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Abstract: A crucial component of ecosystem services (ES) that represents social and humanities
values is the cultural ecosystem service (CES), which refers to the non-material advantages that
the environment provides for humans. CES are challenging to deeply understand, and little is
known about the interactions between CES and landscape variables, particularly in some remote
Chinese cities. In order to assess the dominant landscape variables of different CESs from physical,
experiential, intellectual and inspirational aspects, this article investigates the landscape variables
that may influence the public preferences of various CESs based on social media and geographic data
in Anshun, China. The findings are displayed below. The public preferences of various CESs are
impacted by the landscape variables in different ways. Physical CESs are influenced by both natural
and infrastructure elements, demonstrating that accessibility to restaurants, accommodation, and
transit affects how people interact with plays in public. Experiential CESs are primarily influenced
by sensory elements, particularly the visual senses, suggesting that when people visit such settings,
they place more emphasis on sensory experiences. Intellectual CESs are mostly affected by sensory
and natural elements, implying that intellectual CESs with a natural perception are more alluring to
tourists. Inspirational CESs are mainly influenced by natural and infrastructure elements, people
usually consider nature and convenience when they go to such scenic spots. From the standpoint
of promoting people’s wellbeing and boosting tourism appeal, the study’s results can offer fresh
perspectives and content additions for the tourism landscape planning and management in Anshun.

Keywords: social media; landscape preference; cultural ecosystem service; landscape planning

1. Introduction

With the advancement of urbanization and the improvement of people’s living stan-
dards, society’s requirements are gradually shifting from material requirements to non-
material requirements, such as the pursuit of spiritual delight and the desire to be close
to nature [1,2]. This shift is motivating an increasing number of individuals to travel to
see nature up close and cherish the landscape’s intangible benefits. Governments and
society are therefore paying more attention to the inclusion of cultural ecosystem services
(CES), which represent the intangible advantages of ecosystem services (ES), as a reference
indicator for ecosystem valuation [3]. To inform the next stage of landscape planning
and policy making, it is essential to establish communication between CES and landscape
variables in order to collect scientifically sound information.

Culture Ecosystem Services (CES) refer to the non-material benefits that humans derive
from ecosystems, providing them with services that include spiritual, aesthetic, educational
and recreational dimensions [4]. CES is of great importance to promoting the harmonious
development of man and nature and enhancing the well-being of mankind [5–7]. Previous
research related to ecosystem services has focused on the ecological aspects of biophysical
research and economic valuation [8,9]. Little is known about CES and there has been a
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failure to develop a unified system for understanding CES [10,11]. Moreover, the effective
integration of CES into practical landscape planning and policy development to enhance
the value of the non-material aspects of landscape services has been hampered by lack of
information on how landscape variables affect CES, especially some sensory categories [12].
The quantification of landscape variables is often used as an important way to study the
spatial distribution of CESs [13]. It has been repeatedly demonstrated in past studies that
natural and infrastructural elements are fundamental landscape variables that primarily
influence the spatial and temporal distribution of CESs [14]. However, other sensory
experiences of sound, odour and landscape perception have not been included in many
studies, possibly due to difficulties in obtaining and quantifying data, which should be
addressed in future research.

CES is intangible, subjective and difficult to quantify; most studies on CES are mainly
based on indirect evaluation methods such as qualitative description, monetised value
assessment and non-monetised quantitative assessment [15]. Firstly, CES was described
qualitatively using participatory mapping methods [3], smartphone location data [16],
social media image data [17], and by asking for expertise or opinions [18]. Qualitative
description methods are more detailed and incorporate the actual needs of different pop-
ulations, but the credibility of the results may be questionable. Secondly, the monetised
value of the CES is assessed by evaluating the economic value [19–21]. Monetary value
data is widely available and easily quantifiable, but the method makes it difficult to capture
the value of CES in terms of social relations, sense of place, access to inspiration, etc.,
through economic or monetary values [22,23]. Finally, the quantitative non-monetary
assessment of CES is carried out using interviews [24], questionnaires [25] and indicator
systems [26]. However, these assessment methods are often subject to semantic processing
and conversion of questionnaire questions, which limit their applicability and lead to many
uncertainties in practice [27].

In recent years, social media data have emerged as a new method for understanding
CES due to their large data sample and the large range of people it can reach in recent
years [17]. The geographic location, image content, text tags and keywords contained in so-
cial media data provide a wealth of data on the spatial distribution of human environmental
activities for relevant research [17,28]. It resolved the research difficulties of intangibility
and subjectivity. Many researchers have also tried to mine image information using deep
learning models to indirectly predict the classification of CES from the classification results
of image content [29,30]. Nevertheless, there are some drawbacks and controversies with
using this approach, such as the complex composition of social users of social media and
the fact that people in different regions have different preferences for the use of social
platforms [31]. At the same time, a growing number of researchers believe that social
media is likely to be increasingly valuable for research and management of nature-based
tourism [32]. Therefore, social media data are suitable for this research to investigate how
the landscape variables of the tourism landscape in Anshun area affect different CES.

