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Abstract: The aim of this study is to reveal the effects of multilevel visual characteristics of greenways
on thermal perception in hot and humid regions during summer and to explore the potential of visual
design to enhance psychological thermal comfort. Data on light (L), color (C), plant richness (PR),
space openness (SO), scenic view (SV), thermal sensation (TS), and thermal preference (TP) were
collected through questionnaires (n = 546). Computer vision technology was applied to measure the
green view index (GVI), sky view index (SVI), paving index (PI), spatial enclosure (SE), and water
index (WI). Using the hill climbing algorithm in R to construct a Bayesian network, model validation
results indicated prediction accuracies of 0.799 for TS and 0.838 for TP. The results showed that: (1) SE,
WI, and SV significantly positively influence TS, while L significantly negatively influences TS
(R2 = 0.6805, p-value < 0.05); (2) WI, TS, and SV significantly positively influence TP (R2 = 0.759,
p-value < 0.05).

Keywords: hot and humid areas; greenways; multilevel visual characteristics; thermal perception;
bayesian network; computer vision; semantic image segmentation

1. Introduction

A comfortable thermal environment is extremely important for the feel of an outdoor
space [1]. A good feeling is an emotional response to the overall satisfaction and comfort
of an outdoor space. In recent years, the urban thermal island effect has intensified and
extreme hot weather is seriously affecting the urban environment and the health of urban
residents [2]. In hot and humid areas, the comfort of the thermal environment greatly affects
the physical and mental health of residents and their use of outdoor space [3]. Urban parks
are the most frequently used and accessible green spaces for urban residents, and walking
is one of the main purposes for which people use urban parks [4,5]. So, how to improve the
thermal comfort of urban greenway environments and promote the maximization of the
health effects of urban green space has become a difficult problem in the improvement and
construction of thermal environments in urban green spaces [5–8].

Currently, the regulation of thermal perception relies mainly on the physical dimen-
sion to improve the climatic environment [9,10], but there is a relative lack of regulation of
the psychological dimension. Environmental stimuli from different senses are known to
promote psychological adaptation, and non-tactile stimuli significantly affect individual
thermal comfort [11–13]. Among them, visual perception triggers more thoughts than
other perceptions [14], and the abundance of visual stimuli in outdoor environments is
closely related to people’s thermal perception [15,16]. Studies have demonstrated that there
is an association between visual characteristics, visual perception, and thermal percep-
tion [17–19], but the pathways through which multilevel visual characteristics influence
thermal perception are not clear. Therefore, in this study, we extracted the visual–physical
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characteristics of the environment and utilized the method of picture comparison to relate
the visual perceptual characteristics to thermal perception. To explore how different psy-
chological perceptions arising from differences in visual characteristics modulate people’s
thermal perception, and to establish the relationship between the three dimensions of
visual physical characteristics, visual perceptual characteristics, and thermal perception,
we explored the pathways of visual characteristics’ influence on thermal perception from
the perspective of psychological modulation of perception.

In theoretical terms, this study explores the impact mechanism of visual characteristics
on thermal perception, providing a theoretical basis for improving the thermal environment
of urban green spaces from a visual design perspective. In terms of practical significance,
it helps to expand the measures to address the urban heat island effect and promote the
maximization of the health effects of urban green spaces. At the same time, in a social sense,
it can improve the thermal comfort experience of urban residents, promote the frequency
of use of urban green spaces, and encourage healthy outdoor activities.

2. Literature Review
2.1. Visual Perception

Humans rely on the body’s own sense organs, namely, sight, hearing, touch, taste,
and smell, to perceive the external environment [20]. Vision is the most direct way for
people to feel the external environment, and 80% of external information is transmitted
to the brain through the visual system [21]. Vision can trigger more thoughts in aesthetic
activities than other perceptions, and it has a superiority that other perceptions cannot
compare with [22]. From the physiological point of view, visual perception refers to the
process in which light acts on the visual organs and forms a visual image after processing
the stimulus through the visual system [21]. From the psychological point of view of visual
perception, the elements are processed by the human brain to form the organization and
understanding of external information, which helps people feel the stimulation of various
elements in the environment [23]. The generation of visual aesthetic experience has at
least three main processes: perception, cognition, and emotional processing [24]. When
individuals analyze and understand visual images, perceptual and cognitive processes
trigger emotional responses [25]. Individuals will have different understandings and
experiences of different visual landscape characteristics, which will lead to significant
differences in subjective evaluations and ultimately to making corresponding choices and
behaviors [26–28].

2.2. Thermal Perception

Thermal perception refers to the conscious interpretation and elaboration of sensory
data [29], which can be understood as the subjective satisfaction of the subject with the
thermal environment, and consists of two main semantic dimensions: sensation and
comfort. Thermal sensation (i.e., feeling warm, neutral, cold, etc.) is regarded as its objective
or descriptive dimension and is most often assessed using the seven-point ASHRAE
scale [30]. Thermal comfort is the emotional or enjoyment level of thermal perception
and can be assessed using other terms related to comfort, such as thermal acceptability,
thermal preference, or thermal pleasure [31]. An individual’s sensory response to a thermal
environment depends on seven variables such as air temperature, relative humidity, average
radiant temperature, air velocity, physical activity, clothing, and time of day [32].

Factors Influencing Thermal Perception

Outdoor thermal comfort is influenced by a combination of physical, physiological,
behavioral, and psychological factors [33]. Only 50% of the variance between objective and
subjective thermal comfort assessments can be explained by physical and environmental
factors, with the remainder attributed to psychological factors [34]. Psychological mecha-
nisms have an important influence on thermal perception. Thermal adaptation and thermal
expectations [35,36], thermal adaptation (physiological adaptation, psychological adapta-
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tion) [37], thermal history [38] or thermal experience (long-term experience, short-term
experience) [39], climatic and cultural context [40–42], social characteristics [43], perceived
control [44], duration of exposure [45], and environmental stimuli [46] influence people’s
psychological assessment of thermal environments.

Studies have shown that people’s outdoor thermal sensations are influenced by the
interactions between their short-term thermal history (e.g., time of exposure to the environ-
ment prior to the investigation) and their long-term thermal history (climatic context and
acclimatization) [39]; cultural background is an important effect on thermal sensation [40];
there are differences in the thermal acclimatization processes among students in different
climatic contexts [37]; perceived control is a key factor in adaptive thermal comfort model-
ing that reduces outdoor thermal sensitivity and makes participants more likely to have a
comfortable thermal experience [44]; and physical and subjective attributes of a space can
affect outdoor thermal comfort, such as landscape elements, luminous environments, and
material colors have a significant effect on thermal perception [46]. In addition, people’s
social characteristics (gender, age, socio-economic status), cultural background, the climate
they are used to, and thermal acclimatization measures all have an impact on thermal
comfort [47,48]. Research on thermal acclimatization has explored how psychological
factors affect thermal comfort and found that people living in hot and humid regions have
a better tolerance for high temperatures than those living in low-temperature regions [49].

