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Abstract: Eco-efficiency is commonly used as an indicator of sustainability since it expresses the
efficiency with which natural resources are utilized to meet people’s needs. Agriculture relies heavily
on these ecological resources and by-produces significant environmental burdens, shifting the interest
of researchers and policymakers toward the promotion of ecological practices. However, limited
evidence exists regarding eco-efficiency across various ecological approaches like low input, conser-
vation, and organic farming. This paper contributes to the existing literature and provides insight
into the eco-efficiency of Cretan olive farms managed under different ecological approaches. Olive oil
production is vital for the socio-economic sustainability of Mediterranean agriculture, a significant
element of the region’s culture, and the basis of the well-known “Mediterranean diet”; therefore,
it is crucial to investigate eco-efficient management options for olive farmers. Data Envelopment
Analysis (DEA) and a second-stage statistical analysis are employed to estimate the eco-efficiency of
olive farms and investigate factors affecting it. Composite indicators for biodiversity, soil, and input
management are incorporated in the eco-efficiency model. The results indicate that organic farms
achieve the highest eco-efficiency scores, followed by other ecological approaches. Additionally,
eco-efficiency seems to be explained by farmers’ dependency on subsidies, commitment to farming
activity, and environmental awareness.

Keywords: conservation farming; data envelopment analysis; ecological practices; efficiency;
environmental pressures; Greece; low-input farming olive groves; organic farming

1. Introduction

Eco-efficiency, as defined by the Organization for Economic Co-operation and Devel-
opment [1], encompasses the efficiency with which ecological resources are harnessed to
fulfill human needs. It signifies a production unit’s capacity to achieve economic outcomes
while utilizing the minimum number of possible resources and generating minimal envi-
ronmental impact, aligning with the perspective elucidated by Ehrenfeld [2]. Consequently,
eco-efficiency serves as a pivotal metric for assessing both the economic and environmental
performance of a production unit.

As an economic activity, agriculture profoundly relies on natural resources and intri-
cately interacts with the surrounding ecosystem. Notably, agriculture imparts significant
environmental impacts, including but not limited to loss of biodiversity, overutilization of
natural resources like water, emission of greenhouse gases, soil erosion, and contamination
arising from the application of agricultural inputs (refer to [3,4]). The concept of eco-
efficiency holds particular relevance to the evaluation of the environmental performance of
agricultural activities and has attained interest as the means to foster sustainability within
the food supply chain [3,5]. In other words, eco-efficiency in the food sector can be viewed
as a pathway to ensure the production of high-quality products while concurrently reducing
the utilization of inputs like water, energy, soil, labor, and capital (Keating et al. [6]).
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Achieving eco-efficiency in agriculture can be considered an intermediate step in
achieving sustainability since it provides ways to reduce environmental pressures without
compromising production [7]. However, high eco-efficiency at the farm level does not
necessarily lead to the sustainability of the ecosystem, since the level of production may
already be higher than what the ecosystem can sustain. Nevertheless, eco-efficiency is a
useful indicator from the perspective of farm management as well as policy making and
consulting. It can provide insight into farm practices that enhance both economic and
environmental performance at the farm level, but also assist the design of appropriate and
well-targeted policy measures that promote the cost-effective use of resources.

The global drive toward sustainable food production systems and dietary patterns is
now a prominent agenda, underscored by agricultural policies, and is endorsed worldwide.
As per the World Health Organization [8], a sustainable diet should enhance individual
health and well-being, exhibit low environmental impact, and be accessible, affordable,
safe, fair, and culturally acceptable. The “Farm to Fork Strategy” promotes transition to
more sustainable diets and encourages their adoption by consumers, concurrently urging
producers to embrace eco-friendly farming approaches.

The Mediterranean diet, known for its health attributes and recognized by UNESCO [9]
as an intangible cultural asset, has emerged as an alternative sustainable dietary paradigm,
prompting research into its environmental facets. Olive and olive oil consumption, an inte-
gral part of the Mediterranean diet, boasts numerous documented health benefits [10–12].
From a production perspective, olive cultivation constitutes a vital agricultural activity
within the Mediterranean region, providing livelihoods for many families, given its com-
monplace inclusion in the portfolios of Mediterranean farms.

Nevertheless, olive oil production raises environmental concerns such as soil degrada-
tion and overuse of water and inputs (including fuel, pesticides, and fertilizers) [13]. Given
that olive oil is advocated as part of a sustainable diet, there is a pressing need to scrutinize
production practices that minimize the adverse environmental impacts of olive cultivation,
and explore pathways toward its agro-ecological transition.

This study attempts to delve into the eco-efficiency of Greek olive farms across various
ecological farm types. Greece is a significant olive producer with a considerable olive
cultivated area of 753,161 hectares, which corresponds to a total of 147,453,249 olive trees,
an average cultivation density of 196 plants/ha, and a total olive production of 255,705 tons
in 2021. The regions of Crete and Peloponnese, specifically, account for over half of the
country’s olive cultivated area (26% and 25%, respectively) [14]. The focal point of our
analysis lies in the Prefectures of Heraklion and Lasithi, both situated in eastern Crete
(see Figure 1).

A paramount challenge in assessing eco-efficiency and environmental performance
lies in encapsulating it with a singular aggregate indicator [3,15]. In the current study,
we employ Data Envelopment Analysis (DEA) to address this challenge. DEA has been
extensively adopted in agricultural economics, and it is primarily used to estimate tra-
ditional technical efficiency in farming [16–20]. Numerous studies both in Greece and
internationally have employed DEA to derive the technical and economic efficiency of
olive farms [21–28]. DEA’s utility extends to estimating the eco-efficiency of agricultural
activities, underscoring its advantages (see for example [29–36]).

