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Abstract: Women face disadvantages in urban public spaces due to their physiological characteristics.
However, limited attention has been given to assessing safety perceptions from a female perspective
and identifying the factors that influence these perceptions. Despite advancements in machine learn-
ing (ML) techniques, efficiently and accurately quantifying safety perceptions remains a challenge.
This study, using Wuhan as a case study, proposes a method for ranking street safety perceptions for
women by combining RankNet with Gist features. Fully Convolutional Network-8s (FCN-8s) was
employed to extract built environment features, while Ordinary Least Squares (OLS) regression and
Geographically Weighted Regression (GWR) were used to explore the relationship between these
features and women'’s safety perceptions. The results reveal the following key findings: (1) The safety
perception rankings in Wuhan align with its multi-center urban pattern, with significant differences
observed in the central area. (2) Built environment features significantly influence women’s safety
perceptions, with the Sky View Factor, Green View Index, and Roadway Visibility identified as the
most impactful factors. The Sky View Factor has a positive effect on safety perceptions, whereas
the other factors exhibit negative effects. (3) The influence of built environment features on safety
perceptions varies spatially, allowing the study area to be classified into three types: sky- and road-
dominant, building-dominant, and greenery-dominant regions. Finally, this study proposes targeted
strategies for creating safer and more female-friendly urban public spaces.

Keywords: female perspective; safety perception; street view image; machine learning; FCN;
RankNet; public space; Wuhan

1. Introduction

According to Maslow’s Hierarchy of Needs, safety needs are considered fundamental
and urgent, following the fulfillment of physiological needs. Public space often refers
to the space that everyone has rights of access to and has the potential to influence their
psychological and behavioral responses. Urban streets play a crucial role as components of
urban public spaces, serving as vital areas for transportation, relaxation, social interaction,
and commercial activities in daily life [1]. In this study, we conceptualize urban streets as
integral components of urban public spaces. The way residents utilize these street functions
is impacted by their perception of safety. Women, in particular, are more likely to be a
target of violent crime due to their physiological characteristics, and previous studies have
identified gender as a key significant factor affecting the perception of safety in public
spaces [2]. Compared to men, women are generally more cautious about being alone [3],
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avoiding concealed spaces [4], and steering clear of areas where strangers are loitering [5].
Therefore, it is crucial to evaluate the safety of public spaces based on the perspective of
women.

However, urban planning and design frequently neglect women'’s needs, despite the
fact that women’s lifestyles are often more affected by their surroundings compared to men.
A patriarchal and misogynistic social environment, along with the “male gaze”, further
undermines women's sense of safety in public spaces [6]. As a result, unsafe public spaces
may restrict women'’s access to these areas and exacerbate gender inequality [6,7].

Previous studies have demonstrated that built environment features can significantly
influence people’s perception of environmental safety. According to Broken Windows
Theory, visual signs of environmental disorder—such as broken windows, litter, graffiti,
abandoned cars, etc.—signal neglect and exert a suggestive and inducive effect, which
ultimately leads to negative social consequences and an increased crime rate [8]. Given their
predominant roles as caregivers, women often have a more intricate relationship with the
built environment and are frequently identified as a vulnerable group [9]. The perception
of safety in urban spaces is a multifaceted social-psychological phenomenon, wherein
psychosocial processes and social experiences intertwine to influence the perceptions of
specific environments [10]. For this reason, it is essential to consider both the physical and
subjective components of the environment when studying the safety perception of public
spaces [2].

With advancements in machine learning (ML) techniques, street view images analyzed
through semantic segmentation and deep neural networks trained on extensive human
responses have been utilized to quantify the human perception of the built environment [11].
However, local features derived from semantic segmentation, where an image is divided
into pixel proportions for each element, may ignore the broader human perception of the
environment. Furthermore, variations in the camera’s position during image capture can
result in the built environment features acquired through semantic segmentation appearing
closer to the camera and thus representing a relatively small volume in the actual scene.
These discrepancies between the proportion of each analyzed feature and the perception of
the actual scene can introduce errors into the results. Gist features, which extract the global
features of images by simulating human vision, reflect the spatial layout of images and are
primarily used for scene classification [12]. As feature vectors of machine learning, Gist
features can better capture the overall impression of an image and reduce errors in feature
recognition compared to semantic segmentation methods.

In general, with the development of image technology and deep learning, the explo-
ration of the non-physical elements of urban environments through street view images is
becoming increasingly sophisticated [13]. Nevertheless, there remains a lack of research
focused on assessing the safety of the built environment from the perspective of female
perception and analyzing the underlying factors. This study took Wuhan as an example,
allowing women to browse street view images and provide safety perception evaluation
labels via a pairwise comparison scoring method. Based on Gist features and the RankNet
algorithm, a safety perception model from the perspective of women was constructed. The
FCN-8s algorithm was employed to calculate the built environment features. Finally, this
study investigated the spatial heterogeneity of built environment features impacting public
space safety perception in Wuhan, with the goal of offering guidance for future urban
planning and design to create more female-friendly urban spaces.

2. Literature Review
2.1. Measuring the Subjective Dimension of Safety for Women

Safety encompasses both the objective and subjective dimensions. The objective as-
pect of safety refers to actual dangers and hazards, while the subjective aspect involves
an individual’s perception of phenomena that impact their sense of security [14]. The
perception of safety is shaped by the interaction between an individual’s characteristics
and their environment [15,16]. However, individuals or social groups lacking professional
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safety knowledge or awareness of local crime statistics often rely on subjective perceptions
of safety. Therefore, incorporating perceived safety into the discussion enriches the un-
derstanding of security issues by adding psychological considerations, shifting the focus
towards the individual’s experience rather than solely on the institutions responsible for
maintaining safety and public order [17,18].

