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Abstract: The distribution of cultivated land in prehistoric times was primarily influenced by natural
conditions and population density. This article presents a case study on modern cultivated land
simulation to analyze the potential impact of variable selection and validation data accuracy on model
precision. Additionally, methods were explored to enhance the accuracy of prehistoric cultivated land
simulation. Seven natural variables and one settlement density variable were selected to simulate the
distribution of cultivated land based on a Binary Logistic Regression model. The simulated results
were then compared with real land use data from 1985, which are commonly used as validation
data for prehistoric farmland reconstruction. The findings revealed that all eight selected parameters
could explain the distribution of cultivated land in the research area, with annual precipitation being
the most influential factor. The initial prediction accuracy was relatively low at 65.8%, with a Kappa
coefficient of 0.316. Several factors were identified as affecting the prediction accuracy. Firstly, the
scale effect diminished the impact of the slope and elevation on cultivated land distribution, and
errors were introduced in the method used to calculate the distance from residential areas. Secondly,
the loess hilly area in the southeastern part of the research area overpredicted cultivated land due to
insufficient data on actual residential land demand. Lastly, strong human activity since the 1950s has
altered the natural distribution of cultivated land, resulting in poor consistency ratings. To address
these issues, a batch modification method was employed to correct the 1985 data. The validation of
the prediction model using the corrected data demonstrated a significant improvement in accuracy.
Therefore, it is recommended to use the revised 1985 land use data for verifying prehistoric cultivated
land simulation in the region. However, further research is required to mitigate the impact of the first
two errors.

Keywords: model accuracy; land use simulation; Binary Logistic Regression; human activity;
farming–pastoral transitional zone

1. Introduction

As a crucial factor contributing to global change, researchers have extensively studied
Land Use and Land Cover Change (LUCC) in terms of its development and evolution,
driving mechanisms, distribution patterns, and simulation and reconstruction [1–3]. Recent
advancements in remote sensing satellites have yielded a plethora of high-precision data
for LUCC research [4–7]. However, these satellite observations are limited in terms of
the monitoring period. To overcome the scarcity of remote sensing data for long-term
land use studies, the model simulation method emerges as a crucial approach [8]. For
instance, scholars have utilized various models, including PBM, CLUE, and REVEALS, to
reconstruct historical land use patterns [9–11]. Additionally, researchers have been adapting
classical models by adjusting parameters and variables to develop region-specific land use
models [12–14]. Recently, some scholars have incorporated rules that capture human land
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use behavior into cellular automata models, resulting in more precise reconstructions of
past land use distributions [15,16].

Compared to the models mentioned above, the Binary Logistic Regression (BLR)
model, known for its simplicity and fewer parameter constraints, has been extensively
employed in land use reconstruction. Peppler et al. employed the BLR model to simulate
land use in northern Hesse, Germany, incorporating physical factors and highlighting
their role in determining the distribution pattern of land use in this region [17]. Similarly,
Matasov et al. utilized socioeconomic statistics, historical maps, satellite images, and the
BLR model to reconstruct the land use cover of the province of Ryazen, Russia, from 1770 to
2010 [18]. In China, Bai et al. utilized a BLR model to generate a probability map depicting
the distribution of various land types in Dulbert Autonomous County of Inner Mongolia
over the past century [19]. Their study considered both natural and socio-economic factors.
In a similar manner, Chen et al. employed the same model to reconstruct the distribution of
cultivated land during the late Neolithic period in the North China Plain using factors such
as elevation, slope, soil, rivers, and proximity to residential areas [20]. Moreover, Yang et al.
achieved a more precise reconstruction of the distribution of cultivated land in the Lower
Mississippi Alluvial Valley from 1850 to 2018 [21]. This study showed that using machine
learning algorithms and county-level census data has higher accuracy than relying solely
on state-level population data.

