Study on Coupling and Coordination Relationship between Urbanization and Ecosystem Service Value in Jiangsu Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Method
2.3.1. Construction of the Indicator System
2.3.2. Urbanization Assessment
2.3.3. Estimation of Ecosystem Service Value (ESV)
2.3.4. Evaluation of Coupling Coordination between Urbanization and Ecosystem Service Value (ESV)
3. Results
3.1. Urbanization Evaluation
3.2. Estimation of Ecosystem Service Value (ESV)
3.3. The CCD between Urbanization and Ecosystem Service Value (ESV)
3.3.1. The Overall Interactive Coupling Relationship
3.3.2. The CCD between ESV and Subsystems of Urbanization
3.3.3. The CCD between Urbanization and Subsystems of ESV
4. Discussion
4.1. The Mutual Restriction between Urbanization and ESV
4.2. Coupling Coordination of Urbanization and ESV
4.3. Implications and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Vallecillo, S.; Kakoulaki, G.; La Notte, A.; Feyen, L.; Dottori, F.; Maes, J. Accounting for changes in flood control delivered by ecosystems at the EU level. Ecosyst. Serv. 2020, 44, 101142. [Google Scholar] [CrossRef]
- Leroy, G.; Baumung, R.; Boettcher, P.; Besbes, B.; From, T.; Hoffmann, I. Animal genetic resources diversity and ecosystem services. Glob. Food Secur.-Agric. Policy Econ. Environ. 2018, 17, 84–91. [Google Scholar] [CrossRef]
- Allsopp, M.H.; de Lange, W.J.; Veldtman, R. Valuing Insect Pollination Services with Cost of Replacement. PLoS ONE 2008, 3, e3128. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Girardello, M.; Santangeli, A.; Mori, E.; Chapman, A.; Fattorini, S.; Naidoo, R.; Bertolino, S.; Svenning, J.-C. Global synergies and trade-offs between multiple dimensions of biodiversity and ecosystem services. Sci. Rep. 2019, 9, 5636. [Google Scholar] [CrossRef]
- Manoli, G.; Fatichi, S.; Schlapfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E. Magnitude of urban heat islands largely explained by climate and population. Nature 2019, 573, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Maron, M.; Simmonds, J.S.; Watson, J.E.M.; Sonter, L.J.; Bennun, L.; Griffiths, V.F.; Quetier, F.; von Hase, A.; Edwards, S.; Rainey, H.; et al. Global no net loss of natural ecosystems. Nat. Ecol. Evol. 2020, 4, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Crutzen, P.J.; McNeill, J.R. The Anthropocene: Are humans now overwhelming the great forces of nature. Ambio 2007, 36, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Wiedmann, T.; Lenzen, M.; Keysser, L.T.; Steinberger, J.K. Scientists’ warning on affluence. Nat. Commun. 2020, 11, 3107. [Google Scholar] [CrossRef]
- Nations, U. Revision of World Urbanization Prospects; United Nations: New York, NY, USA, 2018; p. 799. [Google Scholar]
- Yang, W.; Jin, Y.; Sun, T.; Yang, Z.; Cai, Y.; Yi, Y. Trade-offs among ecosystem services in coastal wetlands under the effects of reclamation activities. Ecol. Indic. 2018, 92, 354–366. [Google Scholar] [CrossRef]
- Delphin, S.; Escobedo, F.J.; Abd-Elrahman, A.; Cropper, W.P. Urbanization as a land use change driver of forest ecosystem services. Land Use Policy 2016, 54, 188–199. [Google Scholar] [CrossRef]
- Duraiappah, A.K.; Naeem, S.; Agardy, T.; Ash, N.J.; Cooper, D.; Díaz, S.; Faith, D.P.; Mace, G.; McNeely, J.A.; Mooney, H.A. Ecosystems and Human Well-Being: Biodiversity Synthesis. 2005. Available online: http://opus.sanbi.org/handle/20.500.12143/8626 (accessed on 18 June 2023).