To explore how landscape variables affect different CESs, an indicator that evaluates
the results of that effect is also needed—landscape preferences. Landscapes are areas
perceived by people, and the central component of landscape value is based on human
perception [33]. Landscape preference usually reflects society’s perceived preference for
a particular landscape and is the result of a combination of perceptual activities, such as
the public’s emotional perception when confronted with the landscape [32]. Based on
the attention restoration theory (ART) [34], different people perceive the same landscape
differently, so landscape preferences are influenced by personal interests, differences in
social and cultural backgrounds, and educational attainment [35]. Currently, some Chinese
social media platforms, such as Ctrip, Tuniu and Where to go, can provide a large amount
of data on tourists’ reviews and ratings of landscape preferences [33], including their
comments on the features, advantages and disadvantages of the attractions, as well as their
subjective feelings (e.g., service quality, comfort, environmental quality, etc.), which can
provide valuable data for assessing the public’s landscape preferences. It can be a promising
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idea to understand CES by examining the public preferences using social media [36] and
the landscape variables that influence them to each CES [37].

In this article, the tourism landscape of Anshun City is used as the research object,
and this article primarily uses geographic and social media data to obtain the basic data.
It classifies the landscape into different CESs based on comments made on social media,
conducts regression analysis on the landscape variables (nature, infrastructure, sensory)
that may influence the public preferences of CESs. Based on this, corresponding landscape
planning recommendations are made for each type of CESs (physical, experiential, intellec-
tual, inspirational) to guide landscape practices, strengthen the cultural service provision
of ecosystems, enhance local tourism attractiveness and enhance people’s well-being.

The aim of this study is to assess the dominant landscape variables of different CESs
from physical, experiential, intellectual and inspirational aspects. This article focuses on the
following two issues: (i) What are the main landscape variables that influence the public’s
landscape preferences in Anshun? (ii) Are there differences in the main landscape variables
affecting the landscape preferences of different CESs? If differences exist, what are the main
landscape variables that influence the landscape preferences of different CESs?

It is possible to gain an understanding of CES and contribute to incorporating CES as
an important indicator in landscape planning and policy making to better meet the public’s
expectations by studying their preferences and the significant landscape variables, thereby
exploring the various non-material benefits that different CESs provide to the public. The
study is of great significance to the development of tourism in remote areas of China,
which helps to clarify the future development direction of local tourist landscapes. The
results and data of the study can help urban planners and managers to carry out landscape
planning and practical policies in the Anshun area, in order to effectively improve tourists’
satisfaction, and the well-being of local residents.

2. Materials and Methods
2.1. Study Area

Anshun, located in the mid-western part of Guizhou Province in southwestern China,
is situated between 105◦13′~106◦34′ E and 25◦21′~26◦38′ N (Figure 1). It is an important
watershed area between the Wujiang River Basin of the Yangtze River system and the
Beipanjiang River Basin of the Pearl River system, with a total area of 9267 square kilometres
and a total population of 3 million people. Anshun is part of the Qianzhong hill plain
basin in the western plateau mountain region of Guizhou. The topography of the city is
complex and varied, mainly dominated by karst landforms, accounting for 77.82%, which
is a typical karst landform concentration distribution area in the world. Anshun belongs
to the western part of the subtropical humid monsoon climate zone, there are often valley
winds and summer winds in the territory, and there are many clouds and rain, cool, humid,
low solar radiation, and the air quality is excellent at 99.8% all year round. The city’s
tourism resources account for 12% of the city’s total area, much higher than the national
average of 1% and Guizhou Province’s 4.2% and is the earliest identified Class A tourism
open city in China. Anshun is also a famous historical and cultural city in Guizhou, with
unique historical and cultural heritage such as Tunbao, pierced cave and Yelang cultures.
In recent years, to cope with the increased development of tourism, Anshun has made great
efforts to improve infrastructure construction, with the Shanghai-Kunming Expressway
running across the east and west, the Guiyang-Kunming Railway crossing the whole
territory, and the Shanghai-Kunming High-speed Railway already having several stations
in Anshun.
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Figure 1. Study area.

Anshun has good natural conditions, a variety of beautiful landscape types, a rich
historical and cultural heritage, and its infrastructure that is gradually being improved.
However, because of the area’s relatively slow economic development, the local investment
in tourism development is sporadic and ungoverned, the attractions’ attractiveness is
insufficient, the region’s tourism resources have not been used to their full potential, and
the tourism industry has not developed as expected. Due to the wide-ranging practical
implications for Anshun, this study investigates the cultural ecological services provided
by the local tourism landscape in order to guide planning and actual policy formulation
for the tourism landscape in the region, improve the cultural service supply of the local
landscape, increase the local tourism attractiveness, and enhance the positive growth of the
local tourism economy.

2.2. Research Frame

We investigate the dominant landscape variables that affect the landscape preferences
of various CESs in Anshun using data from social media and geographic information.
Based on the findings of the data analysis, we gain understanding of the landscape service
values of various CESs (Figures 2 and 3).

The research methodology’s specifics are as follows:

1. Crawl social media data on all scenic spots in Anshun from Ctrip (https://you.ctrip.
com/place/anshun518.html (accessed on February 2023), excluding those with less
than 10 reviews), including: names of scenic spots, tourist comments, and tourist
ratings, excluding invalid data and integrating valid data.