Numerous studies have aimed at understanding built environment features that
trigger a sense of unsafety in urban public spaces. These studies also identify areas where
potential offenders could conceal themselves or from which escape is difficult, and these
areas are thus highly associated with the feeling of unsafety [19,20]. Studies focusing on
small areas and neighborhoods have shown that public spaces lacking effective deterrence
systems, such as the presence of police or vigilant citizens, are more likely to attract criminal
activity [21]. This often creates a vicious cycle: people avoid areas they perceive as unsafe,
leaving these spaces increasingly vulnerable to crime. Social Disorganization Theory
posits that high concentrations of crime are frequently found in socially and economically
disadvantaged neighborhoods, where signs of disorder in the built environment are more
prevalent [22]. Similarly, Broken Windows Theory highlights that visible signs of disorder—
if left unaddressed—heighten fear among residents, prompting them to withdraw from
community engagement [8]. This withdrawal further exacerbates both disorder and crime,
as criminals perceive the area as more defenseless and intensify their activities.

Gender is one of the most frequently studied demographic variables influencing
the perception of crime in urban public spaces [20]. Previous studies have highlighted
significant differences in safety perceptions between women and men [20,23]. The concept
of a “woman-friendly city” has emerged as a crucial issue in women’s studies and the
design of urban public spaces [24]. This concept emphasizes the necessity for urban
designers and planners to create inclusive, accessible, and safe environments for women.
Existing studies primarily focus on the following: (1) strategies for enhancing women’s
physical and mental health [25,26]; (2) women's social concerns regarding gender equality
and justice [26-28]; (3) variations in the needs, roles, norms, and responsibilities of women
and men when using urban spaces [29,30]; (4) the issues of women’s safety, security, and
accessibility [31,32]; and (5) women's experiences with poverty, economic inequalities, and
economic insecurity in urban areas and societies [33]. Consequently, the primary focus
of this research was to quantify the safety perceptions of the built environment from the
female perspective, considering the specific needs of women in urban space design.

2.2. Built Environment Features and Extraction

In terms of data sources, due to the complexity of perception, survey and interview
methods have been extensively employed in previous studies to detect and quantify
heterogeneity. However, these approaches present two main challenges. First, the data
collection and analysis processes are often costly and time-consuming. Second, the results
can be difficult to generalize if the sample size is not sufficiently large and diverse [2].
Over the past decade, with the rapid development of mapping services, street view images
have been increasingly utilized in large-scale online surveys [34-36]. Compared to remote
sensing images, street view images contain rich information about urban infrastructure,
street facade details, and landscape features, offering a pedestrian perspective on city streets
and insight into the physical and social structures of urban environments [37]. This makes
street view images particularly useful for evaluating urban environments. Regarding the
evaluation index system, many studies have utilized the “Transit” 5D theory of high-quality
built environments and the integrated urban design quality model to establish a diversified
quantitative evaluation system. This system is based on five key dimensions: “Density”,
“Diversity”, “Design”, “Destination Accessibility”, and “Distance to Traffic” [38]. For
instance, Tang and Long [39] developed an evaluation framework with five dimensions—
wall continuity, intersection aspect ratio, green occupancy, sky openness, and enclosure—to
assess the spatial vitality of Beijing hutongs. Similarly, Ma et al. [40] evaluated the impact of
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urban renewal projects on streetscape renovation by considering the spatial heterogeneity
of five perceptual factors: greenness, openness, enclosure, walkability, and imageability.

Image segmentation is a crucial step in accurately extracting information from street
view images for semantic segmentation using deep learning methods [41]. In recent years,
techniques based on deep learning have significantly improved the accuracy of street
view information extraction [41]. Originating from the computer vision community, deep
convolutional neural networks (CNNs) have been developed to automatically capture hier-
archical features [42]. Building on this foundation, the emergence of Fully Convolutional
Networks (FCNs) has introduced a universal framework for semantic image segmentation.
FCNs have been successfully applied to semantic segmentation tasks, further improving
performance through the use of an encoder-decoder architecture [42].

2.3. Safety Perception: Ranking and Analysis

Traditional data collection methods, such as questionnaires and field surveys, are both
expensive and time-consuming for measuring subjective perceptions of streetscapes. To
address these limitations, street view imagery and crowdsourcing have been introduced as
effective alternatives. An illustrative example is the MIT Media Lab’s Place Pulse project,
which assessed attributes such as safety, beauty, and affluence in urban public spaces.
This approach facilitated the quantification of both objective and subjective perceptions,
offering a more efficient and scalable method for analyzing urban environments [43].
Ramirez et al. [2] addressed the challenge of quantifying the psychosocial component of
safety by measuring the heterogeneity in individuals’ perceptions of public space safety
through the use of street view images and deep learning techniques. Regarding the
heterogeneity of urban spaces, previous studies have predominantly concentrated on the
impact of the built environment on safety within small-scale contexts. For example, Gu
et al. [44] examined the relationship between visual environment characteristics and safety
in old residential areas in Guangzhou, while Li et al. [45] explored how elements such as
the sky, sidewalks, roads, and trees within university clusters influence the sense of safety.
Naik et al. [46] converted pairwise comparisons of perceived safety into ranked scores and
employed a regression algorithm, combined with generic image features, to predict these
ranked perception scores. Similarly, Yao et al. [47] utilized the Place Pulse 2.0 dataset and
implemented a random forest algorithm alongside a segmentation model to develop a
binary classification model for six subjective attributes.

