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Abstract: The non-grain production rate (NGPR) of cropland is a grave threat to global grain and
food supply, and has been a hot issue across the world. However, few scholars explored the impacts
of the NGPRs of different cropland types, such as those of paddy land and irrigated land in the same
region. Thus, according to the third land survey data, this research first estimated the NGPRs of
cropland, paddy land, irrigated land, and dry land at different scales in Shandong Province, China in
2019. Then, their spatial characteristics at a county scale were identified by combining the standard
deviation ellipse model and spatial autocorrelation analysis. Finally, the potential driving factors
of the NGPR of cropland were explored with the geographical weight regression model. Results
are as follows: (1) The NGPR of cropland is at relatively lower level in Shandong Province and is
dominated by that of irrigated land, and the NGPR of dry land is higher than those of other cropland
types; (2) Significant regional differences exist in the NGPR of cropland, with profound severity
in the southeast and much lower in the northwest; (3) At the provincial scale, the total power of
agricultural machinery per capita and utilization degree of cropland factors can relieve the NGPR of
cropland in nearly the entire research area. The proportion of GDP of the primary industry in GDP,
urban population rate, and DEM are the main obstacles for NGPR decrease. At the county scale, the
influences of driving factors varied across regions. This research can provide targeted and regional
differentiated references for policy improvement and NGPR management.

Keywords: non-grain production rate; grain supply; grain production base; spatial characteristics;
driving factors

1. Introduction

Grain production is closely connected to the social stability and sustainable devel-
opment across the word [1,2]. The rapid urbanization and socioeconomic development
lead to the population growth across the world, and consequently, the demand for grain
production keeps increasing, consequently worsening the food security situation [3,4].
Furthermore, as the living standards improve, people are persistently seeking the high
level of diet structure, thereby further increasing the need for food [5,6]. As the key element
to maintain grain production, cropland is an essential foundation to achieve food supply
and ensure the long-term development of the international community [7,8]. To protect the
cropland and maintain grain production, the international community has promulgated a
series of cropland protection policies (CPPs). For instance, in 1938, the United Kingdom
issued a “Green Belt Policy” to avoid the cropland decrease around cities [9]. The US
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produced several approaches to protect cropland at the state scale due to the vacuum of
policies across the country, for instance land use control and land tax benefit. China has im-
plemented a range of CPPs since the 1970s, such as the Basic Cropland Protection Policy and
Cropland Balance Policy [10,11]. However, the policies mentioned above have protected
the area and quality rather than the planting type of cropland. Thus, the phenomenon of
non-grain production (NGP) of cropland requires attention.

The fundamental connotation of the NGP of cropland is currently divided into two
types: narrow and broad. The former refers to the behavior or progress of planting fruits,
vegetables, flowers or other cash crops on cropland; the latter means all non-grain planting
activities on cropland, including cash crops, flowers and seedlings, digging ponds for fish,
leisure sightseeing and farmland abandonment [12,13]. We focus on the broad connotation
of the NGP of cropland. Previous research has employed numerous methods to calculate
the NGP of cropland. For example, at the early stage, researchers mostly used the statistical
yearbook data or household survey data in calculating the different indicators to represents
the NGP of cropland [14], such as the ratio of grain crop area to total cropland area [15], the
proportion of grain crop sown area to the overall sown area of crops [12], and the percentage
of NGP area to the total cropland area [16]. In addition, some researchers used the machine
learning algorithm and remote sensing data to identify the planting type in each cropland
patch and consequently calculated the NGP of cropland [17]. The existing methods for
calculating of the NGP of cropland have these two problems: (1) using the statistical
yearbook data or household survey data can enable large-scale research but it cannot reflect
the detailed information for the cropland; (2) the machine learning algorithm can collect
the NGP information at the patch scale; however, assessing its accuracy is difficult [15,17].
Moreover, several studies explored the driving factors of the NGP of cropland with various
methods, for instance, the logistic regression model [18], the spatial Durbin model [12], the
multiple regression model [19], and the geographical detector model [20]. These studies
persistently have a research gap in exploring the spatial heterogeneity of the potential
driving factors on the NGP of cropland based on the detailed survey data of the land patch.
Therefore, determining a solution for calculating of NGP of cropland is important while
considering the accuracy and research scale. The national land survey data of China has
provided a perfect resolution because it records the detailed information for each patch of
cropland: cropland type and planting type.