2. Identify the text of tourist comments and classify the subword.
3. Analyse the word frequency of subword.
4. Based on the word frequency, experts were consulted to categorize all scenic spots

into four different CESs (physical, experiential, intellectual, and inspirational) in
accordance with the International Classification of Ecosystem Services (CICES).

5. Obtain the DEM and geographic information data on land cover, landform types,
road networks, hydrology and POI, etc.

6. Process the geographic data in ArcGIS (the spatial resolution of these data is 12.5 m).
7. Determine the landscape variables from the natural, infrastructural and sensory perspectives.

https://you.ctrip.com/place/anshun518.html
https://you.ctrip.com/place/anshun518.html
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8. Integrate the data obtained above on tourist ratings and landscape variables, random
forest regression was conducted to obtain the ranking of importance of landscape
variables affecting public preference for all CESs.

9. The same random forest regression was used to regress the data for different CESs
separately to obtain the ranking of importance of landscape variables affecting public
preference for different CESs.
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Specifically, the study period lasts from June 2022 to July 2023, and the date of crawling
data is February 2023.
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2.3. Social Media Data Source
2.3.1. Sample Point Retrieval

Ctrip is an important travel service app in China, offering a variety of services includ-
ing tickets, accommodation and transportation, and its market size is one of the largest
in China, and it has a sizable following. The sample data obtained from Ctrip is more
representative due to its efficient services, authentic data and diverse products [38]. Ctrip
includes basic information on most tourism products and their usage and evaluation data,
including tourist ratings, reviews, number of comments, peak seasons and ticket prices for
each attraction. These data can objectively reflect tourist preferences and behaviour [12],
making it a reliable source of data for researching tourist attractions in China.

This study mainly used the Internet data collection software “Octopus Collector”
(https://www.bazhuayu.com/) to obtain basic data from the Ctrip website. The sampling
point retrieval process consisted of the following steps: cleaning the data and coordinating
the conversion of the collected data; capturing the names of scenic spots, tourist comments,
and tourist ratings in Anshun (Figure 4), excluding those with less than 10 reviews. Ran-
dom and automatically generated comments have also been removed to ensure that the
remaining comments are representative. Finally, sixty representative scenic spots were
selected from all the attractions in Anshun City to be included in the analysis (Figure 5).
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Figure 5. Public preference scores.

Among them, tourist’s comments can reflect the subjective feelings of tourists, which
are the source of data on the characteristics of the sensory category landscape and the
main basis for the CES classification. Tourist’s ratings represent the public’s preference
for the attraction, and tourist’s ratings of the scenic spots on Ctrip are the comprehensive
assessment result made by a large number of tourists who actually arrive and visit the
attraction, and this score result can reflect to a certain extent the public’s actual preference
for the landscape.

2.3.2. Word Frequency Analysis

Using the word separation and classification search platform in the web data crawling
tool “Jisouke”, the comments of tourists on Ctrip were divided into phrases, and the
key words of the comments were extracted through various filtering conditions such as
word nature, word frequency and filtering, and repetitive words such as onomatopoeia
were excluded to determine the effective word separation of the comments. In this study,
the extracted words were divided into four categories (biological and natural landscape
elements, cultural landscape elements, perceptual elements and human elements) and
20 sub-categories (Table 1).
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Table 1. Different types of comment splitting.

Category Sub-Category Word Examples

Biological and natural
landscape elements

Plant type Bonsai, fruit trees, rape, cherry blossoms, petals, cherries, vegetation

Land type waterfalls, waterholes, caves, countryside, farms, gardens, stone
forests, rivers

Animal type monkeys, birds

Cultural landscape elements

Building architecture, ancient buildings, villages, villages
Restaurant buffet, dinner, lunch
Homestay hotel

Tickets buy tickets
Price cheap, expensive, cost-effective

Entertainment take pictures, perform, dance
Distance far, near

Perception elements

Sound sound, loud
Smell air, fresh, refreshing
Feel shocking, comfortable, happy

Vision Spectacular, good-looking, clean and pleasant
Weather cool, cold

Sense of place

Traffic walk, car, boat
Service commercial streets, tourists
Mood Pleased, comfortable
Time morning, evening

People tour guides, tourists, friends, children

The results of the word frequency analysis are an important basis for experts to classify
CES and assess landscape variables.

2.4. Classification of CESs

CES provide social values to humans indirectly through subjective human intentions
and feelings, such as aesthetics, spiritual healing, research and education, etc., and can be
an important representation of the interaction between ecosystem services and human well-
being. There are many proposals for the classification of CES in the academic community,
including the Millennium Ecosystem Assessment [4], the Economics of Ecosystems and
Biodiversity [39], the International Common Classification of Ecosystem Services (CICES)
used by the EU initiative [39,40], the Nature’s Contribution to People system used by the
Intergovernmental Panel on Biodiversity and Ecosystem Services (IPBES) [41], and the
classification system for final ecosystem goods and services (FEGS) proposed by the United
States Environmental Protection Agency (USEPA) [42], etc. All of these classifications are
intended to be general in nature, but they all derive from a specific context. Of these,
CICES is widely used in the classification of ecosystem services (ES), particularly CES,
which provides a relatively high level of detail in a nested hierarchy of ‘taxonomic levels,’
providing an appropriate structure for the assessment of ES [43], so CICES was chosen as
the criterion for the CES classification in this study. According to the CICES definition of
the CES classification, all CES were classified into four categories: physical, experiential,
intellectual, and inspirational [44].