In this case study, we draw inspiration from the research of Gómez-Limón et al. [37],
who assessed the eco-efficiency of Spanish olive groves, by employing the methodol-
ogy outlined by Kuosmanen and Kortelainen [38]. The used methodology has often been
employed to estimate eco-efficiency in the recent literature ([39–42]. We also incorporate var-
ious indicators to account for the main environmental repercussions associated with olive
production. Farm and farmer characteristics that explain eco-efficiency are also explored
through a second-stage regression analysis (as exemplified by Urdiales et al. [43]). Our
examination of eco-efficiency in olive farms encompasses diverse ecological approaches, i.e.,
standard/typical farms and low-input farms, organic farms as well as conservation farms.
These farm types were derived using the protocols and typology defined within the LIFT
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(Low-Input Farming and Territories—Integrating knowledge for improving ecosystem-
based farming) project (https://www.lift-h2020.eu/ (accessed on 10 September 2023)) [44],
which classifies farms according to their ecological management practices.
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Hence, the purpose of our study is threefold. First, it adds to the existing literature on
the eco-efficiency of olive production, which, as already stated, is crucial, especially in the
Mediterranean region, and sheds light on the factors that affect it. Second, it provides an
example of how eco-efficiency scores derived with the DEA methodology can serve as a
single, aggregate indicator of economic and environmental performance at the farm level.
Finally, it provides results regarding eco-efficiency across diversified ecological farm types
contrary to the existing literature, which mainly examines efficiency or eco-efficiency in
intensive, extensive, traditional, or organic olive farms (see for example [24–27]).

The subsequent section offers a comprehensive presentation of the sample farms, the
data, and the methodology central to our analysis. Key findings are synthesized in the
Results section, culminating in the final sections of Discussion and Conclusions.

2. Materials and Methods
2.1. Materials

The assessment of eco-efficiency of Cretan farms draws upon data from a large-scale
farm survey conducted within the LIFT Horizon 2020 Project. The purpose of the project
was to identify ecological approaches to farming and assess their socio-economic and
environmental performance and sustainability. For this purpose, a large-scale survey was
carried out to collect farm-level qualitative and quantitative data that were not available in

https://www.lift-h2020.eu/
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existing databases. The data included ecological practices and drivers of adoption of such
practices as well as data on farm’s technical and socio-economic characteristics.

The benefits of using this dataset in our eco-efficiency analysis lie first in the fact
that it contains detailed economic and environmental performance data, at farm level,
necessary for the estimation of eco-efficiency. The information available contains farming
practices regarding input use (water, fuel, fertilizers, and pesticides), soil management, and
biodiversity aspects that were employed to develop the environmental indicators for the
eco-efficiency model, as will be explained further in this section.

An additional benefit that derives from the use of the LIFT large-scale survey data
is the fact that the same dataset was used to develop a protocol for the classification of
farms to diversified ecological farm types, i.e., standard (typical) farms, low-input farms,
and organic and conservation farms. The definitions of these ecological approaches, as
elucidated within the LIFT Project, are presented in Rega et al. [44] and are summarized in
Table 1. Finally, the LIFT dataset provides additional information on the farms’ and the
farmers’ characteristics, some of which were used in the second stage regression analysis to
derive the factors that explain farms’ eco-efficiency.

Table 1. Definitions of the ecological olive farm types (adopted from Rega et al. [44]).

Farm Type Definition

Organic farming This farm type includes farms that comply with Council
Regulation 834/2007 and Commission Regulation 889/20082.

Conservation farming
A farming approach that aims to preserve the soil structure,

through the implementation of appropriate tillage, crop rotation,
diversification, and soil cover practices.

Low-input farming This farm type includes farms that utilize a lower level of inputs
including seeds, machinery, fertilizers, and pesticides.

Standard/typical farming

This ecological approach includes farms that cannot be classified
in any of the previous farm types, since they perform poorly in all
ecological indicators adopted in the LIFT protocol. The farms that
belong to this ecological farm type coincide to some extent, with

“conventional farms”.

This original Greek LIFT dataset includes olive groves as well as vineyards. However,
in the context of this specific study, our focus centers on specialized olive farms. To qualify
as a specialist olive farm within our criteria, a minimum of two-thirds of the farm’s total
output in terms of revenues must originate from olive-related activities, particularly oil
production. This criterion aligns with the farm typology framework employed in the Farm
Accountancy Data Network (FADN), which categorizes farms based on their Standard
Gross Margin (SGM).

The focal point of our analysis lies in the Prefectures of Heraklion and Lasithi, both
situated in eastern Crete and accounting for 103,970 and 27,132 hectares of olive groves,
respectively [14,45]. This region represents 17% of the country’s total olive trees and
contributes 22% to its overall olive production. In 2016, the number of olive farms within
this area amounted to 52,707, constituting 12% of the total Greek olive farms [45]. According
to the total cultivated area and the corresponding number of farms, the average farm size
in the area is estimated at 2.48 hectares.

The significance of olive production in Crete is underscored by the region’s climatic
conditions, which are conducive to olive tree cultivation, enabling adaptability to drought
and salinity. It is also noteworthy that 4% of the total olive cultivation within the area
under study is managed under the organic scheme, corresponding to 4590 hectares and
1016 farms (see also Sintori et al., 2023 [46]). Additionally, 2508 farms in Heraklion and
2658 farms in Lasithi hold the AGRO2 quality certification for implementing the Integrated
Management System. This management system is very common in the area under study
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and covers 6623 hectares of olive groves in Heraklion and 5422 hectares of olive groves
in Lasithi.

The Greek LIFT sample consists of precisely 73 specialist olive farms. This sample of
olive farms subsequently underwent a rigorous screening for missing data and potential
outliers owing to the sensitivity of the DEA methodology to these shortcomings. Notably,
14 farms were excluded from the final sample due to missing values on significant variables
like water and fuel use. The remaining 59 farms were retained for in-depth analysis.

It should be emphasized that the farm sample size of this analysis is relatively small
compared to the total number of olive farms in the case study area. However, using
a small sample of farms or even case study farms is not uncommon when an in-depth
techno-economic analysis of farms is performed (see for example [47–51]). The available
dataset used in this analysis contains detailed socio-economic and technical data obtained
through face-to-face interviews with farmers, which are necessary to perform the eco-
efficiency estimations. No alternative dataset with the desired characteristics was available
for this analysis.