2.3. Visual and Thermal Perception
2.3.1. Pathways for the Formation of Thermal Perception with Visual Stimuli

Landscape cognition is the perception and awareness of landscape subjects regarding
specific, objective landscape objects, also known as landscape “perception”, which is charac-
terized by the interaction of natural and man-made elements [50]. Human responses during
perception include the following: sensation (environmental stimuli), perception (conscious
interpretation and elaboration of sensory data), cognition (how to learn, remember, and
think about information), emotion (conveying emotions), adaptation (physiological regula-
tion), coping (psychological regulation), and behavior (activity, reacting, and action) [51].

According to the theory of human eyesight effect, the formation of thermal perception
can be through the visual channel of the human eye (Figure 1). The visual signals trans-
formed by two photoreceptor cells, the optic cone and the optic rod, are transmitted through
layers and information processing to perceive the visual world, distinguish the type of
objects, and feel comfortable in the visual environment [52]. Under visual stimulation,
there are two pathways; one is the visual pathway “light—retina—visual crossover—lateral
geniculate body—cerebral cortex—visual perception—mental adaptation—thermal sensa-
tion” [53–55]. The other is that visual stimulation by light produces a series of physiological
responses that ultimately affect thermal sensation, i.e., “light-retina-hypothalamus-superior
nucleus of the optic chiasm-pineal gland-melatonin-skin temperature, core temperature-
thermal sensation” [56–58].
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2.3.2. The Influence of Visual Characteristics on Thermal Perception

Outdoor thermal comfort can be influenced by the visual effects of color, light intensity,
and landscape attractiveness [59], as well as visually generated emotional and psychological
states. One visual effect on hue perception is the Hue–Heat hypothesis. It suggests that color
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is related to temperature perception due to the psychological distinction between warm
and cold colors, i.e., different colors of light or objects affect one’s subjective perception of
warmth and coldness [60–62]. Color temperature preference is a psychological response [63],
different colors interfere to some extent with psychological and emotional states, and
psychological significance can evoke a variety of emotions such as excitement, vitality,
and calm [64]. A study showed that people felt thermal discomfort when spaces were
“too wide”, “too open”, and composed of “cold” materials [65]. In another visual effect,
visual cues from light influence thermal perception. In terms of subjective perception,
the proportion of people who feel hot outdoors increases as the perception of sunlight
increases [66]; there is a cross-modal effect of thermal perception, preference, and comfort
polling on sun perception and sunlight preference under different sky conditions [17].

Landscape attractiveness and spatial characteristics also significantly influence ther-
mal perception. Research in environmental psychology has shown that certain urban
characteristics (e.g., building structure, color, greenery, building materials) strongly influ-
ence human aesthetic experiences and behavioral responses [47]. Perceptions of thermal
comfort were also associated with naturalness, aesthetic ability, positive experiences of the
environment [34,67,68], and satisfaction with landscape characteristics [46]. In aesthetically
pleasing environments, people’s overall comfort levels were consistently high [69]; in out-
door environments that are perceived as quiet and beautiful, humans have higher thermal
tolerance and lower thermal sensitivity [11].

People’s subjective responses to the outdoor thermal environment may be influenced
by physical factors (temperature, velocity, humidity, radiation, etc.) and by the surrounding
landscape (water, plaza, lawn, trees, etc.) [70]. There are significant associations between
an individual’s thermal and visual comfort in blue-green spaces and multiple environ-
mental factors [71]. It is commonly believed that thermal comfort is higher in green
environments than in other environments and that vegetation positively influences thermal
comfort [72,73]. At the same climate level, places with higher green exposure show more
positive thermal perceptions than places with higher building and sky exposure [74].

In addition, emotion was associated with subjective thermal perception [75,76] and
emotion mediates the effect of landscape elements on thermal comfort [77]. When indi-
viduals reported negative emotions such as boredom, their thermal sensation vote was
higher [78]. The psychological and emotional changes brought about by vision can have
an impact on the perception of the thermal environment to a certain extent, and the use of
good color design may lead to more positive emotions [79]. In summary, we can improve
the visual physical characteristics to make people have different perceptions, at the psy-
chological level, to regulate the thermal perception of people and to enhance the thermal
comfort of the environment.

2.4. Methods for Assessing Thermal Perception with Visual Stimuli

The three main methods currently used to assess thermal perception through pictures
as visual stimulus material are thermal perception maps, visual assessment of pictures,
and picture comparison. Thermal perception maps are an alternative method of thermal
perception assessment [80], by having participants indicate spatial areas on a map that
would produce thermal perceptions, thus generating a map showing locations where most
people would experience certain thermal perceptions [81]. A method of assessing thermal
perception is based on the use of photographs to aid thermal perception measurement.
Photographs can be used as stimuli in landscape analysis to study people’s preferences
related to certain characteristics of the landscape [82]. Visual assessment of photographs
can help researchers understand how observable characteristics of the environment affect
people’s perception of microclimates [80]. Certain spatial characteristics can act as visual
triggers for thermal comfort, and photographs can convey information about thermal
discomfort memories. In this study, questionnaire respondents were presented with three
photographs with different spatial characteristics under similar summer weather conditions.
Respondents’ choices of photographs were matched to previous answers on a thermal
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sensation assessment scale in the field. This reveals the possibility of using photographic
comparisons as a complementary research method in outdoor thermal perception surveys.
These studies have demonstrated the consistency between people’s subjective assessments
and objective field sensations of heat [83].

2.5. Research Questions and Objectives

Taking eight greenways in Fuzhou City, a city in a typical hot and humid region
of China, as an example, the following three questions were proposed to be explored in
this study:

• What visual physical characteristics affect thermal perception?
• What visual perceptual characteristics influence thermal perception?
• What are the pathways of influence of multilevel visual characteristics on ther-

mal perception?

The objectives of this study were, first, to identify the key visual physical characteristics
that influence thermal perception in outdoor walking environments; second, to understand
how psychological and cognitive differences resulting from changes in visual physical
characteristics affect thermal perception; and, finally, to construct a multilevel pathway for
the influence of visual characteristics on thermal perception (Figure 2).
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3. Materials and Methods
3.1. Overview of the Study Area

Fuzhou (latitude: 26.08 N, longitude: 119.28 E) is located in Fujian Province on the
southeast coast of China (Figure 3a). Fuzhou has a typical subtropical monsoon climate.
Summer is long and winter is short, and summer is dominated by sunny and hot weather,
with the annual extreme maximum temperature usually occurring in the summer months
of July and August when the hottest monthly temperature averages 27–29 ◦C.
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Field Measurements

In this study, representative greenways in Fuzhou city area were selected, whose
landscape space covered multiple types of visual characteristic scenes. In order to minimize
subjective bias in the selection of greenways, three points are suggested as guidelines:
(1) the selected walking routes should be representative of the entire walking environment
of the area; (2) crossing driveways should be avoided for the maneuverability of the
measurements; and (3) there should be obvious changes in the visual characteristics of the
landscape at the measurement points. Twelve segments totaling 16,000 m of walking route
and 120 measurement points were finally selected.