Most prehistoric or historic cultivated reconstructions obeyed the following steps [22,23]:
Firstly, a model is used to establish a quantitative relationship between modern populations
and land use, ensuring high prediction accuracy. Next, the model parameters are also
applied in conjunction with spatial analysis tools such as GIS to recreate the spatial and
temporal distribution patterns of cultivated land in previous periods. In China, most
studies on this topic have validated the model using land use data from the 1980s. The
accuracy of predicting the distribution of cultivated land in the 1980s is frequently regarded
as a significant criterion for assessing their suitability in predicting prehistoric or historic
periods. However, when we attempted to apply the same method to simulate the year
1985′s cultivated land in the Yulin region of northern China, we encountered a low accuracy
rate with the model. Peppler argued that data quality, parameter selection, and random
errors can affect the predictive accuracy of a logistic regression model. Additionally, the
absence of human factors may contribute to the poor predictive accuracy of land use simu-
lations over the past 2000 years. However, there are limited studies analyzing the factors
influencing the prediction accuracy of the model.

Additionally, previous research on cultivated land reconstruction in China has mainly fo-
cused on traditional farming areas in the east, with less attention given to the farming–pastoral
transitional zone. Archaeological evidence suggests that advanced agriculture was already
present in the local area during the Yangshao period (ca. 5000-4900 BCE) [24]. The Long-
shan culture (ca. 3000-2000/1900 BCE) developed a diversified subsistence strategy, with
agriculture as the main focus and animal husbandry as a supplement [25]. Farmland is
the foundation and product of agricultural activities; however, there is currently no clear
understanding of the distribution pattern of cultivated land in the region. This ecotone
exhibits stronger heterogeneity in various natural factors compared to the plain area in
eastern China. At the same time, the landscape pattern of the farming–pastoral ecotone is
highly sensitive to both natural and human-induced changes. Some scholars argued that
climatic fluctuations, such as precipitation, directly impact the development of arable land
in the region [26]. However, other studies suggested that population pressure, policies, and
technological advancements are the main drivers behind the recurrent expansion and con-
traction of arable land [27]. In reality, the spatial and temporal changes in the agricultural
and pastoral landscape pattern in the region were a combined response to climate change
and human activities [28–30]. Therefore, this study aims to collect relevant physical and
social factors as independent variables to build a BLR model. And the potential distribu-
tion of arable land in the Yulin area for the time period of 1985 was reconstructed. This
reconstructed result was compared with the actual land use data to explore the factors that
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may affect the prediction accuracy of the model at a certain scale. In order to minimize the
influence of human activity on validating farmland data, this paper presents a method for
batch-modifying raster data values to improve the accuracy of prediction evaluation. The
findings of this research will serve as a reference for accurately simulating and predicting
the spatial distribution patterns of cultivated land in this region, whether historical or
prehistoric, in future studies.

2. Study Area

Yulin is located in the north of Shaanxi Province, China (36◦57′~39◦34′ N, 107◦28′~111◦

15′ E), with a total land area of 4.292 × 104 km2 (Figure 1). In terms of the climate type,
the region belongs to the transition zone from a temperate monsoon climate to temperate
continental climate, from northwest to southeast, with an annual temperature of 7–9 ◦C. The
frost-free period is short, and the precipitation ranges from 300 to 500 mm, mainly in the
summer. Taking the Ming Great Wall as the boundary, the topography and geomorphology
of the study area show great differences. Beyond the Great Wall lies an expanse of sandy
and grassland terrain, encompassing 42% of the total area. This region features a gentle
and undulating topography, characterized by a continuous distribution of sand dunes as
well as scattered beaches and lakes. Within the Great Wall, there is a significant expanse
of loess hills and gullies, encompassing 58% of the total area. This region can be further
classified into the eastern loess hills and gullies, as well as the western low mountain hills
area. The eastern loess hilly and gully area is characterized by an alternating distribution of
hills and ridges. The surface in this area is fragmented due to the impact of flowing water
erosion, resulting in significant fluctuations in the terrain. On the other hand, the western
low mountain and hilly area has a higher elevation. The tableland in this area is wide and
the slope is relatively gentle. In conclusion, the terrain in this region is higher in the west
and lower in the east. Influenced by the topography, most rivers flow from northwest to
southeast. Major rivers, including Kuye River, Tuwei River, and Wuding River, all directly
discharge into the Yellow River.
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Figure 1. Map of the study area. (a) Geographic location of the study area within China; (b) admin-
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3. Materials and Methods
3.1. Parameter Factor Selection