It should also be clarified that the sampling methodology used in the LIFT large-
scale survey was not probabilistic but rather a snowball recruitment technique. The main
purpose of the sampling methodology was to identify and map alternative ecological
approaches. Therefore, experts in the Cretan olive sector were recruited to identify olive
farmers who adopt different ecological farming practices. Attention was paid so that farms
across the whole case study area would be interviewed. This type of sampling leads to the
inclusion of various farm types but it is not representative of the sector. More ecological
approaches are over-recruited to fulfill the purpose of the study, while more conventional
approaches are under-recruited. This, however, provides the opportunity to derive results
across alternative ecological approaches, and thus the sample used fits the purpose of
the study.

The farms in our sample exhibit an average land size of 5 hectares and a mean density
of 210 trees per hectare (see also Table 2). Though the sample is not representative of the
sector, it is important to emphasize that the average size and density are higher than the ones
derived from the data of the Hellenic Statistical Authority [45] previously presented. The
average output of the sampled farms is EUR 14,539 (excluding subsidies) and the average
hours of labor inputs are 2168 or 1.24 Full-Time Equivalents (1 FTE = 1750 work hours).

Table 2. Main characteristics of the sampled farms and farmers.

Farm Characteristics

Farm size: 5 hectares
Average density: 210 trees

Location: Heraklion:
30 farms

Lasithi:
29 farms

Irrigation: Yes:
53 farms

No:
6 farms

Ecological
Approaches:

Organic
11 farms

Conservation
15 farms

Low-input
38 farms

Standard
19 farms

Labor inputs: Family labor
1.1 family members on average 3.16 hired workers on average

Characteristics of farmers

Gender of farmer Male
44 individuals

Female
15 individuals

Average age of farmer: 53 years
Average experience in

agriculture: 32 years

Education level: Primary education
7

Middle or high school education
29

Higher education
23
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The sample of specialist olive farms is nearly evenly split between the two Prefectures
under investigation, with 30 of them located in Heraklion and 29 in Lasithi. Geographically,
these farms predominantly occupy agricultural land at lower altitudes, specifically below
600 m, and 28 of them report land situated at altitudes lower than 300 m. The average age
of the plantations of farms is quite high (41 years, excluding 4 farms with very old trees).
A majority of these farms (53 out of 59) employ some type of irrigation in their agricultural
practices. The main reported type of irrigation is drip irrigation (27 farms), while the
remaining farms employ other types of irrigation. The most popular water sources are the
mains water supply (36 farms) as well as groundwater source (24 farms). The main variety
used in the sample farms is the Koroneiki variety for the production of olive oil.

Turning our attention to their ecological classification, our analysis reveals that
11 farms adhere to organic farming practices, 15 fall within the conservation farms category,
while 38 are categorized as low-input farms and 19 as standard/typical farms, based on the
LIFT survey’s protocol for farm typology [44]. Concerning the main structural character-
istics of the farms belonging to these alternative farm types, it is important to emphasize
that no statistically significant differences are identified, using the Mann–Whitney test [52],
regarding farm size, among the farm types, with the exception of conservation farms that
are larger (average size 6.68 hectares). Age of the plantation differs only in the case of
organic farms that utilize older trees. Organic farms also differ in the utilization of drip
irrigation. Only 36% of the organic farms use drip irrigation compared to 46% of the total
sampled farms. It is also important to note that according to the LIFT farm typology, the
farm types are not mutually exclusive, with the exception of standard farming. This means
that a farm may belong to more than one farm type if it meets the designated criteria. The
classification of the 59 farms of our analysis is graphically presented in Figure 2, where
overlaps are depicted.
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Demographically, the owners of these specialist olive farms are predominantly male,
numbering 44 individuals. The average owner age is 53 years, with 13 of the farm owners
in our sample being older than 65 years. The farmers in our sample have on average
32 years of experience in the agricultural occupation. Furthermore, 23 of them have attained
higher education qualifications, while 29 have completed either middle school or high
school. It is noteworthy that 12 of these individuals have received agricultural high school or
university education.

With regard to work inputs, a substantial portion, namely, 75%, is contributed by
family members, with an average of 1.1 family members actively engaged in the olive
farming business. Additionally, some of these farms also employ hired workers, primarily
on a seasonal basis, tasked with activities such as olive harvesting and tree pruning.
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Almost half of the olive farms in our sample use hired workers while one-third of these
farms use more than 3 hired seasonal workers for these duties. Remarkably, despite their
specialization in olive production, pluriactivity is a common practice among these farmers.
It is estimated that on average, over 60% of the total household income derives from sources
outside agriculture.

Furthermore, it is noteworthy that the surveyed farmers exhibit a pronounced incli-
nation toward well-being and environmental objectives. During the LIFT farm survey,
participants were asked to evaluate, on a 5-point Likert scale, a set of objectives, to iden-
tify potential drivers of the adoption of ecological practices. Notably, objectives such as
“Protecting the environment for future generations”, “Farming in a way that enhances the
environment”, and “Improving the condition of land” received very high ratings from the
olive farmers in our sample (mean values of 4.34, 4.29, and 4.22, respectively). Conversely,
common economic objectives, such as “Maximizing profit”, received lower scores from
Greek olive producers (mean value 3.88). These objective statements rated within the LIFT
survey can be examined in our analysis as potential explanatory factors of eco-efficiency.

Lastly, regarding the distribution channels that the olive farms of our sample pre-
fer, producers’ organizations receive an average of 43% of the production, followed by
merchants (24% on average) and processors (14% on average). A minor proportion of the
production is directly marketed from farmers to consumers (9% on average).