The measurement activity was carried out by 2 people at the same time, their route
determined by the pre-survey, and the starting and ending points for the 2 people were kept
the same. One of them mounted the Kestrel 5500 handheld weather meter and TES-1333
solar power meter (Table A1) on a tripod (Figure 3b), carried the equipment on foot along
the route, and collected thermal environment data (temperature, humidity, wind speed, and
solar radiation) at intervals of about 200 m. The sampling of the environmental data was set
to 1 min, and the walking route was recorded using the Six Feet software (v. 4.202.23) during
the collection process and fixed-point visual images of the collection point. Another person
wore a GoPro camera with a fixed clip headband in the head position to record video while
riding, and to prevent the effects of tilt or shake set the camera mode to linear + horizon
function and the video format to 4 k/60 fps (Figure 3c).

The measurement activity lasted for 8 days, from 5 July to 13 July 2023, and was
conducted from 8:00 to 11:30 a.m. This is the time period when greenways are most fre-
quently used by people in hot and humid areas, and it is also the time period when the
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weather is clear and the light and weather conditions are relatively stable, which reduces
the interference of other factors as well as the visual impacts caused by differences in
light. The thermal environment parameters were generally consistent during the control
measurements to ensure that there were no significant differences in solar altitude, atmo-
spheric visibility, and weather conditions to exclude the perceptual effects of differences
in picture taking (Table A2). The recorded video was converted to pictures using the Free
Video to JPG Converter software (v. 5.0.101.201), outputting one picture per second with a
converted picture resolution of 3840 × 2160. We screened out the pictures corresponding
to the fixed-point pictures recorded by the Six Feet software. To ensure the quality of
the pictures, 19 measuring points with poor light conditions or insignificant changes in
landscape characteristics before and after were screened out, and 101 measuring points
were finally retained (Table 1).

Table 1. Description of study sites.

Location Site Description Number of Points

West Lake Greenway (A) Section A is mainly for the West Lake Park internal lake walkway,
road width 2–4 m, to stone road, wooden trestle mainly.

Measurement: 17
Reservations: 12

Fudao (B)
Section B relies on the mountain to form a panoramic walkway,
with a road width of 2.4 m and a steel skeleton walkway as its

main characteristics.

Measurement: 15
Reservations: 15

North Riverside Greenway (C) Section C is located on the north bank of the Min River, with a road
width of 3 m, made of gray asphalt, bluestone slabs, and wood.

Measurement: 14
Reservations: 12

Nantai Island
Greenway

South Riverside
Greenway (D)

Section D connects residential areas and parks, with a road width
of 3 m, and the road material is mainly permeable bricks.

Measurement: 14
Reservations: 12

Flora Greenway (E) Section E of the Flora Greenway is an integral part of the levee, with
a road width of 5 m and a paving material of mainly blue asphalt.

Measurement: 14
Reservations: 12

Bright Harbor Greenway (F) Section F links residential areas and parks, with a road width of 5 m
and paving materials of mainly red asphalt and bluestone slabs.

Measurement: 20
Reservations: 15

East Riverside Greenway (G) Section G belongs to the north bank of the Min River, road width of
3 m, paving materials are mainly grey asphalt, green stone slabs.

Measurement: 15
Reservations: 14

Feifeng Mountain Greenway (H) Section H is in the park’s internal ring of mountain greenways,
road width of 6 m, paving material of gray asphalt.

Measurement: 12
Reservations: 8

3.2. Variables and Measurement
3.2.1. Visual Physical Characteristics

When quantifying the visual physical characteristics of greenways, Semantic Image
Segmentation (SIS) is an important technique for recognizing and understanding the
content of images at the pixel level using computers, which can effectively extract landscape
elements from images [84]. This study used the Pyramid Scene Parsing Network (PSP-Net)
semantic segmentation model for semantic segmentation of images. A dataset ADE20K
containing 27,000 images and more than 3000 object categories was selected. A total of
12 categories of landscape characteristic elements in the greenway pictures was extracted,
and the percentage of different elements in the pictures was calculated. We integrated them
into 5 indicators of visual physical characteristics of the greenway: GVI, SVI, PI, SE, WI.
The formula for calculating the indicators is as follows (Equations (1)–(5)).

SVI = Asky/Atotal × 100% (1)

GVI = (Atree + Agrass + Aplant)/Atotal × 100% (2)

PI = (Aroad + Asidewalk + Aearth + Apath)/Atotal × 100% (3)
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SE = (Atree + Aplant + A f ence + Arailing + Astreetlight)/Atotal × 100% (4)

WI = Awater/Atotal × 100% (5)

where Atotal is the total number of pixels of the image, and Ax represents the number of
pixels occupied by each element.

3.2.2. Visual Perception Characteristics

Through the literature review, five visual perception characteristics were compiled,
including color (C), light (L), plant richness (PR), space openness (SO), and scenic view
(SV). C refers to the perceived temperature associated with color, which is the subjective
assessment of the greenway landscape’s thermal environment based on the visual stim-
ulation of colors. It indicates whether the overall environment feels warm or cold, and
whether the sensation leans more towards warmth or coolness. L is determined by the
light reflected or transmitted by the color, indicating the degree of light and darkness of
the color. In this paper, the light is the degree of ambient light and darkness presented by
the picture scene. PR refers to the richness of the plant configuration in the picture scene,
which is evaluated in terms of the number of plant species, hierarchical structure, color
composition, spatial form, etc. SO is the proportion of the “empty” area within the visible
field of view (the sky and the unobstructed ground) to the area of the field of view. SV
refers to the aesthetic and ecological perspective, from the landscape elements, to judge the
scenery beautiful or ordinary.

3.2.3. Thermal Perception Variables

Thermal perception measures consist of two indicators: thermal sensation (TS) and
thermal preference (TP). TS typically represents the human body’s perception and sensation
of environmental temperature across various conditions. However, this study specifically
examines how visual characteristics influence thermal sensation, assessing whether a visual
scene, under the influence of visual stimuli, is perceived as cool or hot in terms of thermal
comfort. TP usually refers to an individual’s preference and comfort under different
thermal environmental conditions, while the thermal preference in this study focuses on an
individual’s thermal environmental sensation of a picture scene’s Preference.