Based on previous research and combined with the development process of cultivated
land in the region from Ming-Qing (1368-1911CE) to the present [31–34], this article identi-
fied the variables that affect the spatial distribution pattern of the cultivated land. Natural
variables such as the slope, altitude, soil type, and proximity to rivers have been found to
play a crucial role in determining the formation of arable land. Previous studies have also
highlighted the significant influence of precipitation and temperature on the development
of arable land [30,35,36]. Moreover, the amount of cultivated land is influenced by popula-
tion density, as it is a result of human activities. Furthermore, the spatial distribution of
cultivated land is closely associated with the distance from the residential area [37]. The
research area exhibits a rugged and uneven surface, which means that the visible distance
(Euclidean distance) may not accurately reflect the actual distance required to reach a
specific location. In order to address this problem, this study focused on calculating the
time it takes to walk 1 m under different slope conditions and applied the results for a
Cost–Distance Analysis. Additionally, eight factors were selected as driving factors that
influence cultivated land development: elevation, slope, soil type (ST), annual average
temperature (AAT), annual average precipitation (AAP), distance from rivers (DR), distance
from settlements (DS), and population density (PD).

3.2. Data Sources

The land use data for Yulin in 1985 were extracted from the dataset by Yang et al. [38],
with a spatial resolution of 30 m. Digital Elevation Model (DEM) data were downloaded
from the Geographic Spatial Data Cloud (http://www.gscloud.cn, accessed on 5 July 2023)
with a spatial resolution of 30 m, and slope data were calculated from the DEM data
using ArcGIS 10.2 software. Soil data were obtained from the Resource and Environment
Science Data Center of the Chinese Academy of Sciences (http://www.resdc.cn, accessed
on 5 July 2023). These data were digitized based on the “1:10,000,000 soil map of the
People’s Republic of China (PRC)”, which was compiled and published by the National
Soil Census Office in 1995, according to the traditional “Soil Occurrence Classification
System” (SOCS). The STs were divided into 12 soil orders, 61 soil classes, and 227 subclasses,
with a spatial resolution of 1 km. AAT and AP data were derived from the WorldClim
project (http://worldclim.org, accessed on 6 July 2023). The temporal coverage spans from
1970 to 2000, with a spatial resolution of 1 km. PD data are derived from the 1 Kilometer
Grid Population Spatial Distribution Dataset of China [39]. This study utilized population
density data from 1990, which is also the year closest to the distribution of cultivated land
to be reconstructed. The vector boundaries, river, and settlement point data for the study
area were downloaded from the National Geographical Information Resource Catalog
Service System (http://www.webmap.cn, accessed on 6 July 2023). The scale of the latter
two datasets is 1:250,000.

3.3. Data Processing

The land use data of 1985 were reclassified in ArcGIS. Cultivated land was separated
into one category, while all other land use types were grouped into another category. The
distance to rivers raster data were created using the Euclidean Distance tool in ArcGIS 10.2,
based on river vector data. Similarly, the distance to settlement points raster data were
generated using the Cost–Distance tool. A previous study identified a relationship between
walking time and slope, which is as follows [40]:

Y = 0.0002x2 + 0.002x + 0.6086 (1)

In the equation, Y represents the time (second) required to walk 1 m, and x represents
the slope.

