
Citation: Valentini, E.; Sapio, S.;

Schiavon, E.; Righini, M.;

Monteleone, B.; Taramelli, A.

Development of a Pre-Automatized

Processing Chain for Agricultural

Monitoring Using a Multi-Sensor and

Multi-Temporal Approach. Land 2024,

13, 91. https://doi.org/10.3390/

land13010091

Academic Editor: Francisco

Manzano Agugliaro

Received: 5 December 2023

Revised: 29 December 2023

Accepted: 4 January 2024

Published: 12 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Development of a Pre-Automatized Processing Chain for
Agricultural Monitoring Using a Multi-Sensor and
Multi-Temporal Approach
Emiliana Valentini 1, Serena Sapio 2 , Emma Schiavon 2, Margherita Righini 2,* , Beatrice Monteleone 2

and Andrea Taramelli 2,3

1 Institute of Polar Sciences of the National Research Council of Italy (ISP CNR), Montelibretti,
00015 Rome, Italy; emiliana.valentini@cnr.it

2 Institute for Advanced Studies of Pavia (IUSS), 27100 Pavia, Italy; serena.sapio@iusspavia.it (S.S.);
emma.schiavon@iusspavia.it (E.S.); beatrice.monteleone@iusspavia.it (B.M.); andrea.taramelli@iusspavia.it
or andrea.taramelli@isprambiente.it (A.T.)

3 Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy
* Correspondence: margherita.righini@iusspavia.it

Abstract: Understanding crop types and their annual cycles is key to managing natural resources,
especially when the pressures on these resources are attributable to climate change and social,
environmental, and economic policies. In recent years, the space sector’s development, with programs
such as Copernicus, has enabled a greater availability of satellite data. This study uses a multi-sensor
approach to retrieve crop information by developing a Proof of Concept for the integration of
high-resolution SAR imagery and optical data. The main goal is to develop a pre-automatized
processing chain that explores the temporal dimension of different crop. Results are related to the
advantage of using a multi-sensor approach to retrieve vegetation biomass and vertical structure for
the identification of phenological stages and different crops. The novelty consists of investigating
the multi-temporal pattern of radiometric indices and radar backscatter to detect the different
phenological stages of each crop, identifying the Day of the Year (DoY) in which the classes showed
greater separability. The current study could be considered a benchmark for the exploitation of future
multi-sensor missions in downstream services for the agricultural sector, strengthening the evolution
of Copernicus services.

Keywords: remote sensing; crop classification; SAR; optical; operational service; Common
Agricultural Policy; Copernicus; NOCTUA; IRIDE constellation

1. Introduction

The agricultural sector is of fundamental importance, and it is one of sectors that is
the most vulnerable to climate change [1]. At the same time, intensive and unsustainable
agricultural practices deplete and degrade natural resources and key ecosystem services. In
fact, in European countries, extreme events are responsible for reducing crop yields by 9%
and 3.1% [2]. The European Union (EU) is significantly promoting sustainable agricultural
practices [3]. One of the most important instruments provided by the EU is the Common
Agricultural Policy (CAP), which aims to improve environmental protection and climate
sustainable practices. The management of the EU’s CAP involves Member States through
national paying agencies, which are responsible for monitoring the use of funding by the
farming community [4]. The availability of information on agriculture and crops is crucial
for successful agronomic planning and sustainable agriculture management [5]. However,
official statistics on crop areas are often provided at the end of the season or later and
are therefore not useful for supporting in-season crop management [6]. CAP regulations
encourage the development of regular and systematic monitoring services [7].
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Earth Observation (EO) has been used for agricultural monitoring since the early 1970s.
The Copernicus Sentinel constellation allows the integration of SAR and optical sensors
for agricultural applications, overcoming their specific limitations (i.e., dependence on the
sun and clouds for optical and signal noise and stability for SAR) [8]. Optical sensors are
sensitive to canopy response and photosynthetic characteristics, while SAR sensors are
more sensitive to plant biomass, soil moisture, and surface texture [6].