3.2.4. Questionnaires

The questionnaire contains three parts: individual factors, visual perception evaluation,
and thermal perception evaluation. Individual factors include demographic issues and
issues of thermal experience. The purpose of this section was to understand the individual
differences that may have an impact on thermal perception and whether the respondent
had experience moving around the greenway space and was able to make an assessment of
the visual perception of the environment and thermal perception through picture stimuli.
The visual evaluation part consists of five perception indicators, L, C, PR, SO, and SV.
Thermal perception contains two indicators, TS and TP.

Photo comparison can assist thermal perception measurement [83]. In this study, one
picture was selected as the benchmark picture for visual perception and thermal perception
evaluation, and respondents assessed visual and thermal perception by comparing other
pictures with the benchmark picture. The benchmark picture was selected by ordering the
five physical characteristic indicators, GVI, SVI, PI, SE and WI, from largest to smallest, and
selecting a picture with each indicator in the range around the median. Finally, a picture
that was relatively in the middle of all five metrics was determined as the benchmark
picture. The remaining 100 pictures except the benchmark picture were randomly divided
into 10 copies, with 10 pictures as a group to form 10 parallel questionnaires. A five-
point Likert scale was used with visual perception indicators and thermal perception
indicators described by 7 groups of relative adjectives, with 1 to 5 representing very below
the benchmark picture, relatively below the benchmark picture, almost the same as the
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benchmark picture, relatively above the benchmark picture, and very above the benchmark
picture, respectively (Table 2).

Table 2. Subjective perception questions for thermal and visual perception.

Perception Questions

Visual
perception
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3. What do you think of the abundance of plants in the right picture compared to the left picture?
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Space
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4. What do you think of the openness of space in the right picture compared to the left picture?
Much more closed, more closed, moderate, more open, much more open.

Scenic view
(SV)

5. What do you think of the scenic view in the right picture compared to the left picture?
Much more common, more common, moderate, more beautiful, much more beautiful.

Thermal
perception

Thermal
sensation

(TS)

6. How do you think the temperatures on the right look in the summer compared to the left graph?
Much hotter, hotter, moderate, cooler, much cooler.

Thermal
preference

(TP)

7. Which scene do you prefer for the feeling of a hot environment?
Left, right.

Questionnaires were designed based on the Sojump platform (https://www.wjx.cn/,
accessed on 23 August 2024), and the corresponding QR codes of the questionnaires were
scanned to answer the questions through social networks, offline surveys, etc. Most of the
questionnaires were disseminated in the form of snowballing, and a few were dissemi-
nated through the Internet. Ten sets of parallel questionnaires were distributed, totaling
700 copies; 682 copies were recovered, including 136 invalid questionnaires and 546 valid
questionnaires, with an effective index of 78%, and the number of valid questionnaires
recovered for each questionnaire was more than 45. An alpha reliability test was per-
formed on the recovered questionnaires and the Cronbach’s alpha coefficient for each set of
questionnaires was greater than 0.87.

3.3. Data Analysis Methods

Bayesian networks have reasoning models similar to those used by humans to accom-
plish everyday reasoning [85], that is, capable of learning and reasoning under conditions
of incomplete and uncertain information, capturing the correlations between individual in-

https://www.wjx.cn/
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formation elements and the uncertainty of these relationships, and constructing physically
meaningful network models.

The construction of the model was based on the R language (v. 4.4.0) and consisted
of four main steps: first, a preliminary exploration of the data was performed to identify
possible relationships between variables by testing the normality of the data and the Spear-
man correlation of the variables. Based on the preliminary exploration, we introduced a
priori knowledge to define the hypothesized relationships between variables and construct
the primary network structure. Next, the average network was computed by relearning the
Bayesian network by playback sampling each sample to learn the model structure. The arc
intensity distribution in the visualized network was visualized and high-frequency and
high-intensity arcs were filtered into the final simplified network. The third step utilized the
lm () function to fit the linear structure of the simplified network. Fourthly, cross-validation
based on the maximum likelihood method was performed to measure the accuracy of
model prediction, and loss function was calculated to judge the model effect.

4. Results
4.1. Descriptive Statistics
4.1.1. Sociological and Behavioral Characteristics of Populations

Of the 546 samples obtained, the respondents were 45.8% male and 54.2% female; the
age composition was dominated by young and middle-aged people aged 19–35, accounting
for 87.2% of the total, with fewer respondents in other age groups; the education level
was dominated by secondary education, accounting for 95.2% of the total; in terms of the
occupational composition, 70.1% of the respondents were students, with fewer in other
occupations; and in terms of the income composition, the number of people at the CNY
0–3000 low-income level was the largest (Table 3).

Table 3. Sociological characterization of the sample population.

Variable Form Percentage

Gender
Male 45.8%

Women 54.2%

Age

18 years and under 5.68%
19–35 years 87.18%
36–65 years 6.96%
66 and over 0.18%

Educational level
Primary and below 0.4%

Junior high school, high
school 95.2%

College, Bachelor’s Degree,
Master’s Degree, Doctorate 4.4%

Careers

Teacher/Administration 5.6%
Design practitioner 4.0%
Liberal profession 3.1%

Student 70.1%
Marketing/Sales/Commercial 4.0%

Other 13.2%

Salary

CNY 0–3000 70.3%
CNY 3000–5000 11.5%

CNY 5000–10,000 12.3%
More than CNY 10,000 5.9%
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4.1.2. Thermal Experience

The statistical results show that 90.5% of the respondents had lived in the Fujian
area; 82.2% of the respondents thought that the climate in their living area in the last
three years was hot, 17% thought that it was mild, and only 0.7% thought that the climate
was cool; 87.4% of the respondents had the experience of using the greenways during
the summer months; 75.6% of the people had been active in the parks for more than
0.5 h; and the respondents’ main greenway activity was recreational walking, with a few
choosing to do fitness exercise, cycling and sightseeing, recreational activities, and other
activities on the greenways (Table 4). The results of the survey showed that most of the
respondents were from the study area, had experience on the greenways, and possessed
experiential perceptions of greenway environments and were able to assess visual and
thermal perceptions through picture stimuli.

Table 4. Characterization of sample thermal experience.

Variable Form Percentage

Climate in the living area
Cool 0.7%
Mild 17%
Hot 82.2%

Life experience in Fujian
Yes 90.5%
No 9.5%

Experience of using
greenways in summer

Yes 87.4%
No 12.6%

Duration of activities on the
greenway

0–0.5 h 24.4%
0.5–1.0 h 42.9%
1.0–2.0 h 26.2%

2.0 h or more 6.6%

Type of activity

Leisurely stroll 52.7%
Physical exercise 16.0%

Bicycle sightseeing 15.4%
Entertainment 11.0%

Other 5.0%

4.1.3. Thermal Environment and Visual Physical Characteristics

During the field measurements, the weather conditions were hot and sunny. The
temperatures of the eight greenways were in the hot summer range, the humidity was in the
humid to wetter range, and the average wind speeds during the measurement period were
in the range of 0.3–1.5 m/s (Table A3), ensuring that the thermal environmental conditions
were essentially the same during the image collection process. Semantic segmentation of
the 101-image dataset revealed that seven landscape elements, namely, roads, sidewalks,
buildings, walls, vegetation, greenbelts, and sky, were the main components of the visual-
physical characteristics of the greenways (Table A4).