Regression analysis is widely used in urban studies to quantify the relationships
between visual elements and the human perceptions of urban public spaces [48]. To
extract detailed information about visual elements, semantic segmentation models such
as PSPNet and SegNet are employed to estimate pixel-level category data (e.g., buildings,
fences, sky) from street view images [48]. For instance, Xu et al. [49] utilized random
forest regression to reveal the nonlinear effects of street canyon characteristics on human
perceptions. Li et al. [50] utilized multiple linear regression to investigate the relationship
between vegetable consumption and perceived safety. The Geographically Weighted
Regression (GWR) model, proposed by Fotheringham [51], incorporated Geographical
location into regression analysis to reveal the spatial heterogeneity of influencing features
within the study area. Dziauddin [52] applied GWR to analyze the spatial heterogeneity in
changes in surrounding land value following the construction of light rail stations, while
Yang et al. [53] discussed the spatial heterogeneity in the distribution of urban green spaces
from the perspective of disadvantaged groups using GWR. However, there is currently
a gap in research exploring the spatial heterogeneity of the impact of the urban built
environment on safety perception from the perspective of women.

3. Materials and Methods
3.1. Research Area

Wubhan, as the largest city in the region, plays a pivotal role as a political, economic,
and cultural center in Central China. Its urban layout, characterized by the convergence
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of two rivers and the presence of three major districts, has naturally led to the formation
of a multi-center city, providing a diverse built environment that is conducive to research
(Figure 1). The study area includes Wuchang, Jiangan, Hanyang, Hongshan, Qingshan,
Qiaokou, and Jianghan districts (Figure 1), as these areas have the highest population
density and a variety of building environments in Wuhan. The transportation network
connecting these multiple centers in Wuhan divides the city into three distinct spatial
structures: the city center area, the urban area, and the suburban area, with the 2nd Ring
Road and the 3rd Ring Road serving as boundaries [54]. There has been a proliferation
of single-unit housing since the founding of the People’s Republic of China, and land use
components have become increasingly complex, particularly in the city center area. The
urban area functions as the main expansion zone of the city, and its land use patterns
significantly differ from those of the city center area.

Figure 1. Research area.

3.2. Data Source

In this study, street network data were obtained from the OpenStreetMap (OSM)
website (https:/ /www.openstreetmap.org/, accessed on 1 January 2018). After excluding
highways, the study area comprised 4824 roads, which constituted the street network
for analysis. As aforementioned, they are considered as public spaces for this study.
Additionally, these street network data served as a reference for acquiring street view
images. Other foundational geographic data included Wuhan’s administrative boundaries
and water systems.

The dataset for this study primarily included Tencent Street View images from 2018,
along with basic geographic data. The street view images were scraped using Python3 via
HTTP URL calls to the Tencent Street View API (https:/ /Ibs.qq.com/webApi/javascriptV2
/jsGuide/, accessed on 1 January 2018). By specifying the sampling angle and viewpoint
position, we obtained street view images, coordinates, angles, and other relevant informa-
tion for each sample point. To get closer to the pedestrian perspective, images were selected
from four cardinal directions (e.g., heading = 0.90, 180, and 270) at each sample point,
maintaining a horizontal viewing angle (pitch = 0). In total, 76,024 Tencent Street View
images were captured, with each image having a resolution of 480 x 300 pixels (Figure 2).
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Figure 2. Viewpoint picture collection from four different directions. The urban landscape in a
viewpoint can be broken down into four images: the front image, the back image, the left image, and
the right image.

3.3. Research Methodology

The technical framework of this study included three procedures (Figure 3): eval-
uating women’s safety perception, analyzing built environment factors, and addressing
the influences of built environment factors on women’s safety perception and regional

variations.
. Extracting
FCN-8s algorithm built
environment
factors
Spatial oLS GWR K-means
Crawlin, pairwise i autocorrelation model model clustering
. ng .| Image analysis
SI'-BC VIEwW labeling Street
1mage view
RankNet safety |——
algorithm level
Gist _ Extra_ctmg sorting
algorithﬁ o
feature

Figure 3. The technical framework.

3.3.1. Evaluating Women'’s Safety Perception in Public Spaces

Thirty-one female volunteers participated in this study to perform pairwise com-
parisons of sample images, helping to obtain safety labels and build a street view image
perception database. Volunteers aged 18 to 30 were selected as women within this age
range are statistically more likely to be targets of sexual offenses in China. Each participant
compared 73 street view images, spending approximately 30 min on the task. During the
comparisons, volunteers selected the street view image that they felt offered greater safety
and a reduced probability of experiencing violence using the provided software (Figure 4).
Safety labels were assigned based on their choices: left = 0; equal = 1; and right = 2. These
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results were then utilized to train a female safety perception ranking model, which was
subsequently applied for large-scale calculations of female safety rankings (Figure 5). This
approach facilitated the development of a robust model capable of analyzing and ranking
safety perceptions on a broader scale.

Which picture looks safer?

N30 xiew

Street view image ' Gist feature(1536) Gist feature(50)

¢ Street

Gist . Comparison v1;:w
feature results sa e.ty
ranking

Figure 5. Street view image safety perception scoring process.