2.2. DEA Analysis

To evaluate the economic and environmental performance of the sample olive farms,
we employ the eco-efficiency concept and the estimation methodology originally intro-
duced by Kuosmanen and Kortelainen [38] and subsequently adopted in numerous studies
focusing on agricultural pursuits [29,30,43,53,54]. Kuosmanen and Kortelainen [38] ad-
vocate the use of DEA as a means to aggregate environmental pressures into a unified
eco-efficiency indicator. DEA, initially formulated by Charnes et al. [55], is a non-parametric
technique employed for technical efficiency estimation. The essence of DEA lies in con-
structing a production frontier, consisting of all decision-making units (DMUs)—farms
in our study—which produce a specific output with minimum inputs. These DMUs are
identified as benchmark units. Deviations from the constructed frontier, consisting of the
efficient DMUs, signify inefficiencies.

Let N represent our sample of DMUs, i.e., olive farms, Vn denote the economic value
added and Zn denote the environmental pressures of each individual unit n (n = 1, 2, . . .,
N). Eco-efficiency can then be defined as the following ratio [38]:

EEn =
Vn

D(Zn)
(1)

Here, D represents the damage function, which aggregates the m environmental
pressures into a unified environmental damage score, as stipulated by Kuosmanen and
Kortelainen [38]. A linear expression of D is the following:

D(z) = w1z1 + w2z2 + · · ·+ wMzM (2)

In this linear expression of D, wm (m = 1, . . ., M) signifies the weight assigned to the
environmental pressure m. By implementing DEA, we ascertain the weights that maximize
the efficiency score for each DMU [29,38,43]:
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The eco-efficiency score derives from the inverse of the optimal solution of this linear
problem. It is essential to underscore that the DEA eco-efficiency scores are used to
derive the maximum proportional reduction in the m environmental pressures that can be
technically achieved given the level of economic output denoted by V.

As Kuosmanen and Kortelainen [38] emphasize, these DEA scores assigned to each eco-
inefficient farm offer guidance on potential efficiency enhancements. These improvements
might pertain to the practices a farm should adopt or the adjustments it needs to make to
approximate the performance of efficient farms.
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It should also be noted that the methodological framework of Kuosmanen and Ko-
rtelainen [38] implies constant returns to scale (CRS). Although, in farming, economies
of scale are important, and they are considered a variable returns to scale (VRS) activity,
Gómez-Limón et al. [37] and Picazo-Tadeo et al. [29] argue that from an environmental
perspective, farming can be considered a constant returns to scale activity. They also point
out that in an eco-efficiency analysis, what is important is to estimate the eco-inefficiency of
farms, regardless of whether this can be attributed to suboptimal management or farm size.

As we already mentioned, within our analysis, we employ the methodological frame-
work of Kuosmanen and Kortelainen [38] and draw inspiration from the work of Gómez-
Limón et al. [37], who also use the same conceptual framework to estimate the eco-efficiency
of Spanish olive groves. Gómez-Limón et al. [37] identify six environmental pressures
that they use in their DEA model, which refer to soil erosion, biodiversity, pesticide risk,
water use, nitrogen ratio, and energy ratio as a proxy for Greenhouse Gas Emissions. In
our analysis, we employ four similar indicators that are used as variables in the DEA
model, representing the environmental pressures. These variables include two simple
indicators corresponding to water and fuel utilization, as well as two composite indicators
that aggregate soil and biodiversity management practices as well as fertilization and pest
management practices. The calculation of the indicators is described in detail in this section
(see also Table 3):

1. Water utilization. Irrigation water usage is a significant environmental concern linked
to agricultural activities. This concern is particularly relevant in the region of Crete,
where water scarcity issues prevail, exacerbated by anticipated climate-induced
changes in precipitation patterns [56]. Although olive cultivation historically re-
lies on rainfed practices and is not considered particularly water-intensive, evolving
climate dynamics and emerging intensification emphasize the criticality of sound
water management practices. It is therefore crucial to include water utilization as an
environmental pressure indicator similar to the work of Gómez-Limón et al. [37].

2. Fuel utilization. Fuel utilization denotes the consumption of an important resource
and can also be used as a proxy for greenhouse gas emissions (GHGs) from on-farm
activities (see also [57]). It should be noted that this is only part of the GHGs linked
to olive cultivation, as other sources like pre-chain emissions are not considered in
this study due to unavailable data regarding specific types of inputs. Notably, fuel
constitutes the primary energy source within olive farms, often leading to elevated
consumption levels due to the fragmented land structure of Greek holdings.

3. Soil and biodiversity management. This indicator, sourced from the LIFT survey-
based farm typology protocol [44], integrates various soil and biodiversity-related
management practices within olive farms. These practices encompass soil tillage
intensity (ranging from conventional tillage to conservation tillage and no tillage),
crop rotation, and diversification practices as well as soil cover practices (including
planting of cover, catch, and N-fixing crops and leaving crop residues on soil). Each
practice is incorporated as a binary variable (1 if implemented, 0 otherwise). A basic
score is assigned to each variable/practice according to the environmental significance
of the practice. These basic scores were derived from experts in the field employed
within the LIFT Project with this specific duty. Farm-specific information is then used
to derive a weighted score for each practice. This farm-specific information is the
percentage of the farm on which the practice is implemented. Thus, the weighted score
derives as a product of practice-specific and farm-specific information and is therefore
unique for each farm in the sample. Weighted scores are then added to derive partial
scores of practices that refer to the same aspect, e.g., tillage and final scores of the “Soil
and biodiversity management” index are finally derived by combining the partial
scores. The detailed description of the methodology followed in the LIFT Project
to estimate these indicators, including basic scores and weights, is described in the
relevant documentation of Rega et al. [44]. For the use of this indicator, we were
inspired by Gómez-Limón et al. [37], who used a very similar composite indicator
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for biodiversity, constructed as a weighted sum of binary variables that represent the
degree of implementation of specific practices that enhance biodiversity, like soil cover.
As Gómez-Limón et al. [37] emphasize the weights assigned to each practice for the
construction of their composite indicator derived from experts, it should be noted that
higher values of the “Soil and biodiversity management” index used in the present
study reflect superior soil quality and biodiversity enhancement practices. In order to
denote environmental pressure, the inverse of the indicator can be considered. Data
transformation is common in studies using DEA analysis to estimate environmental
efficiency and is employed to deal with undesirable outputs [58,59].