According to the calculation formula (Equations (1)–(5)) integrating landscape ele-
ments into five visual physical characteristic indicators, the GVI, SVI, PI, SE, and WI of
each greenway were taken as the mean values. It can be seen (Figure A1) that the overall
SE level of section B was the highest; the SVI levels of sections A, E, and G were higher;
the overall PI level of section A was relatively low, and those of section E and section F
were higher; the GVI of sections C, D, F, and G were higher; among them, the GVI level of
section C was the highest and section B was the lowest. The percentage of greenery was
the main influence on the SE level, and the lower GVI but higher SE level of section B may
have been related to the characteristic of this greenway being built on the mountain. The
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overall percentages of WI in the greenways were all low, with section A being a typical
lake-type greenway with a relatively high percentage of WI.

4.2. Perception Evaluation
4.2.1. Rater Agreement Index

A rater consistency test was performed for each question of the questionnaire, and
perceptual ratings were averaged only when the index of each picture had consistent
and high confidence in that picture [86]. Generally speaking, the index consistency index
Rwg is considered to be moderate when its value is greater than 0.7. The content of the
survey in this study was subjective perception, with some differences in individual ratings,
so that more than half of the people in the same group having consistent evaluations
(i.e., Rwg > 0.5) can be considered to show consistency in the evaluations of individuals in
the group for the pictures. After the test, 17 pictures that did not meet the consistency test
were excluded, and the perceptual evaluations of the remaining 83 pictures were averaged.

4.2.2. Overall Perception

The eight greenways’ L ratings were between 2.00 and 4.26, with section B having
the lowest mean rating, and sections G and H relatively high; C ratings were between
2.02 and 4.07, with a large span in the distribution of rating levels for sections B, D, F, G,
and H ratings being relatively centralized and high, and section A having a lower color
rating; PR overall ratings were between 2.20 and 4.37, with a more pronounced difference
between greenways with more significant differences between them, with E and G being
relatively low, the rest of the ratings being above moderate levels, and section F being the
highest; SO ratings ranged from 2.12 to 4.49, with greater differences in ratings between
greenways, with B being low, the rest of the ratings being above moderate levels, and
section G being the highest; and SV ratings ranged from 2.45 to 4.11, with a relatively large
span of distribution of ratings in B and C, and the rest of the greenways being relatively
centralized in their rating levels; TS scores ranged from 2.30 to 4.26, with section G scores
low, A, D, and F scores high, and B, C, E, and H moderate (Figure A2).

4.2.3. Influence of Individual Factors on Thermal Perception

Individual factors were analyzed by ANOVA with TS and TP, respectively. There was
a significant difference in thermal sensation scores by gender and salary level (Table 5).
The results showed that females had slightly higher thermal sensation scores (mean = 1.73)
than males (mean = 1.71), and that females had better thermal sensation in the same visual
situation. Salary level did not pass the Homogeneity of Variance Test, and a Welch ANOVA
was performed on this set of variables. The results showed a significant difference in
thermal sensation scores for different wage levels (p = 0.004 < 0.05). Tambane’s T2 test
was conducted and those with income levels of CNY 0–3000 had lower thermal perception
scores than those with income levels of CNY 5000-10,000 (Table 6).

Table 5. Variance analysis of thermal perception.

Thermal Sensation Thermal Preference

Variable Homogeneity of
Variance Test 1 p 2 Homogeneity of

Variance Test 1 p 2

Gender 0.956 0.048 0.260 0.089
Age 0.387 0.071 0.275 0.704

Educational level 0.394 0.790 0.478 0.727
Salary 0.018 0.016 0.505 0.730

Careers 0.092 0.066 0.262 0.989
Climate in the living area 0.180 0.072 0.302 0.513
Life experience in Fujian 0.671 0.476 0.990 0.063
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Table 5. Cont.

Thermal Sensation Thermal Preference

Variable Homogeneity of
Variance Test 1 p 2 Homogeneity of

Variance Test 1 p 2

Experience of using greenways
in summer 0.970 0.100 0.010 0.575

Duration of activities on the greenway 0.172 0.147 0.927 0.408
1 Homogeneity of variance test (p > 0.05); 2 p < 0.05.

Table 6. Tambane’s T2 test.

(I) Salary (CNY) (J) Salary (CNY) Mean Value Difference
(I–J) p 1

0–3000 3000–5000 −0.04761 0.453
5000–10,000 −0.09755 0.002

More than 10,000 −0.02474 0.995

3000–5000 5000–10,000 −0.04994 0.618
More than 10,000 0.02287 0.998

5000–10,000 More than 10,000 0.07281 0.596
1 p < 0.05.

4.3. Model Construction and Validation
4.3.1. Data Exploration

The inference process of a Bayesian network relies on the distribution characteristics of
the data, the distribution characteristics of the data will affect the stability of the Bayesian
network, and the construction of the Bayesian network in this study was based on the
existence of linear relationships between the nodes; if the data obey the normal distribution,
then the assumption of linear relationship may be more reasonable, and the normality of
the data also affects the interpretation of the results of the correlation analysis and the
reliability of the correlation analysis.

Using the toolkit “magrittr”, “dplyr”, the mutate () function was used to convert
discrete data to numerical data. hist (), lines (), and curve () functions were used to plot
histograms, kernel density estimation curves, and normal distribution curves to complete
the normality test. Our study was based on the R language and the normality test was
performed on the data before constructing the model. None of the 12 variables conformed
to the normal distribution (Figure A3). Spearman’s correlation analysis was performed
using the pairs (), setdiff () functions to plot the scatterplot matrix. This is a non-parametric
correlation analysis method based on the ordering of the variables rather than the original
values and is therefore not sensitive to the distribution of the data. As can be seen in
Figure 4, there was a partial linear relationship between the variables, and based on this
result we hypothesized a preliminary undirected network structure.