(1) Gist feature extraction

Gist features, also referred to as Global Information Features, are biologically inspired
low-dimensional signature vectors that characterize a scene. They extract image informa-
tion in a manner analogous to human vision, effectively capturing the overall impression of
street view images as perceived by women. Gist features served as the basis for the safety
ranking of street view images [55]. These features were obtained using a Gabor filter bank.
The expression of the Gabor filter bank is given by the following:

_ (xgﬂ' ty 391')

I _
Gy = Kexp 2020-T)

x exp(27tj(uoXry + VoYr, )] ©)
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where [ is the scale of the filter; K is a normalization factor; ¢ controls the width of the
Gaussian function; and 0; = n(i —1)/6,,i = 1,2, - - ,6;, where 6, is the orientation angle
of the filter at scale [. The filtered image is as follows:

Fy=Gh*I 4

Gist features were extracted from the street view images to characterize each image for
the safety ranking process. By applying filters in multiple orientations, 1536-dimensional
feature vectors were generated. To reduce the dimensionality of these vectors, a Principal
Component Analysis (PCA) algorithm was applied, reducing the features to 50 dimensions.

(2) RankNet for safety perception ranking

Learning to Rank (LTR) involves sorting search results by integrating multiple ranking
features. LTR methods are generally categorized into three main approaches, single-
document (Pointwise), document comparison (pairwise), and document list (Listwise),
according to the different underlying hypotheses, loss functions, and input and output rep-
resentations of these algorithms [56,57]. Existing studies often use various classification and
comparison methods to label street view images, which may not provide a comprehensive
view of the images. However, the pairwise method considers both objective entities and
users’ primary impressions. Labeling street view images using the pairwise comparison
method is similar to the process of sorting pairs. Since this study focuses solely on street
view image ranking within the context of street space security, this can be considered a
single-query problem [58]. Therefore, RankNet, a classical algorithm for document pair
sorting, was employed in this study to rank the input training data formatted in libsvm.
The RankNet algorithm comprises three main components (Figure 6): a neural network
model, a cross-entropy loss function, and gradient descent optimization [59].

§; > 8j — i ] (5)
&S5
Pij:P(iDj):W (6)
C = —) Py x logP;+ (1—Pj) x log(1—Py) 7)
w; = w; — 1 X Aw; (8)

where s; is the score for project I, P; is the predicted probability of i t> j, P;j is the actual
probability of i > j, C represents the loss of the function, w; and w; are the updated
parameter and the current parameter, Aw; is the gradient of w;, and 7 is the learning rate.

The scoring tool, developed in Java, records the pairwise comparison results of street
view image and subsequently converts these results into a safety ranking for the sample
images. The operational principle of this tool is illustrated in Figure 6 [60]. To ensure the
objectivity and validity of the results, a total of 3325 street view images were randomly
selected using Python for small-scale manual evaluation. Additionally, female volunteers
conducted pairwise comparisons of these sample images, yielding 22,555 comparisons
and 44,550 labeled data points. The evaluation model was selected through 5-fold cross-
validation. The final model achieved an error rate of 12.9% on the training set and a
prediction error rate of 13.1% on the test set.
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Figure 6. RankNet algorithm framework.

In this study, global spatial autocorrelation and local spatial autocorrelation were
analyzed using the Moran’s I index and the LISA index, respectively, to investigate the
distribution of women'’s safety perception at the street level. The Moran’s I index measures
the spatial correlation of attribute values, with possible values ranging between —1 and
1 [61]. The LISA index evaluates the spatial correlation between each geographic unit
(e.g., point, region) and its neighboring units, identifying patterns such as LL (low-low
concentration), HH (high-high concentration), LH (low-high concentration), and HL (high-
low concentration) [62].

3.3.2. Extracting Built Environment Features

In this study, the Fully Convolutional Network (FCN) framework for image semantic
segmentation, as proposed by Jonathan Long [63], was employed to extract built environ-
ment features. Notably, the most successful semantic segmentation networks are based
on FCNs [64]. Initially, street view image features were acquired using the methodology
outlined by Yao [65]. Subsequently, the FCN-8s model was applied to perform semantic
segmentation on the street view images, categorizing the various built environment ob-
jects present. The trained FCN-8s model is capable of classifying images into 151 natural
feature categories (including an “unknown” category), such as vehicles, trees, and build-
ings. By summarizing the proportion of pixels occupied by each type of ground object, a
151-dimensional vector representing the street view image can be obtained (Figure 7). The
trained FCN-8s model demonstrated an error rate of 28.56% on the training dataset and
33.17% on the test set. Following this, based on the index system established by previous
research [47], the 151 types of natural features extracted by the FCN-8s model were used to
obtain 7 local visual environment indicators, as detailed in Table 1. Finally, street complexity
was assessed using methods from the Python OpenCV and PIL libraries.
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Figure 7. Street View images segmented by FCN-8s.

Table 1. Definition and measures of built environment elements.

Variables

Explanations

Measures

Local Green View Index (GVI)

index
Sky View Factor (SVF)
Building View Index (BVI)

Motor vehicle occurrence rate
(MVR)

Facility visibility (FV)
Sidewalk visibility (SV)

Roadway visibility (RV)

Global

index Visual Entropy (VE)

The average proportion of vegetation (including trees,
grass, three-dimensional greening, etc.) in the street
view image [3].

An index for the openness of streets that reflects the
degree of visible sky [4,5].

The average of the proportion of buildings (buildings,
structures, and walls) in the street view images [5].
The average proportion of pixels in the four images of
vehicles in the street view image, which reflects the
probability of vehicle occurrence [5].