Previous research has found that the terms associated with landscape variables are
similar within the same landscape type, so the public’s comments can effectively distinguish
between landscape types [24]. Thus, three professionals were invited to discriminate the
lexical meaning of the 11,816 sub-words originating from the comments of the 60 scenic
spots according to the CICES definition of CES classification, where sub-words related to
CES were evaluated twice to represent different CES characteristics (Table 2), and finally
the results of the word frequency analysis (Table 1) were combined to classify all attractions
into four categories: physical, experiential, intellectual, and inspirational [45].
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Table 2. Classification of CES.

CES Types Defined [44] CES Category
(Based on CICES) Definition Examples for Classification

Physical Recreation

Resources provided for recreational
activities in the ecosystem

(its biological and
non-biological elements).

Comments containing attractions
for recreational activities

(e.g., mountain climbing skiing
and rafting).

Experiential Aesthetics

Feelings provided by the aesthetic
characteristic of natural and

semi-natural landscapes and their
biological and non-biological elements

Comments containing
descriptions of the landscape and
beauty (e.g., mountain and river).

Intellectual

Scientific and educational

Research or educational activities
conducted through the natural
environment of the ecosystem

and its
biological and

non-biological components.

Comments containing attractions
for educational training

or research
activities, (e.g., educational bases).

Cultural heritage
and identity

Value of the landscape, species or
location to the local heritage and

cultural heritage.

Comments containing cultural
heritage or intangible cultural

heritage (e.g., traditional
buildings, local culture, cultural

landscape and
traditional practices).

Inspirational

Spiritual and religious
Landscapes, ecosystems and their

elements that have religious or
spiritual purposes.

Comments containing temples
and religious attractions

(e.g., churches, burning incense
and worshiping buddha).

Inspiration

Landscapes, ecosystems and their
elements used in art architecture,

advertising, local symbols,
and folklore.

Comments containing attractions
with art publicity and local

symbols (e.g., art gallery
and music)

To test the reliability of the word frequency classification procedure, three professionals
from different professional backgrounds were invited separately and the professionals
were asked to participate independently in the discrimination.

2.5. Landscape Variables

A set of key landscape variables mentioned in the literature that may influence the
public’s perception of the landscape were collected in order to later investigate how they
affect the landscape preferences of CESs. The main landscape variables include three main
categories: natural elements, infrastructural elements, and sensory elements (Table 3).

Table 3. Landscape variables.

Dimension Code Meaning

Natural elements

Slope Slope of the scenic spots
Elevation Elevation of the scenic spots

D-water (surface) Distance to the nearest water bodies
D-water (point) Distance to the nearest water points

Infrastructural elements

D-highroad Distance to the nearest highroad
D-railway Distance to the nearest railway

D-accommodation Distance to the nearest accommodation
D-restaurant Distance to the nearest restaurant

Sensory elements

Ctrip-sound Sound evaluation word frequency in Ctrip
Ctrip-smell Smell evaluation word frequency in Ctrip
Ctrip-vision Vision evaluation word frequency in Ctrip

Ctrip-feel Touch or feel evaluation word frequency in Ctrip
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(1) Natural elements

Anshun is located in the karst landscape region of southwest China, and it has been
studied that the soil properties differ at different altitudes of the karst landscape region, with
the increase in soil nutrients at lower altitudes being greater than at higher altitudes [46],
soil nutrients directly influence vegetation recovery, so vegetation richness tends to be
higher at lower elevations. At the same time, the slope has a greater influence on the
redistribution of rainfall in the soil [47,48]. The lower the slope, the slower the soil loss,
while the opposite will result in faster soil loss, degradation of vegetation, increased soil
erosion, increased rock exposure and rock desertification. Therefore, both elevation and
slope can be factors that contribute to different landscape perceptions in karst landscapes.
In addition, water is one of the most important and attractive visual elements in a landscape
and has for long been important to human perceptions of landscape quality and the quality
of many outdoor recreational experiences [49].

To summarise, the most frequently selected natural element indicators were: elevation
(elevation), slope (slope), distance to water surface (D-water (surface)) and distance to
water system point (D-water (point)), which refer to the distance between the attraction
and the nearest water surface and water system point, respectively. The first two were
obtained through DEM data analysis of Anshun, the latter two were obtained in ArcGIS
10.8 using Euclidean distance and nearest neighbour distance analysis.

(2) Infrastructural elements

In terms of infrastructural elements, the distance of the attraction from the nearest high-
road, railway, accommodation, restaurant was measured in ArcGIS 10.8 using Euclidean
distance and nearest neighbour analysis, denoted as: distance to highroad (D-highroad),
distance to railway (D-railway), distance to accommodation (D-accommodation), distance
to restaurant (D-restaurant). It is worth mentioning that roads, railways and other infras-
tructures will give visitors easy access [50]; however, landscapes too close to roads can also
bring greater noise to recreational activities and landscapes too close to roads can also bring
louder noise to recreational activities and affect people’s perception of the landscape.