Based on the above, Schiavon et al. (2021) asked institutional users to indicate the
most important environmental and climate-related requirements in terms of current agro-
environmental legislation and assessed the potential of current European EO technology
to meet their monitoring needs. The results of this work show that users request the
development of consolidated agricultural EO products, the provisioning of seasonal and
annual information on crop production, and in-season indicators of crop development
and status. Furthermore, they express the need to monitor the degree of diversification
of agri-environmental measures in the agricultural sector in order to support green direct
payments [7]. Thus, an effective multi-temporal cropland mapping is fundamental for the
correct management of natural resources and for the prevention of risks due to climatic con-
ditions such as drought. In fact, 14% and 12% of users indicated an interest in agricultural
and water resources domains, respectively, and in the development of new EO products in
these domains [7].

Optical sensors have demonstrated their ability to distinguish different crops [9,10],
and in recent years, Synthetic Aperture Radar (SAR) sensors have also been used for crop
mapping and monitoring [11–13]. Several authors have investigated the capabilities of
SAR data in crop mapping. Successful results have been obtained with the C band, which
is particularly valuable for rice phenology analysis [14]. Additionally, techniques based
on X-band sensors showed encouraging results, especially dual-pol imagery [15]. Other
types of crops mapped using SAR data include winter wheat, irrigated grassland, and
summer cereals [11,16,17]. However, in addition to backscatter values, optical data can
provide relevant and complementary information at the field and crop level [12,18]. Several
authors investigated the synergic use of SAR and optical data, demonstrating that radar is
very sensitive to soil moisture, especially in VV polarization, while optical data are very
useful for determining vegetation characteristics [8,19,20]. However, all these case studies
are based on the use of field data to train implemented algorithms, but these data are not
always available, and the dependence on this information does not allow the development
of an operational crop mapping service. Crop mapping remains a complex task for op-
erational activities, is still highly dependent on field data, and relies on local knowledge
of management practices [21]. It is of paramount importance to develop a methodology
for crop mapping that is mostly based on the intrinsic properties of the crops and their
phenology rather than on field data. In addition, the most used SAR data are in the C band,
with a lower spatial resolution than the X band’s data resolution. Some improvement can be
provided by the recent development of a new constellation of X-band sensors, significantly
contributing to crop mapping thanks to higher spatial and temporal resolutions [6]. From
this perspective, the development of an automated processing chain is necessary, especially
to fulfill users’ need for targeted agricultural EO products with recurrent and frequent
data to produce seasonal and annual information. This evaluation has provided important
insights for the development of new sensors, also considering the investments planned
by the European Union for further satellite missions [22]. Contextually, the Copernicus
program delivers environmental information largely based on EO satellite data in the form
of Copernicus Services, addressing six thematic areas. Copernicus operational services
are not static but need to evolve with emerging user requirements and state-of-the-art
methodologies for developing and testing algorithms for pre-operational and operational
product prototypes and improving and developing future-specific Copernicus services
with the potential for global applications [23].

It is paramount to bridge the gap between the user requirements and the technical
limitations of existing sensors by developing applications for the new generation of satel-
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lites. The NOCTUA project was a pilot project for the development of a commercial service
for collecting, processing, and distributing radar data designed for the Lombardy region
(Northen Italy). This project foresaw the development of a new Low Earth Orbit (LEO)
SAR satellite in the X band, with a revisit time of 11 days and a ground resolution of less
than 1 m (in Spotlight mode).

NOCTUA has been considered a Proof of Concept (POC) of the IRIDE NEXT-
GENERATION EU investment, which will develop an Italian LEO satellite constellation
called IRIDE. This constellation will provide a downstream service at the national level
to supply data from different types of sensors (multi-, hyperspectral, infrared, SAR), also
considering existing missions, and to develop a series of operational services in several
application domains: coastal, air quality, water resource, land cover, etc.

Several methodologies for crop mapping and monitoring have been developed in
recent years. However, the shortcomings for operational use have not been broadly ex-
plored. A valuable use of crop mapping and monitoring algorithms exploiting EO data
from the perspective of consistent operational product development and demonstrating a
clear configuration of technical and operational users’ requirements of the relevant aspects
of an operational service provision is still lacking. Thus, the main objective of this study
is to develop a Proof of Concept (POC) of a pre-automatized processing chain based on a
multi-sensor approach for crop mapping with the purpose of being potentially integrated
into an operational service architecture, boosting the possibility of addressing users’ needs,
with respect to their urgency, the closeness to the operational delivery process, and the
availability of capacities. The integration of high-resolution SAR in X-band imagery and
multispectral optical data has been explored to analyze the phenological stages of the
crops, using an agricultural area located in the Lombardy region as a test site. Existing
X-band SAR data (i.e., TerraSAR-X) have been used to simulate the NOCTUA signal and
to integrate the vegetation biomass and vertical structure in the temporal dimension of
different crop cycles.