The proportion of pixels of street furniture, municipal
facilities, billboards, and other street facilities in the
total pixels of the street view.

The average proportion of pixels of the sidewalk in the
street view image [5].

The average of the pixel proportion of the four images
in the street view image [5].

Information can be used to reflect the visual
complexity of the street landscape [5].

LT
):?:1 N;

T; is vegetation/sky/construction/
vehicle/facility / total
pavement/roadway pixels;

i represents the iy, map of the street
viewpoint; N is the total number of
pixels in a street view image.

255
H,‘ = Z Pilog Pi
i=0
H; is univariate gray-level entropy;
P; is the probability that a grayscale
appears in the image.
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3.3.3. Analyzing the Factors Influencing Women's Safety Perception
(1) OLS and GWR analysis

In this study, OLS analysis, which is the most widely used MLR analysis method
and the most fundamental form of regression analysis, which provides a global model
of a variable or process [66], was employed to analyze built environment features. OLS
analysis was utilized to address multicollinearity and assess the relationships between
variables. However, since OLS assumes spatial homogeneity, it is limited in its ability to
capture the varying impacts of the dependent variable across different regions [67,68]. To
addpress this limitation, GWR was used. In contrast to traditional linear regression models,
GWR incorporates a spatial weighting matrix into linear regression models along with
geographic coordinates to extend traditional regression models and account for the spatial
heterogeneity of geographic factors [69,70]. Subsequently, the GWR model was used on
the significant built environment features identified through OLS analysis to examine the
varying impacts of each feature across different regions in Wuhan.

(2) Clustering analysis

To better understand regional heterogeneity, K-means clustering, which is an unsu-
pervised machine learning algorithm, was employed to group the unlabeled dataset into
different clusters. The process began by randomly assigning cluster centroids in the space.
Then, the distances between each sample point and the centroids were calculated, and
each sample was assigned to the cluster whose centroid was closest, based on the distance
D from the sample to the respective cluster center. This process ran iteratively until it
found good clusters. The final grouping was determined based on the magnitude of these
distances D [70,71].

4. Results
4.1. Spatial Characteristics of Women'’s Safety Perception in Public Spaces

Individual street view safety perception ratings were determined by averaging the
scores from images captured in four directions. As illustrated in Figure 8, street view
images with lower safety ratings are predominantly associated with lower-grade roads.

Safety perception score
0w

0 7KM

B high
Figure 8. Women’s safety perception in Wuhan.

To further analyze the spatial characteristics of women’s safety perception in public
spaces, this study conducted Moran’s I analysis using GeoDa 1.16 software, resulting in a
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Moran’s I index of 0.460. This result indicates a moderate degree of spatial clustering in
the sense of security in Wuhan. Furthermore, as illustrated in Figure 9, most points are
located in the first and third quadrants, suggesting either a positive or negative correlation
between the sense of safety and spatial distribution. Points situated in the second and
fourth quadrants indicate variability in safety perception across different areas.

o
-
o
a

Moran s I:

0.90 2.70 4.50

lagged Safety perception score

-0.90

=2.70

rd. 50

-
o
k=)

-2.70 -0. 80 0.80 2.70 4.50
Safety perception score

Figure 9. The result of Moran’s I based on women'’s safety perception.

For a more detailed examination of spatial clustering, the Local Indicators of Spatial
Association (LISA) model was employed using GeoDa software. The result shows that
areas with high-high and low-low clustering show the broadest distribution ranges, while
high-low and low-high clustering areas are more sporadically distributed throughout
Wuhan. High-high clustering is predominantly observed in the southwest and southeast
regions of Wuhan, as well as along expressways. Conversely, low—low clustering is mainly
concentrated in the city center area, East Lake, and the northwest part of Wuhan.

4.2. Built Environment Features of Public Spaces in Wuhan

The summarized statistics presented in Table 2 describe the proportions of eight built
environment features within the street view image dataset. An examination of the Sky
View Factor (SVF) and Building Volume Index (BVI) reveals that the mean and median
values are similar, suggesting that the distributions of the SVF and BVI are approximately
normal. Additionally, the standard deviation values for both the SVF and BVI indicate
considerable fluctuation in these features.
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Table 2. Statistics of built environment features.
Variable Mean Std Min Median Max
SVF 26.99% 0.1467 0 26.02% 70.59%
GVI 14.51% 0.1346 0 10.64% 83.52%
SV 3.08% 0.0328 0 2.01% 26.80%
BVI 21.14% 0.1456 0 19.55% 82.53%
VE 0.9055 0.0663 0.0667 0.9183 0.9815
MVR 3.49% 0.0382 0 2.33% 33.76%
FV 0.89% 0.0144 0 0.43% 24.30%
RV 18.28% 0.0772 0 18.93% 38.74%

In contrast, the Green View Index (GVI) exhibits a lower mean value and higher
standard deviation, suggesting that GVI values are relatively low and show substantial
variability across streets in Wuhan. The mean values for Sidewalk visibility (SV) and
Roadway visibility (RV) are 3.49% and 18.28%, respectively, with median values of 2.01%
and 18.93%. These figures indicate that sidewalks occupy a relatively small proportion of
most roads in Wuhan.

The mean and median values for Visual Entropy (VE) are 0.9055 and 0.9183, respec-
tively, with a standard deviation of 0.0382. This suggests that the interfaces of most roads
exhibit a considerable degree of diversity. The Motor vehicle occurrence rate (MVR) reflects
the likelihood of a street being traversed by vehicles, and the standard deviation of the
MVR indicates that the probability of vehicle presence is relatively consistent across most
streets in Wuhan. The Facility visibility (FV) value is the lowest among the features, which
may be attributed to the relatively small size of street facilities themselves.