4. Fertilization and pest management. This indicator was also developed using the LIFT
survey-based farm typology protocol. It encompasses fertilizer usage practices such
as the application of inorganic fertilizer, animal manure, green manure, compost,
and other soil amendments. Pest control practices are also included in the formation
of this indicator, including employment of chemical pesticides or other products
authorized in organic farming, application of integrated pest management, or other
pest control practices like weeding. Similar to the previous indicator, the weights
attached to each practice for the calculation of this composite indicator are derived
from a combination of expert opinion and area of application within the farm (for
a detailed presentation of the calculation of this indicator refer to Rega et al. [44]).
Additionally, the application of these inputs at lower than the recommended dosage
is taken into consideration. As before, higher scores of this indicator denote better
management from an ecological point of view.

Table 3. Explanation of the variables incorporated in the eco-efficiency analysis.

Environmental Indicators

Water utilization Irrigation water used (in m3/ha)
Fuel utilization Fuel used to perform farm tasks (in lt/ha)

Soil and biodiversity management Composite indicator of soil and biodiversity management practices
Fertilization and pest management Composite indicator that includes fertilization and pest management practices

Economic Indicator

Net income Revenues (excluding subsidies) minus direct costs (fuel, seeds, fertilizers, pesticides, soil
amendments, contract labor, and other variable costs) (in EUR/hectare)

2.3. Truncated Regression Analysis

The subsequent phase of our analysis entails a second-stage regression examination,
specifically a truncated regression analysis, conducted to explain the eco-efficiency scores
derived from the DEA methodology, using specific attributes pertaining to the farm and
its operator. The truncated regression analysis, as demonstrated also in previous studies
(e.g., [54]), employs a set of explanatory variables for eco-efficiency. The variables used in
this analysis, encompass demographic characteristics of the farmer (e.g., education, gender,
and age), attributes pertinent to the farmer’s economic activities (e.g., farm size subsidy
independence, income sourced from olives and farming, and family members’ engagement
to the activity) as well as farmer’s objectives and attitudes (e.g., profit maximization and
protecting the environment). The explanatory variables used in our analysis are presented
in Table 4, together with a brief description of their definition and indicative literature on
studies that explore similar variables as determinants of eco-efficiency.

The preference for truncated regression analysis, over Ordinary Least Squares (OLS)
regression, stems from the truncated nature of the dependent variable, consisting of the
efficiency scores. Estimations conducted through OLS regression are deemed biased and
inconsistent due to this feature of the dependent variable [60]. Consequently, truncated
regression models, which are generally preferred and deemed more appropriate, are usually
employed to explain eco-efficiency [61–63]. Both the statistical and DEA analyses were
executed using STATA/SE 13.0.
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Table 4. Explanation of variables used in the truncated regression analysis.

Variable Definition Indicative Literature

Farm size Farm-utilized land in hectares Picazo-Tadeo et al. [7]

Subsidy independence The ratio of revenues to revenues including subsidies Godoy-Durán et al. [53]; Eder et al. [33]

Education
Ordinal variable with values: 1 for primary education,

2 for Middle school, and High school education,
3 for Higher education

Godoy-Durán et al. [53];
Gómez-Limón et al. [64]

Gender Binary variable with values: 1 for male, 0 otherwise

Age < 40 Binary variable with values: 1 if the owner is younger
than 40 years, 0 otherwise

Godoy-Durán et al. [53];
Gómez-Limón et al. [64];

Urdiales et al. [43]; Eder et al. [33]

Age > 65 Binary variable with values: 1 if the owner is older
than 65 years, 0 otherwise

Godoy-Durán et al. [53];
Gómez-Limón et al. [64]; Eder et al. [33]

Income from olives Proportion of farm income that stems from
olive cultivation (%)

Godoy-Durán et al. [53];
Urdiales et al. [43]

Income from farming Proportion of household income that stems
from farming (%) Gómez-Limón et al. [64]; Eder et al. [33]

Household members
working on the farm

Number of members of the household that work on
the farm Godoy-Durán et al. [53]

Maximizing profit

Ordinal variable indicating importance of economic
objective (measured on Likert scale: 1 = not at all

important, 2 = Unimportant, 3 = Neither important
nor unimportant, 4 = Important, 5 = Very important)

Urdiales et al. [43];
Türkten and Ceyhan [65]

Protecting the environment
for future generations

Ordinal variable indicating importance of
environmental objective (measured on Likert scale:

1 = not at all important, 2 = Unimportant, 3 = Neither
important nor unimportant, 4 = Important,

5 = Very important)

Urdiales et al. [43];
Türkten and Ceyhan [65]

3. Results
3.1. Descriptive Statistics of the DEA Data

Table 5 provides a comprehensive statistical summary of the variables that are used
to estimate eco-efficiency, in the current study. Water and fuel utilization per hectare as
well as net income per hectare are presented for every ecological approach as well as for
all farms in the sample. The two composite indicators constructed to summarize soil and
biodiversity practices and fertilization and pest management practices are also presented
in the table. It should be noted that, as previously stated, high scores of the composite
indicators present better management from an ecological point of view. The inverse of
these indicators is in fact used to denote environmental pressures.

The results presented in Table 5 underscore the need to employ an aggregate indicator
for estimating the eco-efficiency of the sampled farms, as previously discussed. Examina-
tion of the average values and standard deviations of the variables used in the analysis
reveals significant variations across ecological farm types. Thus, these alternative ecological
approaches exhibit varying performance with regard to each environmental indicator.