The article is organized as follows: after the introduction of the current remote sensing-
based crop monitoring techniques and applications, Section 2 describes the study area
and addresses the input data used and the methodology implemented to pre-process and
then process optical and SAR data. Section 3 describes the intermediate and final results.
In Section 4, the final results are discussed, pointing out the advantages, limitations, and
future developments, and finally, Section 5 summarizes the derived conclusions.

2. Materials and Methods
2.1. Study Area

The study area is located in the Lombardy region, Northern Italy (Figure 1), and
lies south of Milan, encompassing parts of the Milan and Pavia provinces. It covers
around 444 km2, is crossed by the Ticino River, and includes four main cities, namely
Pavia, Gambolò, Vigevano, and Abbiategrasso, with populations of 70,636, 9730, 6076, and
32,425 people, respectively [24].

The Area of Interest (AOI) is in the Po plain, the largest irrigation basin in the region.
Thirty-five percent of the national agricultural production occurs here in the Po River valley,
which is a strategic area for the Italian economy. It generates the 40% of the country’s gross
domestic product and has a population of more than 16 million [25]. In this area, the intense
use of water for farming leads to water scarcity, which climate change will worsen [26].
This site has experienced several drought episodes (2003, 2005, 2006) [27], which make the
area particularly vulnerable to the impacts of climate change. Flooding and droughts have
a stronger impact on the delta region of the river basin [28]. However, the water supply
faces both quantitative and qualitative pressures. Firstly, there is a high water demand,
which originates from the agricultural sector. Additionally, the most commonly utilized
irrigation method is surface irrigation, which generally lacks efficiency in water usage [29].
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Figure 1. The study area is located in the Lombardy Region (Italy) within the Po plain. The red dot
represents the location of the Area of Interest.

The test site is characterized by a temperate climate, with January being the coldest
month, with a mean temperature of 2.9 ◦C, and July being the hottest at 25 ◦C. The area
has an average annual precipitation of 750 mm [30]. Thirty-four percent of the total area is
cultivated. The main types of crops are (in percentage of total cropland area) rice (50%),
grain maize (10%), mixed herbage (8%), and tree crop (7%) [31,32]. The cultivation calendar
of the main crops is illustrated in Figure 2 [9,33]. In this region, two major cropping seasons
are distinguished, summer and winter; the main crop production takes place from April to
the end of October.
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2.2. Reference Data

To produce accurate crop maps and ensure the reliability of the results, declarations
from farmers obtained from the Sistema Informativo Agricolo della Regione Lombardia
(SIARL), referred to 2016, and provinces of Milan and Pavia have been requested [31,32].
This dataset consists of the location of agricultural parcels with information regarding the
crop cultivated in each parcel. This information is provided by farmers and is mandatory
for CAP funding applications. It contains information about the crops cultivated in each
parcel, the total area of the parcel, and the area of the parcel dedicated to each crop. The
data have been divided into two sets to obtain training and validation datasets.

A land use map has been obtained from the project “Destinazione d’Uso dei Suoli
Agricoli e Forestali” (DUSAF) of the Lombardy region from 2015 [34]. From the Coper-
nicus Land Cover Monitoring Service (CLCMS), a series of products have been freely
downloaded: Imperviousness map (2018), Riparian zones product (2013), and EU-Hydro
database (2013) [35]. These products have been used to derive a mask from excluding
non-agricultural areas, such as urban areas, forests, riparian zones, and water bodies.
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2.3. Satellite Data

The remote sensing dataset (Table 1) is composed of 21 images from TerraSAR-X (TSX)
and 13 images from Sentinel-2 (S2) for 2016. The list of the images used is reported in
Table 2, with the acquisition dates and the relative Day of the Year (DoY). Cloud cover
for each image in the S2 dataset is reported, with the average value between the two tiles.
The TSX sensor was chosen to simulate NOCTUA data because of the similarity of their
technical characteristics.