4.3. The Impact of Built Environment Features on Women's Safety Perception in Public Spaces

In this study, OLS analysis was conducted using ArcGIS 10.4, revealing that the
eight built environment features measured by FCN-8s significantly impact women'’s safety
perception. The variance inflation factor (VIF) for all parameters was below 7.5 (Table 3),
indicating the absence of multicollinearity issues. As evidenced by an R? value of 0.619
(Table 3), the model’s goodness of fit suggests that the eight built environment features
measured have a substantial effect on women’s safety perception.

Table 3. Estimation coefficients of OLS model.

Variable Coefficient St. Error t-Statistic Probability VIF
CONSTANT 0.499879 0.000051 9709.477272 o
SVF 0.001502 0.000045 33.454552 0 4.291136
GVI —0.00352333 0.000043 —72.995931 0 3.350295
SV —0.001303 0.000116 —11.265931 0 1.424575
BVI —0.000247 0.000046 —5.585939 0 4.441621
VE —0.000641 0.000055 —11.692733 0 1.307091
MVR —0.000467 0.000094 —4.975198 0 1.273709
FV —0.001875 0.000236 —7.944481 0 1.149447
RV —0.0074 0.000048 —15.392393 0 1.363754

This study further employed the GWR module within MGWR 2.2 software to examine
the spatial heterogeneity impact of the eight built environment features. The final corre-
lation coefficients between the safety perception and the built environment features are
presented in Table 4. The GWR model achieved an R? value of 0.612, indicating that it
can account for 61.2% of the total variation in safety perception across Wuhan. This result
underscores the significant influence of the eight built environment features, as identified
through the OLS analysis.
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Table 4. Estimation coefficients of GWR model.
Variable Est. SE t (Est/SE) p-Value
Intercept 0 0.005 0 1
SVF 0.313 0.009 33.455 0
GVI —0.604 0.008 —72.996 0
SV —0.061 0.005 —11.266 0
BVI —0.053 0.01 —5.586 0
VE —0.06 0.005 —11.693 0
MVR —0.025 0.005 —4.975 0
FV —0.038 0.005 —7.944 0
RV —0.081 0.005 —15.392 0

Comparing the t-value from the GWR model, the coefficients of the built environment
features are ranked by significance as follows: GVI > SVF > RV > VE > SV > FV > BVI >
MVR. Table 5 illustrates that the standard deviations of the eight built environment features
are relatively large, indicating significant spatial instability. Particularly, the SVF and VE
exhibit the highest standard deviations, suggesting substantial spatial heterogeneity in
these two built environment features. For example, the regression coefficient of the SVF
ranges from —2.042 to 2.578. This implies that a 1% increase in the proportion of sky in
different spatial locations within the study area could result in a safety perception change
ranging from a decrease of 204.2% to an increase of 257.8%.

Table 5. Statistical description of GWR model coefficients.

Variable Mean STD Min Median Max
Intercept —0.126 0.438 —4.405 —0.105 2.266
SVFE 0.320 0.468 —2.042 0.303 2.578
GVI —0.560 0.384 —2.609 —0.568 1.645
SV —0.025 0.195 —1.658 —0.020 0.951
BVI 0.011 0.391 —2.379 0.020 2.071
VE —0.218 0.416 —2.481 —0.187 1.424
MVR —0.003 0.243 —3.346 0.005 2.116
FV —0.049 0.152 —0.748 —0.041 0.735
RV —0.004 0.207 —0.763 —0.001 0.890

It is worth noting that, with the exception of the SVF, the regression coefficients of
all other factors are negative. This indicates that an increase in the complexity of the built
environment is associated with a decrease in perceived safety. As shown in Figure 10a, the
SVEF is positively correlated with safety perception across Wuhan, suggesting that areas
with a higher SVF are perceived as safer, which is consistent with existing research [2,47].
Conversely, street view image points in suburban areas, which are primarily located along
low-grade roads and forest paths, tend to have a lower SVF and, consequently, lower
perceived safety. In contrast, in the city center area, the southwestern part of Wuhan, and
certain parts of Optics Valley—areas characterized by dense buildings and commercial
activities—there is a negative correlation between the SVF and perceived safety. This
indicates that while the SVF is lower in these areas, perceived safety is higher. Nevertheless,
such street view image points are relatively rare and concentrated in specific areas.

By analyzing the relationship between the value and regression coefficients of the GVI,
as presented in Table 2 and Figure 10b, it was observed that most areas exhibit a pattern
where a low GVl is coupled with high safety perception, especially within the city center
area. Conversely, areas with a high GVI and low safety perceptions are found in dense
forest trails in suburban areas and around Dong Lake. This suggests that, from the female
perspective, higher vegetation coverage may be perceived as indicative of potential danger.
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Figure 10. The spatial pattern of factors influencing women’s safety perception in Wuhan.
(a) Spatial differences in SVF regression coefficients. (b) Spatial differences in GVI regression coeffi-
cients. (c) Spatial differences in BVI regression coefficients. (d) Spatial differences in FV regression
coefficients. (e) Spatial differences in MVR regression coefficients. (f) Spatial differences in RV
regression coefficients. (g) Spatial differences in SV regression coefficients. (h) Spatial differences in
VE regression coefficients.