As can be seen in Table 5, low-input and standard farms utilize less water, therefore
causing less pressure on this natural resource. Water utilization, on the other hand, is
significantly higher in the organic farms of our sample, which perform better in other indi-
cators, i.e., soil and biodiversity management as well as fertilization and pest management.
Organic farms also use higher fuel inputs compared to other ecological farm types, possibly
to perform various tasks like machine weeding. Fuel utilization appears to be smaller in
low-input and standard/typical farms. Organic and low-input farms also perform well
in the “Soil and biodiversity management indicator”. Standard farms, on the other hand,
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appear to have lower scores regarding the “Fertilization and pest management” indicator
and the “Soil and biodiversity management indicator”, but consume less water and fuel.

Table 5. Main statistics of the economic and environmental indicators across ecological approaches.

Water Utilization
(m3/ha)

Fuel Utilization
(lt/ha)

Soil and Biodiversity
Management

(Dimensionless)

Fertilization and
Pest Management
(Dimensionless)

Net Income
(EUR/ha)

Ecological approaches Mean (st. Deviation)

Standard farming 425 (533) 159 (158) 1.25 (0.43) 2.10 (0.26) 1402 (1344)
Conservation farming 571 (498) 237 (224) 2.71 (0.27) 3.01 (0.32) 1484 (1749)

Organic farming 635 (743) 345 (328) 1.81 (0.60) 3.00 (0.49) 2110 (1670)
Low-input farming 542 (545) 218 (239) 1.90 (0.77) 3.01 (0.23) 1700 (1650)

Total farms 517 (553) 211 (227) 1.68 (0.75) 0.68 (0.50) 1559 (1539)

Another important finding presented in Table 5 lies in the case of conservation farms.
These farms, by definition, perform better in the “Soil and biodiversity management”
indicator. They also perform well in terms of the “Fertilization and pest management”
indicator, but seem to overconsume irrigation water and fuel.

With regard to net income, we should note that it is higher in organic and low-input
farms. Reasons for this could be the lower costs for inputs or the price premium received
for high-quality olive oil.

The main assumption deriving from the data in Table 5 is that the overall environ-
mental and economic performance of farms belonging to each ecological approach remains
elusive without the use of a single-aggregate indicator, which, in this study, is represented
by the DEA-produced eco-efficiency score.

3.2. Results of the DEA Analysis

Let us now shift our focus to the examination of the eco-efficiency performance of
the sampled farms that derived from the application of the DEA methodology. Table 6
summarizes the main findings of this analysis. The calculated average eco-efficiency is
apparently low, estimated at 0.34, leaving room for substantial improvement. Notably,
organic farms emerge as being more eco-efficient compared to other farm types, followed by
conservation and low-input farms. Standard farming on the other hand demonstrates very
low eco-efficiency scores, largely attributed to their poor performance in the “Fertilization
and pest management indicator as well as the “Soil and biodiversity management” indicator.
The results indicate that, as expected, more agro-ecological farming types exhibit higher
eco-efficiency scores than standard farming, but the fact remains that even these farms
still appear to have low eco-efficiency. Specifically, only five farms in the sample have an
eco-efficiency score of 1, forming the eco-efficiency frontier, and four more farms have
eco-efficiency scores higher than 0.8. Three of the eco-efficient farms (score of one) and
three of the farms with an eco-efficiency score higher than 0.8 are characterized as low-
input, while, on the other hand, only one standard farm is characterized as eco-efficient.
The Mann–Whitney test [52] performed in STATA and the Steel–Dwass test performed in
Jamovi (https://www.jamovi.org/ (accessed on 21 December 2023) were used to identify
statistically significant differences in eco-efficiency among farm types. Only, in the case of
low-input farms are statistical differences identified (p < 0.1).

Table 6. Main statistics of Eco-efficiency per ecological farm type.

Ecological Farm Type Mean Standard Deviation CV Min Max

All farms 0.34 0.31 91% 0.01 1
Organic 0.46 0.35 76% 0.03 1

Conservation 0.40 0.32 80% 0.06 1
Low-input 0.40 0.32 80% 0.03 1

Standard/typical 0.28 0.28 100% 0.01 1

https://www.jamovi.org/


Land 2024, 13, 72 13 of 19

3.3. Results of the Truncated Regression Analysis

The obtained eco-efficiency scores underwent additional scrutiny through truncated
regression analysis. The results, presented in Table 7, reveal several noteworthy findings.
Notably, subsidy independence exerts a positive and statistically significant effect on
eco-efficiency, evident from the coefficient and p-value of this variable. This implies that
subsidies may in fact cause eco-inefficiency, or in other words, farms that depend less on
subsidies and derive their income from the market value of their products achieve better
performance in terms of eco-efficiency.

Table 7. Results of the Truncated Regression analysis.

Variables Main Variable Statistics Results of the Truncated Regression Analysis

Log likelihood = 29.9724
Prob > chi2 = 0.00 Wald chi2(10) = 3619

Coefficient Std. Err. z p > z

Farm size Mean (St.dev): 5.03 (3.75) 0.0078441 0.0194334 0.4 0.686

Subsidy independence Mean (St.dev): 0.77 (0.18) 2.462842 0.3984955 6.18 0.000

Education Mean (St.dev): 2.29 (0.64) 0.1340843 0.1265764 1.06 0.289

Gender Frequencies: Female: 15,
Male 44 0.4480702 0.1803677 2.48 0.013

Age < 40 years Frequencies: 8 individuals 0.1114533 0.2452697 0.45 0.650

Age > 65 years Frequencies: 13 individuals −0.1676241 0.1887549 −0.89 0.375

Income from olives Mean (St.dev): 96% (9%) 0.6501602 0.7816457 0.83 0.406

Income from farming Mean (St.dev): 34% (33%) 0.0068787 0.0022343 3.08 0.002

Household members
working on the farm Mean (St.dev): 1.1 (1.2) 0.1088122 0.0608112 1.79 0.074

Maximizing profit Mean (St.dev): 3.88 (1.4) −0.1434571 0.0736946 −1.95 0.052

Protecting the
environment for future

generations
Mean (St.dev): 4.33 (1.52) 0.2947688 0.031953 9.23 0.000

Constant −4.353872 0.7994709 −5.45 0.000

sigma 0.314392 0.0004495 699.5 0.000

Additionally, the education level of the farmer appears to influence farm eco-efficiency
in a positive way, though the effect is not statistically significant. As already discussed,
23 farm owners have attended higher education, in some cases, related to agriculture.
Gender is another factor that affects eco-efficiency scores that should be elaborated. The
results indicate that male farm owners tend to exhibit a more eco-efficient management.
It should however be explained that, in Greece, it is common for male farmers who have
other main occupation to nominate their wives as farm owners, even in cases where the
management still remains in their hands. Thus, this finding may to some extent be explained
by the fact that the actual manager of the farm is only a part-time farmer. However, further
investigation is required to interpret this result.