- Liu, J.; Li, J.; Qin, K.; Zhou, Z.; Yang, X.; Li, T. Changes in land-uses and ecosystem services under multi-scenarios simulation. Sci. Total Environ. 2017, 586, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Parnell, S.; Elmqvist, T. A Global Outlook on Urbanization. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Springer: New York, NY, USA, 2013; pp. 1–12. [Google Scholar]
- Fei, W.; Zhao, S. Urban land expansion in China’s six megacities from 1978 to 2015. Sci. Total Environ. 2019, 664, 60–71. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Admasu, W.F.; Boerema, A.; Nyssen, J.; Minale, A.S.; Tsegaye, E.A.; Van Passel, S. Uncovering Ecosystem Services of Expropriated Land: The Case of Urban Expansion in Bahir Dar, Northwest Ethiopia. Land 2020, 9, 395. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Arnell, A.P.; Contu, S.; De Palma, A.; Ferrier, S.; Hill, S.L.L.; Hoskins, A.J.; Lysenko, I.; Phillips, H.R.P.; et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 2016, 353, 288–291. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, S.; Yu, Y.; Tong, G.; Mo, L.; Yan, D.; Li, F. Spatiotemporal interaction between ecosystem services and urbanization: Case study of Nanjing City, China. Ecol. Indic. 2018, 95, 917–929. [Google Scholar] [CrossRef]
- Brunner, J.; Cozens, P. ‘Where have all the trees gone?’ Urban consolidation and the demise of urban vegetation: A case study from Western Australia. Plan. Pract. Res. 2013, 28, 231–255. [Google Scholar] [CrossRef]
- Plieninger, T.; Dijks, S.; Oteros-Rozas, E.; Bieling, C. Assessing, mapping, and quantifying cultural ecosystem services at community level. Land Use Policy 2013, 33, 118–129. [Google Scholar] [CrossRef]
- Willemen, L.; Hein, L.; van Mensvoort, M.E.F.; Verburg, P.H. Space for people, plants, and livestock? Quantifying interactions among multiple landscape functions in a Dutch rural region. Ecol. Indic. 2010, 10, 62–73. [Google Scholar] [CrossRef]
- Elliot, T.; Goldstein, B.; Gomez-Baggethun, E.; Proenca, V.; Rugani, B. Ecosystem service deficits of European cities. Sci. Total Environ. 2022, 837, 155875. [Google Scholar] [CrossRef]
- De Vreesea, R.; Leys, M.; Fontaine, C.M.; Dendoncker, N. Social mapping of perceived ecosystem services supply—The role of social landscape metrics and social hotspots for integrated ecosystem services assessment, landscape planning and management. Ecol. Indic. 2016, 66, 517–533. [Google Scholar] [CrossRef]
- Yi, H.; Guneralp, B.; Kreuter, U.P.; Guneralp, I.; Filippi, A.M. Spatial and temporal changes in biodiversity and ecosystem services in the San Antonio River Basin, Texas, from 1984 to 2010. Sci. Total Environ. 2018, 619, 1259–1271. [Google Scholar] [CrossRef] [PubMed]
- La Notte, A.; Vallecillo, S.; Maes, J. Capacity as “virtual stock” in ecosystem services accounting. Ecol. Indic. 2019, 98, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Vaz, A.S.; Amorim, F.; Pereira, P.; Antunes, S.; Rebelo, H.; Oliveira, N.G. Integrating conservation targets and ecosystem services in landscape spatial planning from Portugal. Landsc. Urban Plan. 2021, 215, 104213. [Google Scholar] [CrossRef]
- Aziz, T.; Van Cappellen, P. Comparative valuation of potential and realized ecosystem services in Southern Ontario, Canada. Environ. Sci. Policy 2019, 100, 105–112. [Google Scholar] [CrossRef]