Table 1. Technical specification of sensors.

Sensor Sensor
Type

Acquisition
Mode Processing Level Spatial

Resolution Revisit Time Spectral Ranges

Optical
Multispectral - Level 2A 10–60 m 5 days

VIS
NIR

SWIR

Synthetic
Aperture Radar

(SAR)

Stripmap mode
Single Look

Complex
- 3 m 11 days X band

Table 2. Satellite dataset: Sentinel 2 (left) and TerraSAR-X (right). The acquisition dates are associated
with the Day of the Year (DoY). For S2, the cloud cover for each tile (T32TMR and T32TNR) is reported,
together with the average value.

Sensor Data DoY
Cloud
Cover

T32TMR

Cloud
Cover

T32TNR

Average Cloud
Cover

Sentinel 2 13/01/2016 13 6% 0% 3%
TerraSAR-X 19/01/2016 19
TerraSAR-X 10/02/2016 41
TerraSAR-X 21/02/2016 52
TerraSAR-X 03/03/2016 63
Sentinel 2 23/03/2016 83 15% 36% 26%

TerraSAR-X 25/03/2016 85
TerraSAR-X 05/04/2016 96
Sentinel 2 22/04/2016 113 25% 20% 23%

TerraSAR-X 27/04/2016 118
TerraSAR-X 08/05/2016 129
Sentinel 2 22/05/2016 143 42% 8% 25%

TerraSAR-X 30/05/2016 151
TerraSAR-X 10/06/2016 162
TerraSAR-X 21/06/2016 173
Sentinel 2 01/07/2016 183 34% 37% 36%

TerraSAR-X 02/07/2016 184
Sentinel 2 11/07/2016 193 45% 36% 41%
Sentinel 2 21/07/2016 203 50% 37% 44%

TerraSAR-X 24/07/2016 206
TerraSAR-X 04/08/2016 217
Sentinel 2 10/08/2016 223 9% 24% 17%

TerraSAR-X 26/08/2016 239
TerraSAR-X 06/09/2016 250
Sentinel 2 09/09/2016 253 13% 7% 10%
Sentinel 2 19/09/2016 263 18% 16% 17%

TerraSAR-X 28/09/2016 272
Sentinel 2 29/09/2016 273 38% 29% 34%

TerraSAR-X 09/10/2016 283
TerraSAR-X 20/10/2016 294
Sentinel 2 08/11/2016 313 1% 26% 14%

TerraSAR-X 22/11/2016 327
TerraSAR-X 14/12/2016 349
Sentinel 2 28/12/2016 363 1% 0% 1%

The images were selected to include at least one acquisition per month for the winter
season and two for the spring–summer period to have complete data coverage throughout
the entire year and a better temporal resolution in the growing period of summer crops.

TSX images have been acquired in Stripmap mode, Single Look Complex format,
single polarization (HH), and with the same flight track direction. S2 images have been
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acquired at Level 2A from Theia Catalogue (https://www.theia-land.fr/, accessed on
20 October 2021) [36]. The AOI is not completely included within a single tile of S2; for this
reason, two tiles (T32TMR and T32TNR) for each image have been acquired to create a
mosaic (Figure 3).

Figure 3. Satellite dataset. Study area and spatial extent of satellite data.

The implemented methodology is shown in Figure 4 and explained in detail in the
following paragraphs.

Figure 4. Data pre-processing and processing chain.

Pre-processing and processing steps for the satellite data were carried out to build
an automatized model to obtain the results directly. This model is fundamental for the
realization of an automatized processing chain.

https://www.theia-land.fr/
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2.4. Pre-Processing
2.4.1. Filtering, Grouping and Class Selection

Based on the Declaration of Farmers dataset, no-crop areas have been excluded. The
resulting dataset included more than 100 types of crop. Thus, these were grouped and
listed in 24 classes according to characteristics of their growing cycle (e.g., silo maize and
maize for the production of energy are harvested at the same stage of the growing cycle)
and spectral similarity (e.g., barley and wheat were renamed “Winter cereals”). The fields
with an area lower than 1 ha and the classes with less than 10 fields were discarded. Finally,
the first seven classes in order of frequency (Figure 5) were selected and randomly sampled
to create training and validation datasets using the centroid of each polygon. Seventy
percent of the fields for each class were used to create the training dataset; the remaining
thirty-percent composed the validation dataset [28].