(3) Sensory elements

Sensory elements at the emotional level guide people’s perception of the landscape
by triggering a sense of familiarity, attachment, connection and other emotions in the
perceiving subject and are important factors influencing landscape perception [51]. In
contrast to most of the above indicators, which can be directly quantified to describe
socially physical characteristics, some sensory indicators, such as olfactory and tactile
elements, are difficult to quantify and have rarely been considered in previous studies.
In this study, the content of attraction reviews from social media data was used as a
data source, which was judged by experts and relevant word frequencies were calculated
to represent the corresponding sensory element: Ctrip-sound, Ctrip-smell, Ctrip-vision
and Ctrip-feel.

2.6. Statistical Analysis

Random Forest (RF) was used to investigate the correlation between landscape prefer-
ences and landscape variables of different CESs. RF is a machine learning algorithm with a
strong generalization ability [52], it will take a random sample of the original data set to
form a number of different sample data sets, then build a number of different decision tree
models based on these data sets, and finally, based on the average of these decision tree
models or voting to obtain the final analysis results [53]. RF has many advantages, such as
no need to preprocess the data, convenient and fast processing, and stable results, thus RF
is a good fit for assessing the importance of each landscape characteristic.

The public rating data of 60 major scenic spots in Anshun and their landscape variables
were composed into a sample data set, and 60 different decision tree models were built
based on these datasets for random forest regression calculations. The public landscape
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preference scores are the output variables and the 12 landscape variables are the input
variables.

The calculation formula is as follows,

V(Yi) =
j

∑
n=1

p
(
Yi = Xj

)(
1 − p

(
Yi = Xj

))
= 1 −

j

∑
n=1

p
(
Yi = Xj

)2 (1)

where V(Yi) denotes the public landscape preference score for Yi, p(Yi = Xj) denotes the
probability of the prediction set. There are two important parameters to optimise in the
model: the number of spanning trees (Ntree) and the number of randomly selected variables
at each node (Mtry) [54].

During data analysis, the data were constantly re-ordered and re-segmented, and the
training percentage was set to 0.7 for multiple training sessions to improve the accuracy of
the training results.

The input variable importance in the model was ranked. It is defined as the cumulative
contribution of the influence factor to the branch of the decision tree during the learning
process. The larger the value, the more important is the variable’s influence on the public
preference. The contribution rate of each variable to the fitting accuracy was defined as the
relative importance, with a sum of 1.

3. Results
3.1. Spatial Distribution Characteristics of Scenic Spots

Among all the scenic spots, most of the scenic spots in Anshun are located in the
higher terrain in the north, where are Xixiu district, Zhenning Buyi and Miao Autonomous
county and Guanling Buyi and Miao Autonomous county (Figure 6a).

According to the results of expert judgements and word frequency analysis, the
60 scenic spots in Anshun can be divided into four categories: physical CESs with eight
scenic spots, experiential CESs with 25 scenic spots, intellectual CESs with 20 scenic spots,
and inspirational CESs with seven scenic spots. The physical CESs are concentrated in
the northern part of Xixiu District, with a few in Zhenning, Guanling and Ziyun Buyi
Miao Autonomous Counties (Figure 6b). Experiential CESs are concentrated at the junction
of Zhenning and Guanling Buyi Miao Autonomous Counties (Figure 6c). Intellectual
CESs are concentrated in the northern part of Xixiu District, with a small distribution
in Zhenning, Guanling and Buyi Miao Autonomous Counties (Figure 6d). Inspirational
CESs are distributed at the junction of Zhenning and Guanling Buyi Miao Autonomous
Counties, with only isolated distributions in northern Xixiu District and Ziyun Buyi Miao
Autonomous County (Figure 6e).

The distribution of scenic spots clearly corresponds to the distribution of the highway
network (Figure 7a). In the north of Anshun, the Hu Kun Expressway runs from northeast
to northwest through the northern part of the city, and along the perimeter of the motorway
are concentrated many of Anshun’s well-known attractions. In contrast, the Ziyun Buyi
Autonomous County, located in the southeast corner of Anshun, has fewer highways and is
less accessible by car and less developed in terms of attractions. Compared to the highways,
the railway network in Anshun is more evenly distributed, with the nearest railways in
Anshun being relatively close to each other and less correlated with the distribution of
scenic spots (Figure 7b).

As a tourist destination rich in natural landscape resources, water features have always
been an important factor in attracting tourists to travel to Anshun, which is rich in water
resources and has a relatively short distance from each scenic spot to the water (Figure 7c).
Water resources are mainly concentrated in Zhenning Buyi Miao Autonomous County
(Figure 7d), which has numerous scenic spots highlighted by water features and also
concentrates on many of Anshun’s famous scenic spots popular with tourists, such as
Huangguoshu Waterfall, Steeple Pond Waterfall and Silver Chain Falling Pool Waterfall.
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3.2. Exploration of Landscape Variables and Landscape Preference

Twelve landscape character indicators were used as inputs to the Random forest to
predict public landscape preferences for different CESs. Figures 8 and 9 illustrate the
proportion of importance of each feature.