http://www.gscloud.cn
http://www.resdc.cn
http://worldclim.org
http://www.webmap.cn
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Using the Raster Calculator tool in ArcGIS 10.2, the slope–time raster was derived and
used as the cost raster data. This raster, combined with settlement point data, generated
the distance to settlement points raster. Combining the soil organic matter content and the
“barren land” type in the land use data of 1985, the ST data were reclassified into 5 levels
using ArcGIS 10.2. They included the most unsuitable type and the other four types based
on organic matter content from low to high. To ensure comparability of contribution rates
for each variable, it is essential to standardize the variables due to their non-uniform units
and significant differences in numerical values. The processing formula is as follows [41]:

GYi =
MaxYi − Yi

MaxYi
(2)

i represents the grid number, MaxYi is the maximum value of each independent
variable, Yi is the value of each independent variable, GYi is the standardized value of the
independent variable for grid i, with a range of [0, 1].

The spatial scope of the research area determined that the simulated reconstruction
of cultivated land in this study has a resolution of 250 m. Additionally, resampling was
conducted on each grid dataset to ensure that the number and resolution of each variable
grid can be overlaid and analyzed.

3.4. Model Configuration

The BLR model is an equation model that predicts a binary dependent variable (0
or 1, yes or no) based on continuous or categorical independent variables. It calculates
separate coefficients for each explanatory variable and determines the probability of the
dependent variable occurring through weighted calculations. In this study, we considered
the distribution of cultivated land in 1985 as the dependent variable and took eight natural
and social factors that influence cultivated land distribution as independent variables.
A BLR model was built to calculate the weights of each independent variable. Finally,
the Raster Calculator tool in ArcGIS 10.2 was utilized to derive the spatial probability
distribution of cultivated land in 1985. The formula of the BLR model is the following [42]:

log
(

Pi
1 − Pi

)
= α + ∑k

k−1 βkXki
(3)

i represents the raster number, Pi is the probability of raster i becoming cultivated land
or non-cultivated land, α is the constant term, X is the variable value, β is the regression
coefficient, and k is the number of independent variables. For the analysis of the model’s
independent variables, a p-value of less than 0.05 indicates that the selected factors have
reached a significant level and are variables that influence the probability of cultivated land
distribution. This article assumed p ≤ 0.5 for arable land and p > 0.5 for non-arable land.
Comparing the predicted results with the actual land use data, the higher the prediction
accuracy, the more reasonable the model construction is considered as.

To determine the parameters of the BLR model, 50,000 grids were randomly selected
from a total of 686,541 grids in the study area for cultivated land and non-cultivated
land, respectively. Label points were then used to extract the corresponding values of
each independent variable. The extracted data were exported and loaded into Excel. The
calculation of the model’s paraments was conducted using IBM SPSS Statistics 22.

3.5. Precision Evaluation

This paper uses the Kappa coefficient to evaluate the model’s prediction accuracy. The
formula for calculating the Kappa coefficient is as follows:

Kappa =
P0 − Pc

1 − Pc
(4)
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P0 is the proportion of correctly simulated data and Pc is the proportion of expected
correct simulated data under a random situation. When the P0 is greater than the Pc, the
Kappa value is positive, and a larger Kappa value indicates better consistency. When the
predicted results are entirely consistent with the actual data, the Kappa coefficient equals 1.
Detailed classifying criteria can be found in Table 1 [43].

Table 1. The classified Kappa coefficient indicates the predictive power of the model.

Kappa Index Degree of Agreement

<0.05 None
0.05–0.20 Very poor
0.20–0.40 Poor
0.40–0.55 Fair
0.55–0.70 Good
0.70–0.85 Very good
0.85–0.99 Excellent
0.99–1.00 Perfect

4. Results
4.1. Model Parameter Analysis

The p-values of the selected independent variables for model construction are all below
0.05, indicating that all eight factors significantly influence the probability of cultivated
land distribution and effectively explain its spatial patterns. Among these factors (Table 2),
precipitation has the strongest impact on the distribution of cultivated land. The likelihood
of the grid becoming farmland increases by 52.329 times for every doubling of precipitation,
which is in line with previous research emphasizing the significance of water resources in
constraining the expansion of cultivated land in the region [30,32–36]. Additionally, PD
and ST also have a significant impact on the distribution of cultivated land. Each increase
in their values by one unit increases the likelihood of the grid becoming cultivated land by
15.398, and 12.366 times, respectively.