- Castro, A.J.; Verburg, P.H.; Martin-Lopez, B.; Garcia-Llorente, M.; Cabello, J.; Vaughn, C.C.; Lopez, E. Ecosystem service trade-offs from supply to social demand: A landscape-scale spatial analysis. Landsc. Urban Plan. 2014, 132, 102–110. [Google Scholar] [CrossRef]
- Lu, X.; Shi, Y.; Chen, C.; Yu, M. Monitoring cropland transition and its impact on ecosystem services value in developed regions of China: A case study of Jiangsu Province. Land Use Policy 2017, 69, 25–40. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Y.; Zhu, X.; Cao, H.; Yu, T. Coastal wetland loss and environmental change due to rapid urban expansion in Lianyungang, Jiangsu, China. Reg. Environ. Chang. 2014, 14, 1175–1188. [Google Scholar] [CrossRef]
- Fang, G.; Yuan, T.; Zhang, Y.; Wen, X.; Lin, R. Integrated study on soil erosion using RUSLE and GIS in Yangtze River Basin of Jiangsu Province (China). Arab. J. Geosci. 2019, 12, 173. [Google Scholar] [CrossRef]
- Cao, X.; Huang, X.; Huang, H.; Liu, J.; Guo, X.; Wang, W.; She, D. Changes and driving mechanism of water footprint scarcity in crop production: A study of Jiangsu Province, China. Ecol. Indic. 2018, 95, 444–454. [Google Scholar] [CrossRef]
- Guo, X.; Fang, C.; Mu, X.; Chen, D. Coupling and coordination analysis of urbanization and ecosystem service value in Beijing-Tianjin-Hebei urban agglomeration. Ecol. Indic. 2022, 137, 108782. [Google Scholar] [CrossRef]
- Xiao, R.; Lin, M.; Fei, X.; Li, Y.; Zhang, Z.; Meng, Q. Exploring the interactive coercing relationship between urbanization and ecosystem service value in the Shanghai–Hangzhou Bay Metropolitan Region. J. Clean. Prod. 2020, 253, 119803. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Paruelo, J.; Raskin, R.; Sutton, P. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- Xie, G.-D.; Lu, C.X.; Leng, Y.-F.; Zheng, D.; Li, S. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Xie, G.; Zhen, L.; Lu, C.-X.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Chen, W.; Wang, G.; Zeng, J. Impact of urban expansion on ecosystem services in different urban agglomerations in China. Int. J. Environ. Sci. Technol. 2023, 20, 12625–12644. [Google Scholar] [CrossRef]
- He, W.K.; Li, X.S.; Yang, J.; Ni, H.; Sang, X.J. How land use functions evolve in the process of rapid urbanization: Evidence from Jiangsu Province, China. J. Clean. Prod. 2022, 380, 11. [Google Scholar] [CrossRef]
- Cai, F. The Second Demographic Dividend as a Driver of China’s Growth. China World Econ. 2020, 28, 26–44. [Google Scholar] [CrossRef]
- Shrestha, M.; Acharya, S.C. Assessment of historical and future land-use-land-cover changes and their impact on valuation of ecosystem services in Kathmandu Valley, Nepal. Land Degrad. Dev. 2021, 32, 3731–3742. [Google Scholar] [CrossRef]
- Degefu, M.A.; Argaw, M.; Feyisa, G.L.; Degefa, S. Dynamics of urban landscape nexus spatial dependence of ecosystem services in rapid agglomerate cities of Ethiopia. Sci. Total Environ. 2021, 798, 22. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, S.; Yin, L.; Zhang, B. Global occupation of wetland by artificial impervious surface area expansion and its impact on ecosystem service value for 2001–2018. Ecol. Indic. 2022, 142, 109307. [Google Scholar] [CrossRef]
- Deng, X.Z.; Huang, J.K.; Rozelle, S.; Zhang, J.P.; Li, Z.H. Impact of urbanization on cultivated land changes in China. Land Use Policy 2015, 45, 1–7. [Google Scholar] [CrossRef]