4.3.2. Model Structure Learning

Due to the complexity of the initial structure constructed by correlation, the model
structure needed to be further optimized by structure learning and parameter learning.
In this study, a structure learning method based on the dependency relationship between
nodes was adopted [87,88]. In this study, a priori knowledge was introduced to improve
the efficiency of Bayesian network construction. The a priori knowledge consisted of a
“blacklist” and a “whitelist”, where the blacklist referred to arcs that were known not to
exist, and the whitelist referred to arcs that were known to exist. Incorporating a priori
knowledge into the learning of the network structure reduces the difficulty, and accelerates
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the speed of finding the best-fitting network structure [89]. In this study, correlations
between visual physical characteristics metrics were included in the blacklist, and metrics
for which relationships were hypothesized to exist were included in the whitelist (Table 7).
The toolkit “bnlearn” was installed for Bayesian network learning and inference, and
“Rgraphviz” for visualizing the network structure.
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The blacklist and whitelist data frames were created to define the black- and whitelists,
and the hc () function was used to perform a hill climbing algorithm to find the best Bayesian
network for constructing the directed acyclic graph DAG (Figure 5a). Since the variables
did not all conform to a normal distribution, it was not possible to determine the strength
of the relationship between the arcs in the network structure. Therefore, we resampled the
data using the playback sampling method, applying blacklist and whitelist constraints to
each sample of the relearned Bayesian network. The robustness of the network structure
was evaluated using the boot.strength function. The resampling parameter was set to
200 times, the algorithm was defined as “hc” for structure learning, and the algorithm.arg
function passed the black- and whitelists as parameters for structure learning. Finally, the
average network structure was calculated by the averaged network function.

Table 7. Blacklist and whitelist definitions.

Blacklist Whitelist

From To From To

GVI

SVI

GVI

C

SE L

PI PR

WI

SVI

C

SVI

GVI L

PI TP

SE
PI

C

WI SO
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Table 7. Cont.

Blacklist Whitelist

From To From To

PI

GVI

SE

C

SVI L

SE PR

WI SO

SE

GVI TS

SVI

WI

C

PI L

WI SV

WI

GVI TS

SVI TP

PI L TS

SE

C

SO

L

SV

PR
SO

SV

SE

C

SO

PR

TS

SV
TS

TP

The cpdag function was used to estimate the conditional independence from the
directed acyclic graph (DAG), the black- and whitelists were set to the structure learning
of the averaged network, the undirected arcs were extracted from the given preliminary
network, the possible undirected edges were deduced based on the directed arcs’ direc-
tionality and intensity, and the average arc intensity threshold was computed to be 0.46.
The plot () function was applied to visualize the distribution of the arc intensities in the
network. The threshold parameter in the averaged network function was set to 0.9 to filter
out the arcs with high frequency and intensity greater than 0.9 into the final simplified
network (Figure 5b). The dashed line indicates the unstable connected arcs removed from
the final simplified network relative to the preliminary network.
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4.3.3. Model Fitting

The following model was obtained by fitting the linear structure in the network
using the least-squares-based lm () function (Equations (6)–(12)). The degree of fit of the
linear equations can be expressed by the goodness of fit (R-squared), and the F-test is
used to assess the fit of the model, with larger values indicating a better fit of the model.
The p-values of the equations were all less than 0.05, and all seven equations passed the
significance test (Table 8).

TP = 0.61571 + 0.83805 × WI + 0.34571 × SV + 0.11458 × TS (6)

TS = 2.48557 + 1.63004 × SE + 5.37333 × WI − 0.50877 × L + 0.39594 × SV (7)

L = −1.235734 − 0.009069 × GVI + 2.906992 × WI + 0.135881 × SVI + 0.429254 × SO + 0.903788 × C (8)

C = −1.6293 + 4.7397 × SVI + 3.2903 × SE + 4.8465 × PI + 2.1224 × GVI (9)

PR = 1.6887 + 1.9561 × SE + 0.4551 × GVI (10)

SO = 4.24213 − 2.57524 × SE − 0.25200 × PR + 0.47442 × C (11)

SV = 1.04165 + 2.00634 × WI + 0.49522 × C + 0.23200 × PR (12)

Table 8. Fit and F-test results of linear equations.

Linear Equation R-Squared F-Statistic p-Value 1

(6) 0.759 82.94 0.000
(7) 0.6805 41.54 0.000
(8) 0.6158 24.68 0.000
(9) 0.375 11.7 0.000
(10) 0.5462 48.15 0.000
(11) 0.6963 60.37 0.000

1 p < 0.05.
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4.3.4. Model Validation and Prediction Accuracy

Parameter learning was performed using the bn.cv function based on maximum
likelihood estimation to perform cross-validation of the simplified network. The “hc”
algorithm was used to learn the structure of the network and calculate the prediction
loss for each variable. The parameters were set to n = 83, runs = 35, and the dataset was
randomly partitioned 83 times for 35 training and validation runs. In each validation, one
of the subsets was used as the test set and the rest were used as the training set. After
completing n training and validation runs, the overall prediction accuracy of the model
was evaluated using the average loss. The loss function “cor-wl” was specified through the
loss parameter to determine the model effectiveness. Since the loss function predicts the
value of each node only from their parents, which is meaningless when dealing with nodes
with few or no parents, the predictions were targeted at variables where parents existed.
The crossover results showed that the accuracy of all seven nodes was greater than 0.7,
with L, C, SO, SV, and TP being able to predict with an accuracy of 0.8 or more (Table 9).

Table 9. Influence of visual characteristics on thermal perception model’s prediction accuracy.

L C PR SO SV TS TP

Accuracy 0.829 0.811 0.716 0.846 0.855 0.799 0.838

In addition, we found significant differences between the effects of gender and salary
on thermal sensation. Constructing the model by grouping the genders and obtaining a
structure consistent with the overall model proved that the model we constructed was
stable across genders. Salary levels differed only in the two groups, which may have been
related to the fact that some of the data recovered were in the student group, and those who
had no income among them should be removed before making comparisons. Therefore, it
was treated as an irrelevant variable in this study.

5. Discussion
5.1. Multilevel Visual Characteristics and Thermal Perception
5.1.1. Associations Between Multilevel Visual Characteristics

The Bayesian network structure constructed in this study showed that SVI, PI, GVI, and
SE significantly and positively affected C (Equation (9)). Physical characteristic elements
are the main components of the picture scene, and the picture color is presented by several
elements, which was verified in our study. PR was positively influenced by GVI and SE
(Equation (10)), and green view index and spatial enclosure determined the perception of
plant richness.

Among the indicators at the visual perception level, C and PR are only influenced by
visual physical characteristics, and both act as mediators with other physical characteristics
to influence L, SO, and SV. WI, SVI, C, and SO positively influence L, and GVI negatively
influences L (Equation (8)), and the higher sky view index laterally reflects the higher space
openness of the environment, and the higher intensity of the light received in the field
environment; the greenway segments of research area containing water index are usually
waterfront areas with more open views and a higher perception of brightness. Different sky
conditions influence sunlight perception and preference [17], as was seen in our findings.
Whereas GVI reflects the degree of greening of the greenways, more vegetation has a
stronger shading effect on light, resulting in lower brightness perception. Previous studies
have shown that seasonal characteristics of trees have a significant effect on visual light
perception [19], and our study reached a consistent conclusion.