Table 2. The estimation of the significant parameter of independent variables.

Parameter β Standard Deviation Exp (B)

Elevation −0.547 ** 0.093 0.579
Slope −0.949 ** 0.059 0.387

ST 2.515 ** 0.043 12.366
AAT 0.851 ** 0.130 2.342
AAP 3.958 ** 0.148 52.329
DR 2.271 ** 0.076 9.689
DS −5.460 ** 0.129 0.004
PD 2.734 ** 0.104 15.398

Constant −0.156 0.155 0.856
Only standardized variables with p < 0.05 value were used in the model; “**” correspond to p < 0.01.

4.2. Model Accuracy

By substituting the regression coefficients of each variable and the constant into the
BLR, the model is ultimately determined as

P =
exp[A]

1 + exp[A]
(5)

A = −0.547 × (Elevation) − 0.949 × (Slope) + 2.515 × (ST) + 0.851 × (AAT) + 3.958 × (AAP) + 2.271 × (DR) −
5.460 × (DS) + 2.734 × (PD) − 0.156
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The predicted results using the model are presented in Table 3. In this table, a value of
1 denotes cultivated land and a value of 2 represents non-cultivated land. We randomly
selected 50,000 cultivated grids and 50,000 non-cultivated grids from the actual land use
data of 1985. In the model, a total of 33,292 cultivated grids and 32,451 non-cultivated
grids were accurately predicted. The overall classification accuracy is 65.8%, with a Kappa
coefficient of 0.316 indicating limited consistency in the model’s predictions.

Table 3. BLR predictive classification results.

Predicted

Observed Cultivated Non-Cultivated Correct (%)

Cultivated 33,292 16,698 66.6
Non-cultivated 17,533 32,451 64.9
Total share (%) 65.8

The model was then applied to the whole study area. According to the model results,
a total of 304,439 grids were classified as cultivated, while 382,102 grids were categorized
as non-cultivated. The predicted number of grids for cultivated land is 105,714 more
than the actual number. A further analysis through visual interpretation showed that
these additional predicted cultivated areas were mainly located in the southeastern region
of the study area. To investigate and quantify these differences between predicted and
actual distributions, a comparative analysis using ArcGIS’s Raster Calculator function was
conducted (Figure 2).
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There are 448,063 grids with a value of 0. These grids are accurately predicted using
the model, including cultivated and non-cultivated land. Grids with a value of 1 indicated
that they were predicted as non-cultivated but were actually cultivated, and these were
predominantly found in the northwest sandy grassland area (NSGA). On the other hand,
grids with a value of −1 represented grids that were predicted as cultivated but were
actually non-cultivated. These grids were mainly distributed in the southeastern loess hilly
region (SLHR), as well as in the central zone of Jingbian and Dingbian Counties (Figure 2).

5. Discussion
5.1. Causes Affecting Model Accuracy
5.1.1. Southeastern Loess Hills Region

After comparing the model’s predicted results with the actual value, it was found that
the cultivated land in the SLHR was overpredicted. The scale effect played a crucial role
in the accuracy of land use simulation predictions. Research indicated that as the scale
increases and the grid resolution decreases, the influence of elevation and slope on the
distribution of cultivated land gradually diminishes [44]. Only excessively high elevations
and steep slopes continue to restrict the distribution of the cultivated land. The study
suggested that in the Loess Plateau region, as the spatial resolution of DEM data decreases,
the overall slope in the study area tends to decrease, with the highest variability observed
in the most fragmented loess hilly and gully areas. In the north Loess Plateau, DEM data
with a resolution of 5 m provide more accurate slope information [45]. However, this study
utilized slope data extracted from the DEM with a resolution of 30 m, which were further
resampled to a resolution of 250 m. Consequently, the overall grid slope values may be
underestimated due to resampling. As a result, the model may incorrectly classify some
grids with steep slopes, which are unsuitable for cultivation, as suitable for agricultural
development due to scale-related reasons.