According to the predicted results of the overall CESs (Figure 8), it can be seen that
natural elements, infrastructural elements and sensory elements all have different degrees
of importance on the overall landscape preference, especially the natural elements have a
greater influence on the overall landscape preference, with slope, elevation and D-water
(surface) being the top three landscape variables affecting the overall landscape preference
of Anshun, from which can be seen that natural scenery, such as rich topography and water
features, are the main attraction for tourists to come to Anshun. For infrastructural elements,
tourists are more concerned with practical needs such as D-restaurant and D-highroad. For
sensory elements, there is a significant correlation between Ctrip-feel and Ctrip-vision on
landscape preferences, which shows that public preferences are more influenced by sensory
and visual sensory factors.
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The predictions were different for the different CESs (Figure 9):
For physical CESs, the top three factors influencing their landscape preferences are

elevation, D-water (surface), and D-highroad. Physical CESs focus on the resources (both
biotic and abiotic elements) that the ecosystem provides for recreation and focus on the
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variety of recreational activities that people will engage in such landscapes. The availability
of natural conditions, such as good topography and water, is certainly popular with the
public. At the same time, convenient infrastructure conditions such as transport, restaurants
and accommodation are also the important factors for people to consider physical CESs for
their excursions.

For experiential CESs, landscape preferences are mainly influenced by sensory ele-
ments, especially visual senses, with Ctrip-vision being the most significant factor influ-
encing landscape preferences for this type of scenic spots. Experiential CESs focus on the
aesthetic features of natural and semi-natural landscapes and the perceptions provided by
their biotic and abiotic elements; therefore this result is not difficult to understand as these
landscapes are more focused on bringing people a perceptual experience and visuals are
the most direct sensory source of perceiving aesthetic features. In addition, the landscape
preference of experiential CESs is also influenced by factors such as D-water (surface)
and D-highroad.

For intellectual CESs, landscape preferences are mainly influenced by natural and
sensory elements, with the main influencing indicators being D-water (point), D-water
(surface), elevation, and Ctrip-feel. The specific content of intellectual CESs is divided into
two aspects: science education and cultural heritage. These CESs focus on the study of
educational activities through the natural environment of living and non-living factors in
the ecosystem, and sites with landscape heritage and cultural heritage values usually belong
to intellectual CESs. According to the analysis results, it is clear that natural ecological
conditions are the basic conditions for conducting educational activities, on the basis of
which people make good sensory perceptions of culturally valuable landscapes in order to
obtain a better educational experience from them.

For inspirational CESs, landscape preferences are mainly influenced by elements of the
natural and infrastructure, with the main influencing indicators being, in order, elevation,
D-water (surface), D-water (point), D-accommodation, and D-restaurant. Inspirational
CESs refer to landscapes, ecosystems and their elements that have religious or spiritual
symbols or are used in art, architecture, advertising, local symbols and folklore. Such
scenic spots are usually in good ecological base conditions, for example, Stone Cottage,
Gaolaozhuang Scenic Area and Slippery Rock Wharf Scenic Area are built by water and
have a quiet environment where people can enjoy the spiritual inspiration brought by
the natural landscape, while the convenience of accommodation and restaurants can also
influence visitors’ preference for such scenic spots.

In the RF model, Ntree is set to the default value of 100, Mtry is set to the square root
of the number of input variable and a maximum depth of 10. Under these conditions,
the model does a good job of predicting the landscape variables that influence public
preferences across CESs, and the actual and estimated scores of public landscape preference
show better agreement (Figure 10).
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Table 4 shows the performance of the five models, where the smaller the values of
MSE (mean square error), RMSE (root mean square error), MAE (mean absolute error),
and MAPE (mean absolute percentage error) are, the more accurate the model is. R2, the
coefficient of determination, and the closer the result is to 1 the more accurate the model is.
Since the R2 for the test set was calculated using a nonlinear equation fit, there are some
negative values that are not strictly R2, and the R2 is not informative.

Table 4. Performance of the RF Model.

Data Set MSE RMSE MAE MAPE R2

Overall CESs
Train set 0.009 0.096 0.072 1.641 0.859
Test set 0.124 0.352 0.276 6.411 −0.283

Physical CESs Train set 0.001 0.031 0.022 0.502 0.759
Test set 0.234 0.484 0.413 9.644 −2.899

Experiential CESs Train set 0.012 0.111 0.08 1.79 0.823
Test set 0.129 0.359 0.304 6.669 −2.259

Intellectual CESs
Train set 0.021 0.145 0.124 2.811 0.721
Test set 0.163 0.404 0.298 6.685 −0.38

Inspirational CESs Train set 0.005 0.074 0.065 1.463 0.844
Test set 0.075 0.275 0.218 4.865 −0.885