SE and PR negatively affect SO, and C positively affects SO (Equation (11)). Spatial
enclosure and plant richness perceptions reflect the degree of greenway greening; the more
vegetation, the stronger the enclosing and shading effect on the space. C is influenced
by multiple physical characteristics, representing the warmth or coolness of the overall
environmental tone. The higher the sky view index, the stronger the lighting, and the
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warmer the hue presented by the visual scenes, the more open the space feels. WI, C, and
PR positively influence SV (Equation (12)). The higher the water index, color perception,
and plant richness, the higher the perceived beauty of scenic view. It has been mentioned
that building structure, color, greenery, and building materials can strongly affect human
aesthetic experience and behavioral responses [47]. This is consistent with our findings.

In the initial hypotheses, we assumed that PI would influence SO, SE would influence
L, WI would influence C, and SVI would influence PR, but the initial model eliminated
the association of WI with C and SVI with PR, and the final simplified model eliminated
the effects of PI on SO and SE on L. This may have been due to the fact that fewer water
elements were found in the greenway environment during the data collection process; most
of the PIs found were paving materials, and there were fewer differences in hard paving
materials and roadway widths among the several greenways surveyed, which may have
led to weaker correlations between PI and other variables.

5.1.2. The Effect of Multilevel Visual Characteristics on Thermal Perception

Our results show that SE, SV, and WI significantly and positively affect TS, and L
significantly and negatively affects TS (Equation (7)). The higher the degree of spatial
enclosure, water index, and scenic view, the cooler the thermal sensation of the visual
environment, and the higher the brightness, the hotter the thermal sensation. Enhancing
the degree of thermal sensation coolness of the visual environment can be achieved by
decreasing the lighting and enhancing the percentage of water index, the spatial enclosure,
and the degree of aesthetic beauty of the environment. The results of the thermal preference
survey indicated that greenway spaces with a larger proportion of water space, higher
aesthetic beauty, and cooler thermal sensations were more popular, with WI, TS, and SV
significantly and positively influencing TP (Equation (6)). Among them, SV was positively
influenced by WI, PR, and C, SE and GVI positively influenced PR, and GVI negatively
influenced L. Therefore, increasing the water index at the level of visual physical character-
istics can directly promote thermal sensation enhancement. At the same time, increasing
the water index, spatial enclosure, and green view index is conducive to aesthetics, which
contributes to the thermal sensation of the visual environment. The enhancement of the
water index, the beauty of the scenic view, and the thermal sensation promotes the degree
of preference as well as the use of the greenways.

Previous findings indicated that vegetation and the water index significantly influence
people’s subjective responses to outdoor thermal environments [70,90], and that vegetation
has a positive effect on perceived thermal comfort [72–74]. Increasing the area of water
index can effectively reduce the temperature, and the combination with vegetation can
provide a better cooling effect [91]. People prefer spaces where water is present [92]. Ther-
mal comfort is associated with the naturalness of the environment, beauty, and positive
experience [34,67,68]. People’s overall comfort is higher in aesthetically pleasing environ-
ments [47]. Beautiful outdoor spaces are favored by residents and have a positive effect
on enhancing thermal comfort [18]. Thermal tolerance is higher in humans in quiet and
beautiful outdoor environments [11]. Sunlight perception and preference affect thermal
perception [17]. Increased sunlight perception increases the proportion of people who feel
hot outdoors [66]. These are all consistent with our conclusions.

In addition, the beauty of the scenic view is also influenced by color perception. It
has been shown that emotions are associated with subjective thermal sensations [75,76],
that good color design may lead to positive emotions, which may positively affect thermal
perception [79], and that emotions mediate the effects of landscape elements on thermal
comfort [77]. This is consistent with our study that changes in visual physical characteristics
affect color perception, which acts as a mediator that significantly affects L, SO, and SV,
ultimately leading to changes in thermal perception (Equations (8)–(11)), suggesting that
color variations affect the perception of space and that rich color variations can increase
spatial richness, thereby creating a more comfortable thermal environment.
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5.1.3. Visual Design Strategies to Enhance Thermal Perception of Greenways

Enhancing the green visual index and optimizing the sky view index enhances the
thermal perception of greenways. Studies have shown that GVI is negatively correlated
with L. When designing greenways, consideration should be given to increasing the cov-
erage of green vegetation, such as planting more trees and shrubs to provide shade and
visual comfort. Appropriate adjustments to SVI can be made by designing tree canopies
with different densities to reduce direct sunlight and diffuse light, thus creating a more
comfortable visual environment.

Improving the sense of spatial enclosure and introducing water elements also enhances
the thermal perception of greenways. The design should consider using landscape elements,
such as hedges or low walls, to moderately enclose the space to enhance people’s sense of
security and thermal sensation. Enhanced SE enhances PR, moderately reduces SO and L,
and is conducive to promoting TS and TP. Meanwhile, water characteristics such as streams,
fountains, or artificial lakes can be introduced into the greenway design to enhance the
visual environment’s scenic view and thermal sensation.

Enhancing the degree of scenic view and enriching the environment with color can
also enhance the thermal perception of greenways. The SV and TS of the greenways can be
enhanced by increasing PR and C. The design can consider using plants of different colors
and textures, choosing appropriate paving materials, improving the impact of large-area
paving on the color of the space, and promoting the richness of the visual environment to
enhance the degree of beauty, thus enhancing the degree of user enjoyment.

5.2. Limitations and Prospects of the Study

This study has some limitations in terms of spatial types. Greenways are linear spaces,
and the main components of their visual characterization elements differ somewhat from
other space types [90]. Paving index has an effect on thermal perception [47], and PI
was only significantly correlated with C in this study, which may be due to the fact that
the materials and widths of roads are similar in greenway environments, resulting in no
significant difference in perception [65]. There are also differences in visual landscape
characteristics across climate zones, and these factors may have different results on visual
perception and thermal perception [41,42]. In this paper, climatic factors were controlled
for, and picture stimuli were used instead of visual experiences in the field, which may have
led to the influence of the spatial environment in which the respondents were located on
visual perception and thermal perception. In the future, the mechanism of visual–thermal
perception influence can be explored in depth in different types of spaces. Attempts were
made to design controlled experiments to further validate and control individual differences
in objective environmental parameters and physiological indices, which were analyzed
together with the results of subjective questionnaires in order to assess the independent
influence of visual characteristics on thermal perception.