Population density is also an important factor that influences farmland development.
There is a positive correlation between population quantity and the extent of cultivated
land to some extent. However, to accurately simulate actual farmland distribution, it is
necessary to consider the land requirements of residents at each settlement as a constraint.
Unfortunately, the data on actual land requirements are currently unavailable. In this
study, the distance to residential areas was selected as a factor. The settlement point was
taken as the center, and various distances were used as radii to generate cost–distance data.
However, this approach did not consider topographical factors. Consequently, grids with
shorter distances from the settlement point were more likely to be classified as suitable
for cultivated land development, despite the fact that the actual distribution of cultivated
land was more fragmented and complex in comparison to the flat areas [46]. Despite the
challenges of a large slope and soil erosion resulting from cultivation in the steep slope,
the southeastern hilly and loess region generally has a lower elevation and higher AAT
and AAP. This makes it more suitable for agricultural cultivation. However, it is important
to consider the possibility of overestimating cultivated land in this region, as this could
impact the overall accuracy of this study.

5.1.2. Northwest Sandy Grasslands Area

On a shorter timescale, the impact of physical condition on regional-scale land use
changes is limited, with socio-economic factors playing a decisive role [47]. The 1985 land
use map indicated a substantial presence of arable land in the NSGA. However, this study
predicted a considerable portion of the cultivated land to be non-cultivated land. Historical
records from the county annals and ‘The Annals of Shaanxi Province: Water Conservancy
Chronicles’ revealed that this area experienced two waves of farmland development after
the establishment of the PRC [48–53]. The first wave occurred during the Great Leap
Forward in the 1950s, and the second wave took place during the agricultural development
movement from the 1960s to 1970s. During these periods, the communes organized a large
workforce to reclaim the sandy and grassland area. The shoal land can be planted directly,
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while salinized land was improved using measures such as digging trenches for drainage,
adding sand to neutralize alkalinity, and irrigating to flush out alkali. For instance, in
Dingbian County, a total of 960 hectares (ha) of salinized land was reclaimed from 1958
to 1985, resulting in a yield increase of over 50% per ha. The local water conservancy
construction also progressed during the process of cultivated development [54]. Reservoirs
like Jinjisha and Xinqiao were constructed in the Jingbian and Yulin regions for water
storage and irrigation. In areas lacking surface runoff, abundant groundwater resources
were tapped and utilized through well drilling technology. Concurrently, agricultural sup-
porting facilities such as irrigation canals were constructed. This comprehensive approach
facilitated the transformation of extensive sandy grassland into cultivated farmland. Repre-
sentative examples of this transformation included the town of Ningtiaoliang in Jingbian
County and the Balihe Irrigation District in Dingbian County [47,49] (refer to Table 4). The
development of these cultivated lands was directly influenced by socio-economic factors
such as policies and technologies. However, these difficult-to-quantify factors were not
included as independent variables in the predictive model, leading to a decrease in overall
predictive accuracy. The failure of prediction for a significant number of cultivated lands in
the NSGA played a crucial role in the poor predictive consistency.

Table 4. The number of irrigation channels and wells in the NSGA.

Location The Length of Irrigation (Unit: km) The Number of Wells

Dingbian 210 2243
Jingbian 400 1176

Hengshan 233 134
Yuyang 300 1003
Shenmu 167 No data

The length of irrigation canals and the number of wells composed data for around the
year 1985. In addition, Dingbian County had 1541 wells equipped with water tanks. By the
end of 1993, Yuyang District had a total of 2011 wells, including trough wells and artesian
trough wells.