- Felipe-Lucia, M.R.; Soliveres, S.; Penone, C.; Fischer, M.; Ammer, C.; Boch, S.; Boeddinghaus, R.S.; Bonkowski, M.; Buscot, F.; Fiore-Donno, A.M.; et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl. Acad. Sci. USA 2020, 117, 28140–28149. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Feng, C.-C.; Shi, Y.; Guo, L. Spatiotemporal interaction between ecosystem services and urbanization in China: Incorporating the scarcity effects. J. Clean. Prod. 2021, 317, 128392. [Google Scholar] [CrossRef]
- Li, Z.T.; Li, M.; Xia, B.C. Spatio-temporal dynamics of ecological security pattern of the Pearl River Delta urban agglomeration based on LUCC simulation. Ecol. Indic. 2020, 114, 106319. [Google Scholar] [CrossRef]
- Wu, S.Z.; Wang, D.Y. Storing Grain in the Land: The Gestation, Delineation Framework, and Case of the Two Zones Policy in China. Land 2023, 12, 806. [Google Scholar] [CrossRef]
- Qi, Y.; Lian, X.H.; Wang, H.W.; Zhang, J.L.; Yang, R. Dynamic mechanism between human activities and ecosystem services: A case study of Qinghai lake watershed, China. Ecol. Indic. 2020, 117, 106528. [Google Scholar] [CrossRef]
- Bai, Y.; Deng, X.; Jiang, S.; Zhang, Q.; Wang, Z. Exploring the relationship between urbanization and urban eco-efficiency: Evidence from prefecture-level cities in China. J. Clean. Prod. 2018, 195, 1487–1496. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Long, H.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Lu, D.; Chen, M. Several viewpoints on the background of compiling the “National New Urbanization Planning (2014–2020)”. Acta Geogr. Sin. 2015, 70, 179–185. [Google Scholar]
Target Layer | Criterion Layer | Indicator Layer | Unit | Type |
---|---|---|---|---|
Urbanization level | Population urbanization | Total population | 104 persons | + |
Proportion of urban population | % | + | ||
Density of urban population | person/km2 | + | ||
Proportion of population in secondary and tertiary industries | % | + | ||
Economic urbanization | per capita GDP | CNY | + | |
Proportion of secondary and tertiary industries to GDP | % | + | ||
Per capita gross industrial product | CNY | + | ||
Per capita financial income | CNY | + | ||
Structure urbanization | Per capita road length | km | + | |
Proportion of construction land to urban area | % | + | ||
Per capita construction land area | km2 | + | ||
Per capita green areas of public places | km2 | + | ||
Social urbanization | Total retail sales of consumer goods | CNY | + | |
Per capita disposable income of urban residents | CNY | + | ||
Number of beds of hospitals per 10,000 persons | unit | + | ||
The proportion of education and science expenditure in local finance | % | + |
Cropland | Forest | Grassland | Water body | Wetland | Unused Land | |
---|---|---|---|---|---|---|
Food production (FP) | 1.00 | 0.33 | 0.43 | 0.53 | 0.36 | 0.02 |
Raw materials production (RP) | 0.39 | 2.98 | 0.36 | 0.35 | 0.24 | 0.04 |
Gas regulation (GR) | 0.72 | 4.32 | 1.50 | 0.51 | 2.41 | 0.06 |
Climate regulation (CR) | 0.97 | 4.07 | 1.56 | 2.06 | 13.55 | 0.13 |
Water regulation (WR) | 0.77 | 4.09 | 1.52 | 18.77 | 13.44 | 0.07 |
Waste treatment (WT) | 1.39 | 1.72 | 1.32 | 14.85 | 14.40 | 0.26 |
Soil conservation (SC) | 1.47 | 4.02 | 2.24 | 0.41 | 1.99 | 0.17 |
Biodiversity maintenance (BM) | 1.02 | 4.51 | 1.87 | 3.43 | 3.69 | 0.40 |
Entertainment (ET) | 0.17 | 2.08 | 0.87 | 4.44 | 4.69 | 0.24 |
Index | Value | Type | Explanation | Unit |
---|---|---|---|---|