Figure 10c illustrates that the impact of the BVI on safety perceptions in Wuhan varies,
with correlations alternating between positive and negative. Areas where the BVI does not
have a significant impact on safety perceptions are predominantly located in regions with
sparse building densities, such as along expressways and the East Lake Greenway.

The transportation network in Wuhan comprises numerous overpasses, bridges, and
tunnels that primarily serve as traffic thoroughfares, with relatively fewer sidewalks and
less street furniture compared to residential roads. Spacious sidewalks allow pedestrians
to walk safely and maintain a safe distance from motor vehicles, thereby enhancing their
sense of safety on lower-grade roads. Since most street view images show low SV and FV
(Table 2) associated with high safety perception, particularly along high-grade roads, this
results in a negative correlation between SV and FV in Wuhan.

The results of the GWR analysis indicate a generally negative impact of the Motor
Vehicle Ratio (MVR) on safety perceptions in Wuhan (Table 4). However, Figure 10e reveals
that areas where the MVR negatively affects safety perceptions are relatively few compared
to those where the impact is positive. This discrepancy is reflected in the difference between
the median and mean regression coefficients of the MVR, as shown in Table 5, suggesting
that the nature of the MVR’s impact on safety perceptions in Wuhan is variable. Regions
with strong positive correlations between the MVR and safety perceptions are concentrated
in suburban areas and low-grade roads within the urban center. In suburban areas, where
pedestrian and vehicular interactions are infrequent, vehicles can alleviate the sense of
desolation on roads. In the urban center, the dense road network and prevalence of
branch roads, combined with lower speed limits, mitigate the sense of insecurity typically
associated with a high vehicle occurrence ratio. Therefore, the impact of vehicles on safety
perceptions on low-grade roads is predominantly positive.

To further analyze the heterogeneous impact of different built environment features
on street-level safety perceptions across various regions of Wuhan, this study employed
the K-means clustering module via SPSS 25.0 software. This method effectively delineates
areas based on their influence on women'’s safety perceptions. As a whole, clusters with
significant characteristics indicate strong spatial aggregation, and the research area was
ultimately classified into three types of regions: Sky- and road-dominant type (Type 1),
Building-dominant type (Type 2), and Greenery-dominant type (Type 3) (Table 6 and
Figure 11). Type 1 is the main visual domain aggregated in the suburban or industrial area,
which tends to be observed along major roads, reflecting a driving visual experience with
poor vegetation. The city center area is predominantly classified as Type 2, indicating that
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earlier built communities contribute to a more inclusive and complex artificial environment.
Additionally, safety scores in this area show greater variability. While areas along East Lake,
the Han River, and parts of the outer ring are characterized by Type 3, this is likely due not
only to their relatively low development density but also to the presence of vegetation that
has overgrown these areas. And this area is typically associated with low safety scores.

Table 6. Classification of different types based on dominant factors.

Variable Type 1 Type 2 Type 3
SVFE 0.415237157 0.165589567 0.185132122
GVI 0.096951397 0.080326388 0.349499414

SV 0.015343475 0.037888162 0.046957979
BVI 0.115335061 0.356520532 0.131956194
MVR 0.023184624526 0.048074794016 0.033233683143
FV 0.008660779 0.010833077 0.006030477
RV 0.207131514 0.176946629 0.148069636

Types of area

Sky- and road-dominant type

0 7KM ®  Building-dominant type

I — |

Greenery-dominant type
Figure 11. Classification of areas based on dominant factors.

In addition to local indices, Visual Entropy (VE) negatively affects women'’s spatial
safety perception. High VE values are primarily concentrated in the urban center and the
northern outer rings of Wuhan (Figure 10h). The urban center, characterized by dense
construction, typically exhibits higher street complexity compared to the outer city ring.
The elevated VE values in the northern outer ring may be attributed to dense vegetation.
Both older neighborhoods in the urban center and areas with abundant greenery in the
outer ring exhibit high VE values but correspondingly low safety perceptions. Therefore,
to enhance women’s safety perception in public spaces, having a broad, unobstructed view
is more important than visual diversity.
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5. Discussion

This study explored the relationship between women’s safety perception and built
environment features, emphasizing the importance of incorporating women’s safety percep-
tions into urban planning and design. A safety perception map was created by integrating
both quantitative and qualitative data. The results reveal significant spatial differences in
female safety perception across urban areas [53]. In suburban areas, streets with open vistas
tend to have higher safety perception scores, particularly along expressways, whereas
minor roads generally receive lower scores. In contrast, safety perceptions in the city
center area vary significantly, with some areas perceived as highly secure and others as less
secure. This observation aligns with prior research suggesting that low safety scores are
often associated with signs of disorder, such as trash, broken pavement, and overgrown
vegetation [72]. These indicators are frequently observed in older neighborhoods and along
rural roads.