5.2. Land Use Data Revision and Model Reconstruction

In prehistoric and historical periods, the cultivated land distribution was most con-
trolled by the natural conditions and the settlement density. In order to improve the
accuracy of prehistoric models, it is crucial to use validation data that closely represent the
distribution during that time. The data from 1985, which have been commonly used in
previous studies in the region, have already been significantly affected by human activities.
Therefore, it cannot be directly used for verifying the accuracy of the model. To obtain a
more precise prediction model, this article employs the method involving batch-modifying
grid values to eliminate the influence of human activities. In the 1985 land use map, raster
values predicted using the model to be non-cultivated that were actually farmland were
changed to non-cultivated and a total of 65,910 grids were changed. The modified land-use-
type map was then reclassified into binary values, with 132,371 cultivated land grids and
554,170 non-cultivated grids. For the new round of prediction, 50,000 grids representing
cultivated land and 50,000 grids representing non-cultivated land were randomly selected.
The results showed that out of the 50,000 cultivated grids, 41,266 were accurately predicted,
while 8734 were predicted incorrectly. Similarly, for the 50,000 non-cultivated grids, 39,054
were correctly predicted, while 10,946 were wrongly predicted (Table 5). The predictive
accuracy of the model was significantly improved compared to the initial predictions, with
an overall accuracy of 80.3% and a Kappa coefficient of 0.606.
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Table 5. New BLR prediction classification results.

Predicted

Observed Cultivated Non-Cultivated Correct (%)

Cultivated 41,266 8734 82.5
Non-cultivated 10,946 39,054 78.1
Total share (%) 80.3

Table 6 demonstrates that in the new model construction, the p-value of the eight
selected independent variable is less than 0.05. All of these variables reach the significance
level and can be used as explanatory variables that affect the distribution of cultivated land.
“**” correspond to p < 0.01.

Table 6. The new estimation of the significant parameter of independent variables.

Parameter β Standard Deviation Exp (B)

Elevation −2.305 ** 0.119 0.100
Slope −2.663 ** 0.073 0.070

ST 6.665 ** 0.068 784.207
AAT 1.673 ** 0.162 5.328
AAP 13.859 ** 0.197 1,044,307.436
DR 7.364 ** 0.102 1577.393
DS −13.710 ** 0.192 0.000
PD 4.784 ** 0.119 119.584

Constant 0.500 ** 0.196 1.648
Only standardized variables with p < 0.05 value were used in the model; “**” correspond to p < 0.01.

Among the factors influencing the distribution of cultivated land, AAP remains the
most important, followed by DS and ST. The regression coefficients for these three factors
are 13.859, 7.364, and 6.665, respectively. In comparison to the initial model, the impact of
PD on the distribution of cultivated land has decreased and now ranks fourth. This decrease
can be attributed to the batch modification of grids, which eliminated the impact of human
activities at a large scale. According to the historical archives [55], by the late 1970s, the
PDs in counties (districts) adjacent to the Mu Us Sandy Land, including Hengshan, Yuyang,
Jingbian, Shenmu, and Dingbian, had all exceeded 30 persons/km2. These data surpassed
the population thresholds set by the United Nations for semi-arid areas (20 persons/km2)
and arid areas (7 persons/km2). Alongside population growth, the rising demand for food
was a significant factor contributing to the change in land cover in sandy grassland areas.
The new BLR model (Formula (6)) is shown below.

P =
exp[A]

1 + exp[A]
(6)

A = −2.305 × (Elevation) − 2.663 × (Slope) + 6.665 × (ST) + 1.673 × (AAT) + 13.859 × (AAP) + 7.364 × (DR) −
13.710 × (DS) + 4.784 × (PD) + 0.500

By utilizing this model to analyze the distribution of cultivated land and comparing it
with the modified land use types from 1985, the findings reveal that there are 122,517 grids
with a value of −1 (Figure 3). These grids remain concentrated in the southeast loess hilly
area as well as the central parts of Dingbian and Jingbian. On the other hand, the number
of grids with a value of 1 has notably decreased, with only 23,374 grids remaining. These
grids are primarily found in the northern parts of Dingbian and Jingbian, along with other
sandy grassland areas.
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Figure 3. Comparison of second simulated farmland and actual spatial pattern of 1985 in Yulin.