Furthermore, it is important to highlight that a higher percentage of income derived
from farming is correlated with greater eco-efficiency. In other words, farmers deeply
engaged in farming activities tend to garner higher eco-efficiency scores. On the other
hand, the percentage of farm income attributed to olive cultivation seems to have no
statistically significant effect on eco-efficiency scores, keeping in mind that the farms of our
sample derive the majority of their income from olive cultivation. This finding should be
further investigated in the future, with the participation of farms with a wider portfolio
and a smaller presence of olive monoculture. The results of the regression analysis also
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reveal that the number of household members that offer their work on the farm has a
positive impact on efficiency. This means that the “family” business model, predominant
in Greek agriculture, may offer fertile ground for the transition to more agro-ecological
farming practices.

Finally, regarding farmers’ attitudes and objectives, the results of the analysis reveal
that placing more value and rating the environmental objective higher is positively corre-
lated with eco-efficiency scores. On the contrary, it appears that placing emphasis on profit
maximization may in fact have a negative impact on eco-efficiency. This is an indication
that the main driving force behind the adoption of more eco-efficient approaches and
ecological practices may be the environmental concern and awareness of farmers.

4. Discussion

Eco-efficiency serves as a valuable metric for estimating the environmental perfor-
mance of agricultural activities, and though it does not guarantee the sustainability of the
agro-ecosystem, it certainly presents a step in the right direction. Eco-efficiency signals
paths to sustain consistent output levels while concurrently minimizing environmental
pressures. In this sense, it is a useful concept for policymakers, since it combines their
goals of securing sufficient production to meet consumers’ needs and addressing critical
environmental challenges.

This study centers on estimating the eco-efficiency of Greek olive groves operating on
the island of Crete, taking into consideration their primary farming practices, which relate
to water and fuel utilization, fertilization, and pest management, as well as soil and biodi-
versity management. The DEA methodology, traditionally used to determine the technical
efficiency of production units, is employed to estimate individual farm eco-efficiency. This
approach allowed the utilization of the scores derived from the DEA methodology as a sin-
gle composite indicator of the eco-efficiency of olive farms, simplifying the environmental
assessment process compared to employing multiple individual indicators. Additionally,
the analysis incorporates the degree of agro-ecologization of farms, presenting results for
the entire olive farm sample, as well as disaggregated results for organic, conservation,
low-input, and standard (conventional) farming.

The results of our analysis denote what is already well emphasized by Kuosmanen
and Kortelainen [38], that the use of single environmental indicators, like, for example,
water utilization, fails to consider the potential for substitution between environmental
pressures and natural resources. Thus, it cannot provide an answer for overall environ-
mental performance at the farm level, complicating the task for policymakers and advisors.
In our analysis, it is evident that all environmental indicators have to be simultaneously
considered to provide a conclusive answer regarding the overall performance of farms.

Specifically, the findings of this analysis reveal that certain farm types excel in specific
environmental indicators while performing poorly in others. For example, organic farming
performs better as far as biodiversity and soil management are concerned, as well as
fertilization and pest management, but utilizes more water and fuel compared to other
ecological approaches. Similarly, conservation farming employs better biodiversity and
soil management practices but performs poorer in terms of water usage.

One explanation for the higher water inputs of the organic farms in our sample is
the type of irrigation used. As already mentioned, 46% of all farms utilize drip irrigation,
which is considered more efficient with regard to water use. But only 36% of the sampled
organic farms use drip irrigation, though almost all of them (with the exception of one
farm) use some type of irrigation. The percentage of drip irrigation is higher in the case
of standard and low-input farms, which appear to utilize less water. In the case of fuel
consumption, the higher use of fuel in organic farms may be justified by the fact that these
farms perform mechanical tasks like weeding at a higher frequency, compared to other
farm types that use other inputs, e.g., herbicides. It should be emphasized, however, that
the study refers to on-farm fuel consumption and does not take pre-chain fuel use into
consideration, i.e., the fuel used for the production of inputs.
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The DEA methodology aggregated all environmental pressures in one eco-efficiency
score, which also considered economic performance in terms of net income. This way, both
economic and environmental performance is taken into consideration, so that agricultural
output and farmers’ economic well-being is not compromised by the use of inefficient
ecological practices. The average eco-efficiency score that the analysis produces is quite
low and equals 0.34, ranging from 0.46 for organic farms to 0.28 for standard farms.

The low eco-efficiency of olive groves is also identified in the studies of Gómez-
Limón et al. [37] and Beltrán-Esteve et al. [24], which focus on Spanish agriculture. The first
study suggests that eco-inefficient olive farms generate environmental pressures that are
262% higher than the pressures produced by eco-efficient farms. Beltrán-Esteve et al. [24]
estimate that the environmental pressures of Spanish olive farms can be reduced by 45–49%
(depending on the farm type) while maintaining the same level of output.

In these studies, eco-inefficiency is higher than the technical inefficiency estimated
in a number of studies focusing on olive groves in the Mediterranean basin [21–23,25–28].
Our analysis also yields lower eco-efficiency scores, compared to technical efficiency scores
estimated for Greek olive farms in previous studies (see for example Sintori et al. [46]).
Tzouvelekas et al. [66] estimated that the mean technical efficiency of conventional olive
groves in Greece is 0.54, which still leaves room for improvement in input utilization, but is
higher than the mean eco-efficiency estimated in our analysis.

