layer. This denudation manifests in the
formation, circulation, and accumulation areas of debris flow, becoming more pronounced
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under such circumstances. The decrease in vegetation coverage serves as a significant factor
in promoting the development of landslides and debris flow, particularly when rainfall
does not reach critical levels. It is noteworthy that under such circumstances, the reduced
vegetation coverage provides the channel and impetus for the release of energy associated
with landslides. However, when rainfall exceeds critical thresholds, despite an increase in
vegetation coverage and soil water saturation, vegetation absorption of rainwater mitigates
surface runoff but elevates the water content of debris flow. This, in turn, can lead to
localized landslides and further promote the development of debris flow.
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4. Discussion

Given the geographical location of the study area within the mountainous surround-
ings of the basin in western Sichuan, both the geological structure and climatic conditions
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are notably complex. Despite sparse human settlements, phenomena such as mineral
exploitation and deforestation, predominantly driven by human activities, are widespread.
Consequently, the region is susceptible to frequent occurrences of landslide-type debris
flows. Due to the challenges associated with implementing real-time manual ground in-
vestigations comprehensively, there is an urgent need to employ advanced and effective
monitoring and investigation methods to mitigate the probability of geological disas-
ters. [42–44]. Addressing the aforementioned challenges, this paper introduces a novel
approach: a multi-source fusion monitoring and simulation technology combining short
baseline interferometry (SBAS-InSAR) and optical remote sensing. This method enables
the accurate extraction of landslide debris flow information. By integrating various remote
sensing data, including normalized vegetation index, slope, elevation, terrain relief, and
formation lithology as constraints, relevant remote sensing image maps are generated.
Subsequently, the susceptibility of landslide-type debris flow is objectively evaluated.

Currently, numerous scholars have conducted comprehensive research and analysis
on landslide debris flow from diverse perspectives. These studies often involve classifying
landslide types based on factors such as active geological structures, topography, and
river dynamics. Along the extension areas of active faults, geological conditions become
fragile, leading to abnormal rock mass fragmentation and increased susceptibility to water-
induced softening, consequently triggering debris flows [45,46]. To meet the requirements
of geological hazard risk assessment, researchers have analyzed the changing trends of loose
solid sources through the mechanism of the landslide hazard chain. Mathematical models
have been developed to classify landslide hazards based on risk levels [47,48]. Additionally,
various machine learning models have been utilized to compare the accuracy of different
geological hazard susceptibility assessment methods, considering geological environmental
conditions and human engineering activities [49–52]. Building upon previous research
endeavors, this paper focuses on the topographic and geomorphic characteristics, as well
as land use data, of the study area. By employing multi-source remote sensing technology,
this study aims to elucidate the relationship between vegetation coverage changes and the
development of landslide-type debris flows. This approach seeks to establish correlations
between ecological factors and the progression of land disasters, thereby providing a
foundational framework for subsequent research efforts.

The research challenges related to landslide debris flow in the study area primarily
stem from several factors. Firstly, the existing research scope within the target area is
extensive, with geophysical exploration primarily focusing on petroleum and mineral
exploitation. This may result in limited attention being given to non-mineral exploitation
issues such as geological disasters. Additionally, studies on geological hazards in the study
area often rely on traditional single-factor analyses, such as hydrogeology, atmosphere,
and environmental factors. This approach constrains a comprehensive understanding of
the complex mechanisms underlying landslide debris flow and may result in outdated
or insufficient basic data, leading to delays in research conclusions. Landslide debris
flow is influenced by various factors, including terrain, rainfall, and geological structures,
among others. However, current research efforts may not adequately address these diverse
influencers, necessitating more detailed studies to thoroughly analyze the mechanisms
through which different factors impact landslide debris flow. To ensure the accuracy of
evaluating the vulnerability of landslide debris flow in the region, this paper leverages
previous research findings and applies multi-source remote sensing technology, combining
SBAS and optical remote sensing fusion. By extracting landslide debris flow data and
correcting external DEM models, this study aims to provide robust data support for
subsequent research and offer essential guidance for the deployment of geological disaster
monitoring efforts.

However, there is a scarcity of studies focusing on the development and distribution of
landslide debris flow in this specific research area. Consequently, correcting external DEM
models and extracting and screening effective data proves challenging. Nevertheless, in
conjunction with existing field survey data, SBAS-InSAR technology can accurately depict
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the deformation field and its variations. However, the region’s overall high vegetation
coverage and extensive underground water systems pose challenges to effective detection
using this method. On the other hand, optical remote sensing offers the capability of
extracting changes in surface information, including location, shape, size, shadow, tone,
color, texture, pattern, and influence range. This information can be utilized to calibrate
the spatial extent of geological disasters and identify potential hidden risks. By leveraging
these two methods in tandem, they complement each other’s strengths and can detect the
distribution and development of landslide debris flow to a greater extent. This integrated
approach is instrumental in the dynamic monitoring of landslide debris flow and the
effective prediction of its susceptibility.

To enhance the accuracy of susceptibility evaluations for landslide debris flow, addi-
tional influencing factors such as surface runoff and seismic intensity should be incorpo-
rated in subsequent stages. This necessitates strengthening geophysical exploration efforts
in the region to gather more effective data. By drawing susceptibility evaluation maps
that incorporate these factors, it becomes possible to accurately classify high-incidence and
low-incidence areas of landslide debris flow. Ultimately, this approach aims to enhance the
effectiveness of debris flow disaster prevention measures.

5. Conclusions

In this paper, optical remote sensing and SBAS-InSAR fusion technology were used
to extract landslide debris flow data from the study area in multiple dimensions. By
processing the extracted data, interference such as space–time discorrelation and phase
unentanglement could be avoided, and the resolution of image information was able to
be improved. At the same time, through the analysis and research of the bidirectional
constraints of the change in vegetation coverage, the change in debris flow distribution,
and the characteristics of debris flow morphology, a new idea was provided for disaster
monitoring so as to avoid the huge loss of life safety and economic development caused by
geological disasters.

The study area boasts a diverse range of mineral resources; however, the complexity
of its geomorphological features has led to a lack of geological exploration activities, re-
sulting in slow updates to geological structure data and incomplete statistical data on the
distribution and development of geological hazards. Currently, most research data stem
from traditional methods such as formation drilling, magnetic exploration, and radioactive
exploration, posing challenges to the accuracy and completeness of monitoring informa-
tion. Given these challenges, dynamic monitoring of the development and distribution
characteristics of landslide debris flow in this area is of paramount importance. Such
monitoring endeavors not only mitigate potential casualties and economic losses stemming
from geological disasters but also provide effective guidance for the process of mineral
resources development.

This paper utilizes multi-source and multi-temporal high-resolution Sentinel-1A data,
along with revised NDVI data, as the foundation for analysis. Optical pixel offset track-
ing technology serves as the core of optical remote sensing monitoring. By effectively
reducing noise in acquired surface deformation errors, this method ensures the accuracy
of monitoring results. Notably, it offers strong timeliness and rich spectral information,
facilitating the direct display of distribution characteristics of various terrain factors in the
low-frequency coefficient space. However, the significant topography of the region neces-
sitates consideration of shadow error images, which must be addressed using additional
technical approaches. Given the unique characteristics of the study area, SBAS-InSAR is
employed for pixel offset tracking. SBAS-InSAR pixels are typically distributed across
targets in non-urban areas, making its monitoring data well-suited for sparse regions with
high order coherence.
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