Figure 5. Crop class distribution in the AOI. Pie chart with the % distribution of each class and crop
relative areas (in hectares).

2.4.2. Subsetting, Masking, and Mosaicking

S2 images were pre-processed applying a cloud mask, obtained from the Scene Classi-
fication raster at 20 m of resolution.

All the S2 images were resampled at 10 m with the nearest neighbor interpolation
and clipped on the AOI. Although Sentinel-2 provides a range of multispectral bands with
different spatial resolutions (from 10 to 60 m), and the lack of panchromatic band disables
the direct production of a set of fine-resolution (10 m) bands. In this pre-automatized pro-
cessing chain, the methodology for detecting crop phenology mainly exploits the original
10 m spatial resolution of S2 bands n. 2-4-8.

The tiles have been mosaicked and masked by applying a no-crop mask and water
mask obtained from the declaration of farmers, DUSAF maps, and Copernicus products
mentioned above.

2.4.3. Calibration and Geocoding

Using the associated orbital information, TSX images were calibrated and geocoded in
WGS84—UTM 32N. Then, intensity images were obtained. This pre-processing was carried
out using ®SARScape Analytics Toolbox (version 5.5). All the pre-processing steps were
integrated into the Time Series tool (version 5.5). Also, this dataset was masked on AOI,
water, and no-crop areas.

2.5. Processing
2.5.1. Multiple Endmember Spectral Mixture Analysis (MESMA)

The Multiple Endmember Spectral Mixture Analysis (hereafter MESMA) has been
applied on a single S2 image to obtain a preliminary crop classification. To capture the
greatest spatial variability in the phenology of agricultural patches, the S2 image of the
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maize and soybeans in the growing season, freshly harvested winter cereals, and freshly
flooded rice was used. This algorithm consists of a spectral mixture analysis that considers
a larger number of pure spectra, called Endmembers (EMs), for each pixel, as an extension
of the most used Linear Spectral Mixture Analysis (LSMA) that does not consider the
contrast between the materials within the pixel [22,37,38]. Thus, the MESMA overcomes
the limitations of LSMA by requiring a model to meet the minimum fit, fraction, and
residual constraints while testing multiple models for each image pixel. Therefore, this
approach allows mapping more than four materials across an image [39].

The MESMA application procedure consists of four steps: (1) the selection of the
EMs starting from a random sampling of the training dataset, (2) the creation of a spectral
library, (3) the application of the spectral unmixing to obtain Fractional Abundance Maps
(FAMs), and (4) shade normalization. At the end of the process, the FAMs were used to
obtain an intermediate crop classification map. A majority analysis was carried out using a
kernel size of 3 × 3 pixels to remove the noise and the spurious pixels within agricultural
parcels. This analysis assigned the central pixel to the class to which most kernel pixels
belonged [38,40]. The classification map was validated with a confusion matrix, using the
validation dataset to calculate its accuracy.

2.5.2. Radiometric Indices

Three different radiometric indices were extracted from each S2 image as features for
the crop classification: the Normalized Difference Vegetation Index (NDVI), the Leaf Area
Index (LAI), and the Bare Soil Index (BSI).

The first two indices are widely used in studies on vegetation and are calculated using
Blue (Band 2), Red (Band4), and NIR (Band8) channels of S2 (Equations (1) and (2)):

NDVI = (NIR − Red)/(NIR Red) (1)

LAI = 3.618 × EVI − 0.118 where EVI = 2.5 × (NIR − Red)/(NIR 6 × Red − 7.5 × Blue 1) (2)

In particular, the LAI, defined as the total one-sided area of leaf tissue per unit ground,
is a biophysical indicator used to represent the dimension of the crop canopy and its
variation over time. LAI measurements have been widely adopted for crop monitoring and
modeling applications, being a key state variable associated with processes including light
interception and the soil–crop water balance [41].