Considering China is one of the most populous countries, the food security problem
in the country is more severe than that in other countries. The central government of China
has promulgated numerous policies to relieve cropland loss and highly prioritize the grain
production in their administrative politics [10,21]. Meanwhile, in China, the total grain
production has been doubled in the past half century, which profoundly contributes to the
global food supply and socioeconomic development [22]. Additionally, the implementation
of CPPs in China has somewhat achieved effectiveness: the cropland area loss has been
moderated [23,24]. However, in rural China, the grain yield is facing the problem of the
NGP of cropland due to the agricultural labor loss and agricultural structure transforma-
tion [18,25]. In addition, owing to the increasing urbanization rate and further urban–rural
migration expansion, this phenomenon will frequently occur in the near future [12,17].
For a long time, the CPPs promulgated in China primarily focused on the cropland area,
quality and ecology [24,26]. Only a few policies begin to restrict the cropland non-grain
use. Therefore, clarifying the spatial patterns of NGP of cropland and its potential driving
factors is important for future policy making and conducting administrative practice.

Thus, this research considered Shandong Province, an important major grain produc-
ing area in China, as case study, choosing multiple potential driving factors to investigate
the non-grain production rate (NGPR) of different cropland types. Specifically, based on
the land survey data, cropland was further classified into paddy land, irrigated land, and
dry land. The paddy land is used to plant aquatic crops, such as rice and the lotus root. The
irrigated land refers to the land with water source and irrigation facilities and plant drought
crops, for example wheat and corn. The dry land represents the land without irrigation
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facilities, mainly relying on natural precipitation to cultivate drought crops. This analysis
leveraged high-precision land survey data at a regional scale and aimed to achieve the
following objectives: (1) elucidate the spatial information of NGPR across diverse cropland
types in 2019 at various scales; (2) detect the spatial NGPR heterogeneity of different types
of cropland; (3) explore the potential driving factors influencing cropland NGPR from
economic development, technology, population, land suitability, and utilization degree of
cropland. This paper can offer a precise reference for understanding cropland NGPR while
setting the future purpose for CPPs. This research also highlighted the necessity of using
high-precision land survey data when investigating cropland NGPR.

2. Materials and Methods
2.1. Study Area and Data

Shandong Province is located between 114◦47.5′–122◦42.3′ E and 34◦22.9′–38◦24′ N
on the eastern periphery of the North China Plain and adjacent to the lower reaches of
the Yellow River (Figure 1). Encompassing a vast expanse over 151,100 km2, the region
comprises distinct percentage of land forms, with a mountainous area, a hilly area, and
plains taking up approximately 56.1%, 14.9%, and 13% of the gross area, respectively.
Shandong Province is a famous grain production province in China given its location
in the warm-temperature zone with the annual mean temperature from 11 to 15 °C and
annual precipitation spanning 550 mm to 950 mm. On the basis of the third national land
survey data, more than 6.5 × 104 km2 of cropland spreads across Shandong Province,
taking up more than 40% of the total area. In 2020, the GDP in the primary industry was
up to 1019.06 billion RMB, marking it the first provincial administrative region in China
with a total agricultural GDP of more than 1 trillion RMB. Additionally, the GDP in the
agricultural sector of Shandong Province has been in the first places in China for many years,
reflecting the particularly important role that cropland plays. Therefore, a comprehensive
investigation of cropland NGPR in Shandong Province is essential owing to its decisive
role in securing food supply and fostering sustainable development of the society.

The NGPR of cropland information data in 2019 is identified from the land use map of
Shandong Province according to the third national land survey. It identifies three types
of cropland (paddy land, irrigated land, and dry land) and the following five types of
cropland planting type: planting grain crops, planting non-grain crops, grain/non-grain
and timber/grain intercropping, uncultivated, and fallow. According to the data, no area
of cropland is in the status of fallow. Thus, the following section discusses the NGPR of
cropland based on statistical data of the former four planting types mentioned above.

The Digital Elevation Model (DEM) data are sourced from the shuttle radar topog-
raphy mission (SRTM) [27]. The soil organic matter content data are acquired from Soil-
Grids (https://soilgrids.org/ (accessed on 18 August 2023)) at a spatial resolution of
1 km. Precipitation data are obtained from the National Meteorological Information Center
(http://data.cma.cn/ (accessed on 5 June 2023)). The original data are station-based, and
the “Kriging” tool is used to generate spatially distributed data.

Socioeconomic data integrate data such as population, GDP, GDP in the primary
industry, total power of agricultural machinery, urban population, and cropland area. The
majority of these data originate from the Statistic Yearbook of Shandong Province in 2020
and some of them are from the Statistic Yearbook at the prefectural city level. Furthermore,
the cropland area data are drawn from the third national land survey of Shandong Province.