4. Discussion
4.1. Spatial Distribution Variables of the Scenic Spots

Most of the scenic spots in Anshun are located in the higher terrain in the north,
which may be related to a number of economic and social reasons such as better natural
scenery, better infrastructure, more concentrated population distribution, greater resource
development and favourable policies in the north of Anshun. Xixiu District is the main
urban area of Anshun City, with a more developed economy and a more concentrated
population. It is the political, economic and cultural centre of the city and is rich in tourism
resources, with three 4A-level tourist attractions, as well as a number of national and
provincial key cultural heritage protection units. The resource in Xixiu District focus on
entertainment and education, so the scenic spots in Xixiu District are mostly Physical
CESs and Intellectual CESs. Zhenning buyi Miao Autonomous County has obvious
karst geomorphological features, with a variety of caves, underground rivers, waterfalls,
lakes and springs, and rich geothermal resources, making it “a karst kingdom”. Due
to the outstanding natural scenery of Zhenning County, known as “Silver City” and
“Waterfall Township”, the county’s scenic spots are mostly based on natural sightseeing
and inspiration, so the scenic spots mostly belong to Experiential CESs and Inspirational
CESs. Meanwhile, the county’s scenic spots in Guanling Buyi Miao Autonomous County
are more Physical, Intellectual CESs, and a few Experiential, Intellectual CESs. The above
three counties are rich in tourism resources, each with its own characteristics, and due
to the early good development, has now developed into the city of Anshun tourism
card. Moreover, the remaining counties of Puding, Pingba and Ziyun are not yet well
developed because of the relative isolation of the traffic and the general natural and
humanistic conditions, and even if there are a few scenic spots, they are scattered all over
the place, and there has not been any centralised tourism development yet. The uneven
distribution of scenic spots in Anshun is certainly affected by many factors such as nature,
society and economy, but it is not conducive to the long-term development of Anshun.
Therefore, the natural resources and human resources in the southern part of Anshun
should be given enough attention by planners and managers, so that they can become the
rising star of tourism development in Anshun and promote the balanced development of
tourism economy.
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The development of the tourism economy in the Anshun region can be approached in
two ways. On the one hand, for the transport infrastructure, the distribution of scenic spots
in Anshun is highly compatible with the distance from the scenic spots to the highway,
which means that the distribution of major scenic spots in Anshun is clearly influenced by
road traffic, and the road network can effectively drive the development of the tourism
landscape along the route. Nowadays, with the gradual improvement of the road network
in Anshun, self-drive tours have replaced the previously common train trips as the first
choice for tourists travelling within Guizhou Province, which explains why the distribution
of scenic spots is significantly correlated with their distance to the highway. Therefore, to
develop the tourism economy in the south of Anshun, it is advisable to use the develop-
ment of the highway network as an entry point to strengthen the construction of transport
infrastructure in order to drive the development of tourism resources. On the other hand,
for the natural landscape resources, tourists’ preference for the landscape of Anshun is also
closely related to the indicator of distance from scenic spots to water. Anshun benefits from
its unique natural scenery of mountains and water, with numerous natural wonders within
its borders, such as waterfalls and caves. These natural wonders are often made famous
thanks to the good local water resources, which are just right to satisfy the pursuit of spiri-
tual enjoyment and the desire to be close to nature for people who have lived in the city for
a long time, so Anshun is increasingly becoming a tourist destination for urban tourists on
short-term trips.

4.2. Landscape Variables That Influence Landscape Preferences of Different CESs

In the light of the rising standard of living, the strong demand for tourism and the
increasing demand for non-material aspects, planners and managers of tourist attractions
in Anshun should seize this opportunity in a timely manner, develop tourism resources
in the territory in a scientific, rational and equitable manner, accelerate the improvement
of related service infrastructure, incorporate the enhancement of cultural ecosystem ser-
vice values into landscape planning and policy formulation, enhance the non-material
aspects of tourists’ landscape perceptions, and cater to the current expectations of tourists
for attraction planning in order to increase the attractiveness of tourism in Anshun, en-
hance the well-being of local people and promote the good development of Anshun’s
tourism economy.

For all types of scenic spots, the most significant factors influencing their landscape
preference were natural elements, with slope, elevation and D-water (surface) having a
greater impact on overall landscape preference in Anshun. However, the results of the
random forest regressions differed for different CESs of scenic spots.

Effectively enhancing the non-material aspects of tourists’ landscape perceptions
through rational landscape planning requires an understanding of the intrinsic correlation
between public preferences and landscape variables in different CESs, and their application
to concrete practice.

For physical CESs that rely mainly on natural conditions for recreational activities
(e.g., mountain climbing, skiing and rafting), distance from infrastructure such as highways
and restaurants needs to be considered when planning and formulating policies for their
scenic areas in order to improve the accessibility and convenience of the scenic spots, and
enabling visitors to more easily engage in rich recreational activities and have a better
experience of physical-type cultural services. Obviously, physical CESs are strongly influ-
enced by the accessibility of infrastructure and natural landscape features [13]. Good and
convenient infrastructure not only provides the necessary conditions for mountaineering,
skiing, rafting, and other related activities, but is also important for people to be able to
rest and recover after the activity [55].

For experiential CESs that focus on aesthetic experiences with a focus on natural and
semi-natural landscapes, planners and decision-makers should focus on the impact of
sensory factors on the visitor experience, especially visual experiences, which can often
bring the most intuitive and impactful aesthetic feelings to visitors. Several earlier studies
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have also demonstrated that people’s perceptions of landscapes are mostly shaped by
their visual environment. Since visual attention and landscape identification are closely
intertwined, visitors’ perceptions of landscapes are influenced by their visual perception,
which in turn influences their encounters with various visual impacts [56].