The BSI [42] is a specific index to identify bare soil in agricultural contexts. It combines
NDVI with the Normalized Difference Build-Up Index and allows better identification
of exposed soil surfaces and uncultivated areas based on soil characteristics. It is calcu-
lated using Blue (Band2), Red (Band4), NIR (Band8), and SWIR (Band11) channels of S2
(Equation (3)):

BSI = ((SWIR1 Red) − (NIR Blue))/((SWIR1 Red) + (NIR Blue)) (3)

NDVI and BSI provide a good way to distinguish bare soil from vegetation, while
LAI and NDVI can better analyze the crop’s phenological stages to distinguish various
crop types.

Then, for each crop, multi-temporal profiles of indices’ mean values were included in
the decision tree to properly analyze crops’ seasonal behaviors.

2.5.3. Time Series Analysis

TSX images were used to build a Time Series Analysis using the SARScape Analytics®

toolbox, provided by ®NV5 Geospatial Solutions, Inc (Broomfield, CO, USA). A geocoded
dataset calculating multi-temporal statistics from intensity images was created to detect
and extract temporal changes [43].

In bare soils, the radar backscatter depends on the roughness and the dielectric constant
of the first centimeters of soil (1 cm for X band) [19]. During the year, any changes in the
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agricultural soil are due to soil tillage, the humidity condition, and the land cover variation
(e.g., presence of vegetation). Plowing, seeding, and irrigation operations result in a change
in surface roughness. For these reasons, it is possible to associate SAR signal variation with
the variation of these features over time.

The main statistics considered, such as (1) minimum value, (2) minimum date as-
sociated with low roughness values, (3) maximum value, (4) maximum date associated
with high roughness values, (5) coefficient of variation (CoV, ratio between standard devi-
ation and the mean), (6) mean value, (7) standard deviation were finally mapped, and a
multi-temporal profile of mean backscatter values for each crop has been obtained.

2.5.4. Decision Trees

Decision trees were built based on the intermediate products obtained from the previ-
ous analysis. We focused on two different approaches: the first is based on the use of optical
data only (Figure 6a), and the second uses a synergic approach including both optical and
SAR data (Figure 6b). These two approaches verified the hypothesis that integration radar
and optical sensors have an advantage in the accuracy of crop classification, analyzing the
multi-temporal behavior of optical radiometric indices and the backscatter signal.

Figure 6. (a) S2-based decision tree; (b) decision tree S2 + TSX based.

Figure 6 shows the decision trees. For both approaches, the first branch of the decision
trees was chosen to distinguish summer crops from perennial (tree crops) and winter crops.
For the subsequent tree nodes, thresholds were selected based on the values of the indices.
The selection was made by looking at multi-temporal profiles and choosing dates when
the classes showed greater separability. In addition, for the S2-based approach, the FAMs
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obtained from the MESMA were used to classify vetch and soybean. To maximize the
accuracy, each node was evaluated using the training dataset extracted from the reference
data, selecting the variables and thresholds that would give better results.

The resulting maps were filtered to remove the noise and the spurious pixels, as
explained in Section 2.5.1.

The final classification maps were validated using confusion matrices.

3. Results
3.1. MESMA-Based Crop Classification

The intermediate crop classification map obtained by MESMA and the confusion
matrix are shown in Figure 7. This classification has an overall accuracy (OA) of 37%.
Considering the producer accuracy, the best-classified crops are soybean and maize with
54% and 44% accuracy, respectively. On the other hand, lowest values of accuracy occur for
tree crops (17%) and pasture (10%).

Figure 7. Intermediate crop classification map, resulting from MESMA.

The decision tree uses fractions to distinguish the maize class and separate the vetch
from the other crops.

3.2. Radiometric Indices

The training data were divided into crop classes, and the mean value of each radio-
metric index was calculated for each class. The temporal profile of each radiometric index
was obtained using these mean values. NDVI and LAI temporal profiles (Figure 8) show
a clear pattern for the summer crop (e.g., maize), with the peak values in the summer
season. All the profiles are coherent with the crop calendar shown in Figure 2. The only
exception is represented by winter cereal. This class shows a maximum peak of NDVI in
August (DOY 223) and minimum values in November and December (DOYs 313 and 363),
while according to the crop calendar, these peaks should occur in April–May and August,
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respectively. This behavior can be explained by the local agricultural practice that is well
identifiable in the NDVI multi-temporal profile (Figure 9): winter cereals (WC), mainly ray
and durum wheat, are sown in October/November, and the plants sprout in January. The
cereals are harvested in May–June, and forage is sown immediately after. Finally, they are
harvested in August, and the cycle begins again.