In order to further show the differences between the predicted cultivated land and the
1980s farmland data, we randomly selected five archaeological sites during the Longshan
period in both the northwest sandy grassland area and the southeastern loess hilly region.
The cultivated land area within the 5 km buffer zone of these points was extracted from the
predicted and 1980s datasets, respectively (Table 7). The results reveal that the predicted
cultivated land of the five sites in the southeastern loess hilly region is significantly higher
than the actual cultivated land, indicating an overestimation in this region. Alternatively,
the predicted cultivated area of the five sites in the northwest sandy grassland area was
significantly lower than the actual cultivated data, with two sites showing the largest
discrepancies. These findings further support our conclusion. Since the farmland data from
the 1980s have been strongly disrupted by human activities, it must be corrected before it
can be used as validation data for future prehistoric farmland prediction models.

In addition, to further demonstrate the effectiveness of batch-modifying the grid
values of the validation dataset in improving prediction accuracy, we also selected land
use data from the Yulin region in 2005 for validation. The above experimental process was
repeated to obtain results, which showed that the model’s prediction accuracy was 64%
when cultivated grids in the northern sandy grassland area were not excluded. However,
after excluding these grids, the prediction accuracy increased to 77.6%. Therefore, it can be
considered that this method presents a novel approach for reconstructing land use in the
prehistoric/historical period of the northern agricultural pastoral transitional zone.
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Table 7. Site information for verification and the cultivated land area within 5 km buffer zone.

No. Longitude Latitude Location Site Prediction Area
(Number of Cells)

Actual Area
(Number of Cells)

1 109.40 38.57 NSGA HTGLW 0 131
2 109.62 38.36 NSGA CHJHSL 0 90
3 110.45 39.22 NSGA LJSPYW 89 143
4 109.86 39.06 NSGA ABGD 194 195
5 110.00 38.88 NSGA TJWDP 49 54
6 110.19 37.64 SLHR MXZZS 1298 848
7 110.02 37.75 SLHR ZS 1297 481
8 109.52 37.55 SLHR WYQZS 993 303
9 110.45 37.81 SLHR GADMZS 1278 877
10 110.36 37.37 SLHR JDGD 1285 842

6. Conclusions

This paper examines eight physical and social factors and utilizes the BLR model
to simulate the distribution of cultivated land in the study area in 1985. By comparing
the simulated results with the actual land use map from 1985, the following preliminary
conclusions are drawn:

1. AAP is the major factor that influenced the distribution of cultivated land in the study
area. The initial construction of the model yielded an overall predictive accuracy of
65.8%, with a Kappa coefficient of 0.316, indicating poor predictive consistency. The
factors that affect accuracy vary in different landforms.

2. The influence of factors such as the elevation and slope on the distribution of cultivated
land decreases as the data resolution decreases, mainly due to scale effects. This
influence is particularly noticeable in the hilly areas of the southeast. Moreover, the
over-prediction of cultivated land distribution in the southeastern loess hilly region
can be attributed to the calculation assignment method for distance to residential
areas and the absence of actual cultivated land demand data for each residential area.

3. In the northern sandy grassland area, modern humans have constructed agricul-
tural water conservancy projects, which have altered soil moisture conditions and
converted some sandy areas into cultivated fields. The presence of these cultivated
lands has adversely affected the initial predictions of the model, resulting in lower
predictive accuracy.

4. It is important to note that relying on cultivated land distribution maps influenced
by modern human activities can lead to significant errors when validating predictive
models for prehistoric or historical periods. To address this problem, a batch modifi-
cation method was used to adjust the values of land use grids, aiming to minimize
the impact of human activities and make them more representative of early cultivated
use scenarios. The modified land use data will serve as background values for fu-
ture simulations of prehistoric period farmland, providing parameter references for
cultivated land predictive models.
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