For intellectual CESs, where science and research activities are carried out through the
natural ecological environment, often rely on local traditional buildings, cultural heritage
and cultural landscapes to bring educational perceptions to visitors. The natural landscape
combined with physical perception can be used to bring better intellectual cultural services
to visitors. Previous studies have shown that both natural and infrastructural elements
were essential landscape characteristics for intellectual CESs, which are related to the
diversity of science and cultural education [13]. The current study adds that sensory factors
also have an influential factor on intellectual CESs.

For inspirational CESs with spiritual elements such as religion, folklore, local cultural
symbols and art, which can bring new inspiration to visitors, they are usually located in
places with good ecological base conditions. Needless to say, inspiration can come from
ecological and natural sources [57]. Moreover, the planning of inspirational CESs also
involves focusing on infrastructure, such as accommodation, restaurants and roads, as
accessibility is an important factor in attracting visitors to CESs.

In summary, in the future, tourism landscape planning in Anshun should not only
consider topographic, hydrological, economic, policy and other basic development con-
ditions, but also try to evaluate and classify the cultural service content, purposefully
considering the landscape variables that dominate the landscape preference of the scenic
spots, and incorporate them into the indicators that guide the planning. This allows
the landscape to supply a higher value of cultural services, tourists gain richer and
more comprehensive perception of the landscape, attracting more tourists to Anshun for
travel and tourism, and promoting the benign development of the local tourist attractions
in Anshun.

4.3. Research Limitations

Based on geographical and social media data, this study investigates the correlation
between landscape preferences and landscape variables of different CESs, and then gives
reasonable suggestions for landscape planning and policy formulation in Anshun from
the perspective of enhancing the non-material aspects of landscape perception. This helps
us to gain a deeper understanding of the public’s preferences for different CES types of
tourist attractions, and to apply this information to the location of tourist attractions, the
configuration of infrastructure, and the formulation of superordinate policies in Anshun,
so as to effectively enhance tourists’ experience of cultural ecosystem services. It is par-
ticularly important to note that the findings of this study are only applicable to guide the
planning and policy formulation of scenic spots in Anshun due to the different natural
ecological conditions, social-cultural background, economic conditions, policy context
and major visitor segments in different regions. The article still has some unavoidable
problems due to the limitations of insufficient sample size, difficulty in obtaining data,
and time constraints of the study, as the research data mainly comes from the Internet.
In addition, due to user privacy issues, the social media data used does not include in-
formation on social-demographic characteristics, such as user age, gender and education
level; therefore, it is not possible to predict potential differences in preferences for land-
scape features among people from different backgrounds [58,59]. There are also many
other influential factors on public preference besides the 12 variables mentioned in the
article, such as: tourism resources of scenic spots, landscape richness, plant coverage, etc.
In this paper, due to the factors of topic, research methodology, length and so on, it is
not possible to consider all the influential factors into the regression model for statistical
purposes, which can be supplemented in the future research. Furthermore, due to time
restrictions, constrained circumstances, and other objective factors, we were unable to
perform field interviews and attractiveness assessments in the local region for this arti-
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cle. By conducting field interviews and evaluating attractions, the researcher may gain
a firsthand understanding of locals’ perspectives on tourism landscapes and the cultural
services offered by the sites. In subsequent related investigations, the variety of research
methodologies may be enhanced and improved to increase the study’s completeness and
scientific validity.

5. Conclusions

The existing tourist attractions in Anshun are mostly located in the northern part of
the city where the terrain is high and the highway network is dense, while the tourism
resources in the south have not been vigorously developed. The natural landscape, history
and humanities of the southern part of Anshun should be given sufficient attention by
planners and managers in order to promote the long-term, balanced development of the
tourism economy in Anshun. The development of tourism resources in the southern
part of Anshun City can start from actively improving the highway network, restaurants,
accommodation and other infrastructures, and choosing the more water-rich and potential
tourism landscape along the road as the object of development, so as to attract more tourists
to visit the area.

In order to make the planning and design of the tourism landscape in Anshun more
responsive to the current expectations of tourists, planners can consider the non-material as-
pects of tourists’ needs for spiritual enjoyment and closeness to nature when planning and
designing the tourism landscape and enhance the experience of ecosystem cultural services
for tourists. Managers can also consider incorporating indicators related to ecosystem cul-
tural services when formulating relevant policies and regulations. For the future planning
of the tourism landscape in Anshun, planners can try to use the findings of this study as a
guide to target the landscape planning and design of each type of CESs from the perspec-
tive of enhancing the perceptual experience of the non-material aspects of the landscape.
Physical CESs and inspirational CESs should pay attention to the convenience of visitors to
the attractions. Experiential CESs should focus on the planning and design of the visual
experience of the landscape. Intellectual CESs can be considered to enhance the sensory
perception of visitors to the landscape on the basis of ensuring good natural ecology. Thus,
the existing tourism landscape in Anshun City can play a correspondingly higher value in
cultural services, so that the landscape experience of tourists is richer, strengthening the at-
tractiveness and influence of tourism and driving the steady growth of the tourism economy
in Anshun.
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