Figure 8. Temporal profiles of (a) NDVI and (b) LAI for each class of crop.

Figure 9. NDVI temporal behavior of winter cereals. The trend can be explained by the crop rotation
between winter cereals (i.e., ray and durum wheat) and forage.
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LAI temporal profiles showed a slightly different trend than NDVI, mainly due to the
structure of the plants. Using this index, we obtained added-value information on crop
typologies that maximized class (Figure 8b).

The temporal BSI trend provided information on the presence of bare soil. The profile
in Figure 10 shows that summer crops (e.g., maize) have the minimum value of this index
in summer months, consistently with their growing season according to the crop calendar.
Moreover, tree crops (TCs) showed a different behavior, with a significantly lower presence
of bare soil.

Figure 10. Temporal profiles of BSI values for each class of crop. The trend lines show the behavior of
tree crops (green line) compared to maize (yellow line).

3.3. Time Series Analysis

From the time series analysis, we obtained information regarding the temporal trend
of backscatter values, such as (1) the minimum date associated with low roughness values,
(2) the maximum date associated with high roughness values, and (3) the coefficient of
variation—hereafter called “CoV” (the ratio between standard deviation and the mean).
In particular, the latter one provided information on the variation in land cover classes
over time.

The analysis of CoV calculated for each crop has been used as proxy to identify the
stability of the signal strictly correlated with the stability of the crop over time. As is shown
in Figure 11, this proxy assumes higher values for the crops that show a higher variability
within the year. The tree crops class is an exception, showing a lower CoV value because it
is more stable over time.

Figure 11. Average and standard deviation of the coefficient of variation (CoV) for each class of crop.
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3.4. Decision-Tree-Based Crop Classifications

The crop classification maps obtained using decision trees are shown in Figure 12,
with the confusion matrices calculated using the validation dataset. Although the over-
all accuracy (OA) is slightly different between the two classifications (44% and 42% for
TSX + S2 and S2, respectively), the producer accuracy for each crop showed some consider-
able differences.

Figure 12. Classification maps and confusion matrices. (a) classification resulting from the use of S2;
(b) classification resulting from the integration of S2 and TSX.
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In particular, the crop-classification map obtained using TSX + S2 data (Figure 12b)
shows a greater accuracy than the classification based only on S2 data (Figure 12a). Tree
crops showed a producer accuracy of 70% for TSX + S2 and of 57% for S2, with an increase
of 13%. Also, the Vetch class showed an increase of the accuracy using the TSX + S2
approach, from 34% to 39% for S2 and TSX + S2, respectively.

In general, four out of seven classes showed an increase in the producer accuracy
with the TSX + S2 classification approach, with the exception of winter cereals, maize,
and soybean.

4. Discussion

The present work explores a multi-sensor and multi-temporal approach to develop a
Proof of Concept (POC) for an automatized processing chain for monitoring crop cycles. It
can be applied to monitor crops in different seasons, providing a reliable tool for identifying
agricultural practices such as crop rotation. The results can support the Common Agricul-
tural Policy (CAP) and the Italian institutional users, which encourage the development
of mapping and monitoring through semi-automatic algorithms for identifying crops and
agricultural activities throughout the year [7]. The added value of this POC is related
to the advantage of retrieving vegetation biomass and a vertical structure, supporting
intra-annual crop-rotation mapping, which influences both the sustainability of agricultural
practices and the payments related to the European CAP.

The added value of a multi-sensor approach has been investigated using TerraSAR-X
(TSX) and Sentinel 2 (S2) data in synergy. As demonstrated by several authors, SAR data
are widely used for rice and grassland monitoring [11,14,21], but the results of this work
are related to the advantage of using a multi-sensor approach to retrieve many classes of
crops. The increase in the OA of comparing a single-sensor approach (S2) with a multi-
sensor approach (S2 + TSX) becomes remarkable considering the producer accuracy of
specific crops (e.g., tree crops), with an improvement of 13% due to the use of the coefficient
of variation (CoV) from the radar backscatter. The CoV was one of the most relevant
parameters in supporting the separation of tree crops from the other classes.