Indeed, as the technical efficiency concept would suggest, the mean eco-efficiency
signifies the maximum proportionate reduction in environmental pressures attainable,
considering also output (in our case net income). The results of our analysis indicate that a
66% reduction in environmental pressures is feasible, while maintaining the same level of
output. In the context of eco-efficiency analysis, a slightly different interpretation appears
more fitting [38]. The individual eco-efficiency scores reveal necessary improvements
and management adjustments a farm should opt for to approximate the performance of
efficient farms. For instance, combining data from Tables 5 and 6 suggests that organic
farms could potentially enhance their performance by implementing more efficient water
and fuel management practices, e.g., precision irrigation. Conversely, standard farms might
consider improving their fertilization and pest management practices, as well as soil and
biodiversity management practices, which will also have a positive impact on their costs
and economic benefits. It should be emphasized that net income is relatively small in all
farm types, which may be an additional eco-inefficiency factor. This is partially explained
by the fact that the data used in the analysis refer to the year 2018, which was a somewhat
challenging year for olive production, since yields were to some extent compromised by
pests and weather conditions.

Many noteworthy results derive also from the second-stage regression analysis. These
results indicate that subsidies, which are considered significant for the economic sustainabil-
ity of farms, such as in the case of organic farms, exert a negative influence on eco-efficiency,
while farms that are more market-oriented achieve a higher eco-efficiency level. Similar
conclusions regarding the impact of subsidies on farm environmental performance have
been reached in other studies [67], as well as in investigations focusing on the technical
efficiency of olive groves in the Mediterranean [68,69]. The above findings have important
implications for agricultural planning and policymaking, in the sense that subsidies, though
necessary for economic results, should be applied coupled with other environmental policy
measures and incentives.

The demographic characteristics of farmers also impact eco-efficiency scores. A higher
education level has a positive though not statistically significant effect on eco-efficiency,
since it allows farmers to adopt cost-effective and environmentally friendly management
practices. The positive effect of education on the environmental performance of farms is
pronounced in numerous studies exploring eco-efficiency (refer to [29,53,70]).

Furthermore, commitment to the farming activity, as the main occupation and income
source, seems to have a positive effect on eco-efficiency. This finding is consistent with
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research by Gómez-Limón and Sanchez-Fernandez [64], which suggests that agricultural
sustainability improves as income from farming increases.

Additionally, older farmers seem to employ rather eco-inefficient management, ac-
cording to the results of the regression analysis, though age is not statistically significant
in our case study. These are mainly traditional farmers who usually practice standard
farming and may not realize the impact of their activities on the environment or may lack
environmental training and awareness. In this case, the eco-efficiency of olive farms may
improve in the future as these farmers exit the activity.

Finally, it appears from the results of the regression analysis that the attitudes and
objectives of farmers play an important role in achieving eco-efficiency. Environmental
concerns seem to be important drivers for adopting environmentally friendly farming
practices that increase the performance of the farms in soil management, promotion of
biodiversity, and input use and, in turn, increase eco-efficiency. On the other hand, main-
taining excessive focus on profit may in fact yield negative results on a farm’s overall
economic and environmental sustainability.

The results of the analysis denote the importance of designing and implementing
targeted training courses on the application of ecological practices, as a prerequisite for the
improvement of eco-efficiency at the farm level. Among the other direct benefits that arise
from educating farmers on cost-effective ways to manage their farms, such as decreased
input costs, appropriate training will increase the environmental awareness of farmers,
yielding long-term benefits on eco-efficiency and sustainability.

5. Conclusions

Achieving environmental sustainability in agriculture is highlighted in the Common
Agricultural Policy and is a primary goal of policymakers, especially, in light of rapid
climate change. However, assessing the environmental performance at the farm level in a
clear, comprehensive, and concise way is a rather challenging task.

Our study provides an example of how the DEA methodology can be used to aggregate
all the environmental pressures of a farming activity into one composite indicator, which is
eco-efficiency, and that also takes economic results into account. The study also contributes
to the existing literature on eco-efficiency, in that it presents the latter for diversified
ecological approaches, i.e., organic, conservation, low-input, and standard farms. The
analysis focuses on Greek olive farms and finds that they demonstrate low eco-efficiency
scores and that there is a lot of room for improvement.

However, it is essential to emphasize that further research is required to delve deeper
into eco-efficiency scores and their determinants. One limitation of the current analysis is
that it utilizes data obtained in the year 2018, which was characterized as a relatively low-
yield year in olive production, and from a small sample of farms, not representative of the
sector. Using data from additional reference years and expanding the sample to include all
farm sizes would help confirm the derived results and correct any bias stemming from these
limitations. Using alternative methodologies to estimate eco-efficiency, e.g., slack-based
measure DEA models (SBM) (see for example [71,72]) can also provide an alternative way
to verify results. The role of farmers’ objectives and attitudes warrants further investigation,
particularly given the observation that eco-efficiency scores are positively impacted by
objectives related to environmental protection. Future research may also involve a wider
range of agricultural activities, apart from olive production, which will expand knowledge
on the effect of ecological approaches, like crop diversification, on eco-efficiency and
sustainability. Additionally, other environmental pressures like soil retention of chemical
fertilizers and waste can be considered provided the availability of data.

Overall, the analysis may prove useful for policymakers in the design of measures
that promote appropriate ecological approaches adapted to certain activities and region-
specific environmental concerns. It is evident from the results of this study that alternative
ecological approaches perform differently in the various ecological indicators. Taking
these results into consideration in agricultural policy may lead to the design, promo-
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tion, and implementation of area-appropriate eco-schemes based on the limitations of the
natural resources, e.g., water, or the main environmental problems of the specific area,
e.g., soil erosion.
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