Existing studies have shown that demographic characteristics, individual experience,
and cultural background affect thermal perception [93]. The subjects were mostly resi-
dents of the Fujian area with no significant differences in thermal experience and cultural
background, which made demographic characteristics and individual experience have
no significant effect in this study, which is inconsistent with the results of previous stud-
ies [37–39]. There were significant differences in thermal sensation scores by gender in this
study, but the results of group modeling were consistent with the overall model, which was
stable across genders. This may be due to the fact that the respondents had similar thermal
experiences as well as cultural backgrounds, and in this particular case demographic factors
were not significant influences on the psychological modulation of thermal perception by
vision. The group with higher salary levels had higher thermal sensation than the group
with lower salary levels, which is consistent with previous findings [47,48]. Meanwhile,
in outdoor spaces, activity time [45], and landscape sequence changes and combinations,
affect transient thermal perception, which in turn affects individuals’ overall satisfaction
with outdoor spaces [74].
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In the future, a combination of online and field survey methods could be used to
increase participant diversity and explore differences in the effects of visual characteristics
on thermal perception across different populations, such as those of different ages, genders,
quality of life, and cultural backgrounds. The test period could also be expanded to assess
how people adapt to the urban thermal environment over time and how this adaptation
affects their perception of visual characteristics and thermal sensations. To further under-
stand the issues of enhancing the thermal and visual environments of greenway spaces, a
more comprehensive data collection and modeling approach is needed to incorporate other
influencing factors into the model and to conduct studies in multiple cities to validate the
general applicability of the model to create better outdoor thermal and visual environments.

6. Conclusions

The results of this study show that visual characteristics significantly affect thermal
perception from both physical and perceptual levels; SE, WI, SV, and L are important
influencing factors for TS. Increasing water index, spatial enclosure, and creating beautiful
environments, as well as decreasing people’s perception of light, can improve the thermal
comfort of outdoor walking spaces; WI, SV, and TS have a positive effect on people’s spatial
preference, which suggests that spaces with water elements, beautiful environments, and
cool thermal sensations are more favored by users.

In this study, we used the picture comparison method to quantify the effect of visual
perceptual characteristics on thermal perception and combined it with computer vision
technology to quantify visual physical characteristics, linking physical space and perception.
Our study broadens the psychological pathway for thermal environment improvement
in urban green space and provides scientific theoretical guidance for visual environment
design of greenways in hot and humid areas. Although the model constructed in this study
is based on Fuzhou, the method proposed in this paper is generalizable and applicable to
the assessment of the visual thermal environment of urban walking spaces in other hot
and humid areas. The results of this study have practical significance for urban landscape
enhancement, and designers can use these findings to optimize the visual characteristics,
predict the possible thermal perception situation of the design through visual evaluation
during the design process, and adjust and optimize the design scheme in time. At the same
time, the thermal comfort of the greenway space is regularly monitored and evaluated to
ensure the effectiveness of the design, and adjustments are made based on user feedback
to promote the use and enjoyment of urban green space and improve the quality of life of
urban residents.
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Appendix A.

Appendix A.1. The Specifications of the Tools Used

Table A1. The specifications of the tools used.

Microclimate
Parameters Measuring Tools Measurement

Range Accuracy Resolution Response Time

Temperature (Ta)
Kestrel 5500 Handheld

Weather Meter

−29 ◦C−70 ◦C 0.5 ◦C 0.1 ◦C 1 s
Wind speed (Va) 0.6–60 m/s ±3% 0.1 m/s 1 s
Humidity (RH) 5.0–95.0% ±2% 0.1 60 s

Solar radiation (G) TES-1333 Solar
Power Meter 0 to 1999 W/m2 ±10 W/m2 0.1 W/m2 1 s

Appendix A.2. Weather Conditions during the Survey

Table A2. Weather conditions during the survey.

Date Temperature Range (◦C) Weather Wind Force

6 July 2023 28–38 Cloudy Level 2

7 July 2023 28–38 Cloudy Level 2

8 July 2023 28–40 Sunny Level 2

9 July 2023 28–40 Cloudy–Sunny Level 1

10 July 2023 28–38 Cloudy–Sunny Level 2

11 July 2023 27–38 Cloudy–Sunny Level 2

12 July 2023 27–38 Cloudy Level 2

13 July 2023 26–38 Cloudy Level 2

Appendix A.3. Measured Thermal Environment Parameters of the Greenways

Table A3. Measured thermal environment parameters of the greenways.

Ta (◦C) RH (%) Va (m/s) G (W/m²)

Site Mean Min Max Mean Min Max Mean Min Max Mean Min Max

A 32.5 31.6 33.8 75.1 71.3 77.0 0.4 0 0.9 196 27.8 368.7
B 31.1 29.9 33.0 77.8 49.9 82.7 0.1 0 0.6 174.7 49.3 728.2
C 33.4 32.2 35.3 69.4 65.7 72.4 0.5 0 1.2 222.5 25.3 693.4
D 33.2 30.9 35.2 70.7 61.9 78.0 0.4 0 0.7 292.3 136.1 598.7
E 34.5 32.9 35.8 67.9 63.6 72.2 0.4 0 1.1 410.6 49.7 811.8
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Table A3. Cont.

Ta (◦C) RH (%) Va (m/s) G (W/m²)

Site Mean Min Max Mean Min Max Mean Min Max Mean Min Max
F 32.5 31.1 33.7 74.9 70.5 78.20 0.2 0 1.1 178.0 25.6 719.4
G 35.4 34.8 36.2 64.2 61.4 67.9 0.4 0 1.0 379.4 25.3 885.3
H 33.7 32.9 35.0 72.8 67.7 75.6 0.3 0 0.7 266.1 104.9 580.3

Appendix A.4. Element of Visual Physical Characteristics

Table A4. Elements of visual physical characteristics.

Percentage of Elements (n = 101)

Tab A (n = 11) B (n = 15) C (n = 12) D (n = 12) E (n = 14) F (n = 15) G (n = 14) H (n = 8)

sky 27.95% 18.86% 13.96% 16.99% 21.08% 9.08% 22.26% 18.60%

tree 40.70% 37.11% 47.70% 36.79% 37.83% 47.49% 42.79% 41.49%

road 0.20% 3.02% 15.17% 1.20% 15.26% 4.26% 5.48% 6.37%

grass 0.35% 2.73% 13.67% 6.47% 3.12% 6.40% 12.70% 6.49%

sidewalk 3.03% 0.98% 2.31% 10.75% 2.69% 3.33% 7.35% 4.35%

earth 1.10%s 1.55% 1.13% 1.41% 1.72% 6.41% 0.98% 2.04%

plant 10.60% 4.79% 3.21% 17.41% 9.83% 10.26% 5.06% 8.73%

water 8.49% 0.09% 0.24% 0.02% 0.30% 0.37% 0.20% 1.39%

fence 2.31% 17.41% 0.56% 1.30% 5.65% 2.99% 1.12% 4.48%

railing 1.51% 2.67% 0.03% 0.34% 0.69% 0.08% 0.14% 0.78%

path 3.21% 7.24% 0.34% 5.53% 0.94% 8.03% 0.80% 3.73%

streetlight 0.33% 0.04% 0.48% 0.24% 0.33% 0.66% 0.64% 0.39%
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