In the second part of this study, we examined the relationship between women'’s safety
perceptions and the built environment. Previous studies [21,25,29] on human perceptions
have primarily focused on specific geographic locations, limiting their ability to provide
insights into how residents perceive a continuous geographic area. By utilizing street
view images and establishing a regression model, this study links residents” psychological
perceptions with features of the built environment. The results, supported by OLS analysis,
reveal a significant correlation between built environment features and safety perceptions.
Additionally, the GWR analysis results indicate spatial heterogeneity in the regression
coefficients of safety perception across Wuhan, suggesting that different built environment
features exert varying levels of influence on the sense of safety. Among local indices,
the GVI emerged as having the most substantial negative impact on safety perception.
Due to land supply constraints in central urban areas and market forces, green spaces in
Chinese cities are often repurposed for alternative land use to maximize profits [68]. As a
result, green infrastructure tends to be concentrated in low-cost land areas, which are more
common in suburban regions. These green spaces often appear cluttered and contribute to a
sense of insecurity. These spaces can evoke feelings of vulnerability in women, resulting in
lower safety perceptions [73]. Conversely, the Sky View Factor (SVF) emerged as having the
most significant positive influence on the sense of safety. Street view image points located
on high-grade roads often correlate positively with a higher SVF, which is associated with
a heightened sense of safety. In contrast, low-grade roads, which are more likely to be
linked to abandoned or disorderly areas, tend to have lower safety scores. These findings
align with prior research [74], which suggests that open views positively enhance women’s
safety perceptions. The greater orderliness and openness of high-grade roads contribute to
their stronger association with a higher SVF and an improved sense of safety.

In the third part of this study, the research area was segmented into three categories
based on the predominant built environment feature affecting safety perception. This
segmentation enabled the identification of targeted strategies to enhance women'’s safety
perceptions in various contexts. In the city center area, characterized by high building
densities, streets are primarily configured with a building-dominant layout. The findings
align with previous research [75], indicating that the impact of the built environment on
public space perceptions in Wuhan is comparable to that in other cities. Consequently, the
results of this study offer valuable reference insights for other regions as well. Urban design
in these areas typically emphasizes the relationship between street width and the height of
surrounding buildings to enhance the sense of safety. However, in suburban areas or along
arterial roads like highways, building density has less influence on safety perception, with
spatial openness playing a prominent role. Similarly, in greenways and rural roads, the
condition and composition of vegetation are the main determinants of safety perception.

Based on these findings, the following recommendations are proposed to create safer
and more female-friendly urban public spaces:

(1) Consideration of vegetation design: In urban public space planning and design,
careful attention should be given to the density and height of vegetation. As the
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modeling shows, the GVI negatively influenced women'’s safety perception. That is,
excessive vegetation coverage can contribute to the perception of potential danger
and diminish safety. Therefore, areas with high vegetation coverage require enhanced
management and maintenance.

(2) Emphasis on spatial openness rather than visual diversity: The spatial openness of
public spaces indicated by the SVF has a greater impact on enhancing women’s safety
perception compared to the visual diversity of the streetscape. Spacious, well-lit, and
orderly streets can effectively improve women's safety perception.

(3) Appropriate management of motor vehicles: According to empirical analysis, there
are different impacts of the MVR on women's safety perception in different parts of the
city. In the outer urban ring and on branch roads, motor vehicles may not necessarily
be perceived as negative factors affecting street safety. Introducing speed reduction
measures on branch roads can help to mitigate the sense of insecurity caused by high
vehicle speeds.

(4) Context-specific strategies: Since the landscape composition varies across different
urban areas, strategies to enhance female safety perception should be tailored to the
specific characteristics of each area.

6. Conclusions

This study, taking into account the female perspective, utilized a street view image
dataset and deep learning methods to assess the perception of safety in public spaces. A
safety perception map of Wuhan's public spaces was generated, and FCN-8s was employed
to extract objective environmental elements. The GWR model was applied to analyze the
differential impacts of these built environment features on safety perceptions, providing
valuable insights for planning and designing urban public spaces that better cater to
women’s needs.

Firstly, the distribution of women’s safety perception in public spaces of Wuhan gener-
ally aligns with the city’s multi-center layout. Significant variations in safety perception
are observed in the research areas, with higher-grade roads associated with higher safety
perceptions compared to lower-grade roads.

Secondly, built environment features significantly influence women’s perception of
safety in public spaces. Notably, higher SVF values are associated with higher safety
perception rankings, whereas features such as the GVI and RV have a negative effect.

Thirdly, the influence of different built environment features on women’s safety per-
ceptions exhibits spatial heterogeneity. Wuhan's primary urban area can be categorized
into three types: sky-road-dominant, building-dominant, and greenery-dominant. Each
type requires targeted strategies to enhance safety perception across various urban public
spaces.

The assessment model for women’s safety perception in urban streets, utilizing deep
learning technology and a Tencent Street View image dataset, significantly improved the
efficiency of evaluating subjective safety perceptions. This innovative approach offers more
detailed and comprehensive insights into urban public safety perceptions, demonstrating
the practical value of using advanced technological methods and data to address urban
spatial challenges effectively.

Despite the significant contributions of this study, certain limitations remain. Firstly,
the female participants were predominantly young women, with samples from other age
groups excluded. Women from different age groups may have varying perceptions of
safety, which could affect the generalizability of the findings. Secondly, the use of street
view images introduces inherent limitations that cannot be avoided. Specifically, the street
view images were collected during the daytime, and the Tencent Street View dataset lacks
nighttime imagery. This omission excludes the effects of street lighting, a critical factor
influencing safety perceptions [76,77], thereby neglecting safety considerations during
nighttime. Thirdly, the data collection process relied on sampling vehicles, resulting in a
vantage point that differs from the perspective of pedestrians along the street. Consequently,



Land 2024, 13, 2108 20 of 22

the street view images do not fully represent the pedestrian experience. Incorporating
perspectives from pedestrians and cyclists would enhance the model’s generality and
applicability. Finally, further analysis is needed to evaluate how changes in the composition
or proportion of built environment features within street view images influence safety
perceptions in urban public spaces. Addressing these limitations in future studies could
provide more comprehensive and nuanced insights.
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