Coupling degree (CD) | 0.8–1 | High-level coupling | The positive interaction between urbanization and ESV is increasing, and the coupling is becoming stronger. When C = 1, the system is in resonance state. | a |
0.5–0.8 | Running-in period | The relationship between urbanization and ESV gradually tends to be cooperative, showing a positive coupling trend. | b | |
0.2–0.5 | Antagonistic period | The correlation between urbanization and ESV is enhanced, showing a trend of mutual influence. | c | |
0–0.2 | Low-level coupling | The correlation between urbanization and ESV is very weak, and when C = 0, it means that the two are not correlated at all. | d | |
Coupling coordination degree (CCD) | 0.8–1 | High coordination | The positive coordination between urbanization and ESV is increasing. When D = 1, the system is in an ideal condition. | A |
0.6–0.8 | Positive coordination | The coordination between urbanization and ESV is strengthened and tends to be positive. | B | |
0.5–0.6 | Basic coordination | The basic coordination between urbanization and ESV shows the characteristics of coordination. | C | |
0.4–0.5 | Light incoordination | The coordination between urbanization and ESV is poor. | D | |
0.2–0.4 | Middle incoordination | The incoordination between urbanization and ESV is obvious. | E | |
0–0.2 | Deep incoordination | The incoordination between urbanization and ESV is very serious. When D = 0, the system is completely incoordinate. | F |
2005 | 2010 | 2015 | 2020 | |||||
---|---|---|---|---|---|---|---|---|
ESV | PESV | ESV | PESV | ESV | PESV | ESV | PESV | |
Nanjing | 146.52 | 2.22 | 143.32 | 2.18 | 142.52 | 2.16 | 139.22 | 2.11 |
Wuxi | 135.13 | 2.89 | 131.23 | 2.80 | 130.43 | 2.79 | 129.77 | 2.77 |
Xuzhou | 179.62 | 1.61 | 168.97 | 1.52 | 168.29 | 1.51 | 166.44 | 1.50 |
Changzhou | 101.67 | 2.33 | 98.60 | 2.26 | 97.82 | 2.24 | 96.24 | 2.20 |
Suzhou | 307.59 | 3.56 | 306.57 | 3.55 | 305.00 | 3.53 | 293.30 | 3.40 |
Nantong | 193.95 | 1.97 | 194.79 | 1.98 | 186.24 | 1.89 | 176.86 | 1.79 |
Lianyungang | 122.84 | 1.62 | 119.86 | 1.58 | 119.67 | 1.58 | 137.23 | 1.81 |
Huai’an | 260.42 | 2.59 | 254.91 | 2.53 | 253.64 | 2.52 | 255.03 | 2.54 |
Yancheng | 283.20 | 1.77 | 312.00 | 1.95 | 309.29 | 1.93 | 323.25 | 2.02 |
Yangzhou | 163.91 | 2.49 | 163.37 | 2.49 | 163.36 | 2.49 | 161.77 | 2.46 |
Zhenjiang | 79.70 | 2.08 | 76.53 | 2.00 | 75.92 | 1.98 | 74.14 | 1.94 |
Taizhou | 104.07 | 1.80 | 104.66 | 1.81 | 104.63 | 1.81 | 102.64 | 1.77 |
Suqian | 187.65 | 2.20 | 184.26 | 2.16 | 183.74 | 2.15 | 183.60 | 2.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Li, X.; He, W.; Chen, J.; Ji, H. Study on Coupling and Coordination Relationship between Urbanization and Ecosystem Service Value in Jiangsu Province, China. Land 2024, 13, 204. https://doi.org/10.3390/land13020204
Chen Z, Li X, He W, Chen J, Ji H. Study on Coupling and Coordination Relationship between Urbanization and Ecosystem Service Value in Jiangsu Province, China. Land. 2024; 13(2):204. https://doi.org/10.3390/land13020204
Chicago/Turabian StyleChen, Zhuang, Xiaoshun Li, Weikang He, Jiangquan Chen, and Haitao Ji. 2024. "Study on Coupling and Coordination Relationship between Urbanization and Ecosystem Service Value in Jiangsu Province, China" Land 13, no. 2: 204. https://doi.org/10.3390/land13020204
APA StyleChen, Z., Li, X., He, W., Chen, J., & Ji, H. (2024). Study on Coupling and Coordination Relationship between Urbanization and Ecosystem Service Value in Jiangsu Province, China. Land, 13(2), 204. https://doi.org/10.3390/land13020204