A fundamental step was the analysis of the separability of crop classes, analyzing
the time trends of the main vegetation and soil descriptors (radiometric indices) and the
backscatter signal. If we consider only the S2-based variables, pasture and soybean have
similar responses, but by integrating the TSX multi temporal backscatter, it is possible to
identify a peak for soybean on three dates (4 August, 26 August, and 6 September).

The limited separability of some classes can explain the low values of OA. For example,
rice and vetch’s multi-temporal patterns are similar for all variables. The limitation related
to the separating certain crops that show a similar multi-temporal pattern can be overcome
by integrating the processing chain variables derived from SAR data (e.g., the flooded
period of rice). Furthermore, the farmers’ declaration used to train the processing chain
is affected by a bias: it is an annual declaration, so only one crop on each field is reported
without considering an intra-annual crop rotation.

Thus, the analytical approach developed in this study is independent of the availability
of field data since the parameters used (i.e., radiometric indices and backscatter signal) are
mostly related to the intrinsic properties of the crops and their phenology (i.e., vegetation
biomass and vertical structure). These characteristics remain almost unchanged under
similar climatic conditions. This approach has been developed for the Lombardy Region,
and it is geographically limited to the specific study area until the agroclimatic conditions
do not change enough to determine different patterns in crop phenology. To apply the
processing chain to different agroclimatic scenarios, it would require new training datasets
regarding the crop typologies and the crop typologies, and this could open new issues
related to the overlapping of radiometric signals among crop types. The MESMA decision
tree should also be re-adapted in terms of thresholds, considering that this part of the
process cannot be completely automatized.
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The processing chain is ready to be used to trace the patterns of different years, and
furthermore, it is not limited to S2 and TSX but is ready to ingest images acquired by other
sensors because it is based on algorithms that are well consolidated for different sensors.

In addition, the processing chain is strictly dependent on the use of the Copernicus
Land Cover Monitoring Service (CLCMS), integrating several products (i.e., Impervious-
ness map, Riparian Zones product, EU-Hydro database) as input data. Thanks to the
continuous acquisition of the Sentinel 2 constellation, the optical component of the pre-
automatized processing chain is ready to be operational, but the SAR-based component
currently relies on non-operational data (i.e., TSX). The development of the IRIDE constel-
lation, which will provide data with higher spatial and temporal resolution, also offers
perspective on the systematic acquisition for the SAR component. The future developments
of this work might considerably improve the existing Copernicus portfolio by responding
to the user requirements with seasonal and annual crop thematic products. Thus, the
obtained annual crop classifications, analyzing the seasonal crop development and status,
could be useful to monitor the diversification degree of agri-environmental measures and
to assist national paying agencies in monitoring the use of CAP funding.

5. Conclusions

The European Commission (EC) requires each Member State to monitor the proper
use of funds and is considering the use of satellite imagery and Earth Observation (EO)
techniques to monitor the condition of crops [44]. Thus, using EO data for the requirements
related to the emission of direct payments represents a consistent improvement in cost
effectiveness [7].

In this framework, the present work develops a Proof of Concept for an automated
processing chain based on TerraSAR-X and Sentinel 2 data to retrieve vegetation biomass
and vertical structure and to monitor agricultural practices.

Two classification maps were produced and compared, the first based only on S2 data
and the second based on the integration between optical and radar sensors (TSX + S2).
Integrating two sensors for crop identification provided evidence of improved accuracy.
The novelty consists of investigating the multi-temporal pattern of radiometric indices and
radar backscatter to detect the different phenological stages of each crop, identifying the
Day of the Year (DoY) in which the classes showed greater separability.

The processing chain prototype should aim at demonstrating the technical operational
feasibility toward a more automated approach in the provision of EO data processing and
pre-operational and operational products, so it can complement and broaden the currently
available panoply of existing products and be a benchmark for the development of future
operational service for agricultural management. Paying agencies and national institutions
can benefit from this operational service to easily monitor the use of Common Agricultural
Policy (CAP) funds.

To develop an automatized processing chain, it is necessary to continuously acquire
the required input data over time. For these reasons, this work also contributes to defining
mission requirements for upcoming and future constellations (e.g., IRIDE) focusing pre-
cisely on the synergistic use of different sensors, which is an added value to obtain a more
consistent automatized downstream service.
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