2.2. Research Framework

We analyzed the spatial features of the NGPR of cropland and explored the spatial
effects of driving factors in this research. Figure 2 displays the overall research framework,
including the following steps: (1) Extracting the area of different types of cropland in
2019, including paddy land, dry land, and irrigated land, and their planting attributes
of each patch; (2) Calculating the NGPRs of cropland, irrigated land, paddy land, and
dry land, respectively, by calculating the ratio of planting grain crops, non-grain crops,

https://soilgrids.org/
http://data.cma.cn/
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grain/non-grain and timber/grain intercropping, and uncultivated patches on total area;
(3) Exploring the spatial patters of NGPR across distinct cropland types utilizing the spatial
autocorrelation analysis and standard deviation ellipse (SDE) model; (4) Selecting the
independent variables considering economic development, technology, population, land
suitability, and utilization degree of cropland through the previous studies and the research
topic; (5) Using the GWR model to unravel the spatial disparities in the influences of the
selected variables on the NGPR of cropland.
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2.3. Methods
2.3.1. Calculating the NGPR of Cropland

The NGP of cropland means the adjustment of cropland use changing from grain
crops to cash crops, for instance timber, fruit, and livestock [12,17]. At the bottom, it
is the production structure adjustment of agricultural production subjects based on the
internal comparative income of agriculture. Two types of the NGPR of cropland are
explored, namely at the administrative district scale or at the patch scale [14,28]. For
the administrative scale, calculating the NGPR of cropland is usually represented by the
ratio of the cropland area of the NGP and the total cropland area. For the patch scale,
different algorithms are carried out to identify the grain planting area, such as decision tree
model [17] and human visual interpretation [18]. This research focuses on the NGPR of
cropland at different administrative scales in 2019, which is calculated as follows:

NGPRi,j =
PNGCi,j + UCi,j +

GFIi,j
2

Ai,j
, (1)

where i is the cropland type, including cropland, paddy land, irrigated land, and dry land;
NGPRi,j denotes the NGPR of cropland type i at research unit j; PNGCi,j represents the
planting area for non-grain crops; UCi,j is the uncultivated area; and GFIi,j denotes the
cropland area for grain/non-grain crops and forest/grain intercropping. Given that the
planting type is intercropping, a coefficient of 1/2 is used to adjust its area. Ai,j represents
the total area of the ith cropland type.

2.3.2. SDE Model

The SDE model is a commonly used method for measuring the spatial distribution
characteristics of geographic factors by calculating the standard deviation of the x and
y coordinates to draw the ellipse axis [29,30]. It reflects the spatial distribution pattern
mainly through rotation, semi-minor axis, semi-major axis, and oblateness. The rotation
represents the direction of the ellipse. The semi-minor and semi-major axes indicate the
directionality and changing number of a geographic factor, respectively. In addition, the
oblateness reflects the distribution shape of the selected element in space or the degree of
dispersion [31]. The formulas are listed as follows:

-
X =

∑n
m xmEm

∑n
m Em

,
-
Y =

∑n
m ymEm

∑n
m Em

, (2)

tanα =

(
∑n

m=1
∼
xj

2
− ∑n

m=1
∼
yj

2
)
+

√(
∑n

m=1
∼
xj

2
− ∑n

m=1
∼
yj

2
)2

+4∑n
m=1

∼
xj

2∼
yj

2

2∑n
m=1

∼
xi

∼
yi

, (3)

where xm and ym denote the barycentric coordinates of research unit m, respectively; Em is

the research element value;
-
X and

-
Y denote the center coordinates of the ellipse; α indicates

the ellipse rotation; and
∼
xj and

∼
yj represent the coordinate differences between the center of

the research units and the ellipse.

2.3.3. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is extensively selected in revealing the distribution
pattern of a geographical element owing to its advantages in presenting the spatial pattern
by combining the value of geographic variables and its spatial location [32,33]. The spatial
autocorrelation analysis model has two types: global and local Moran’s I (LISA). The former
is selected to calculate whether a spatial cluster pattern exists for the research subject and
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the latter performs well in detecting the exact location of an occurring spatial cluster
pattern [34,35]. The following formula is established to estimate the global Moran’s I:

Moran′s Ii =
n∑n

j=1 ∑n
m=1 wjm

(
NGPRji − NGPRi

)(
NGPRmi − NGPRi

)
∑n

j=1 ∑n
m=1 wjm∑n

j=1
(
NGPRji − NGPRi

) , (4)

where n denotes the amount of research units; wjm denotes the matrix of spatial weight,
determined according to Queen contiguity, and the contiguity is 1; j and m represents the
research unit and its neighbors, respectively; NGPRji and NGPRmi indicate the area of the
NGPR of cropland type i in research unit j and m, respectively; and NGPRi indicates the
mean value of the NGPR of cropland. The global Moran’s I score is within [−1, 1] and a
positive value denotes the existence of a spatial cluster pattern; the closer to 1, the stronger
spatial cluster pattern, and vice versa.

The LISA is estimated as follows:

LISAji = zjm∑n−1
j=1,j ̸=m wjmzmi, (5)

zji =
NGPRji − NGPRi

αi
, (6)

where zjm is the z-score value of the area of the NGPR of cropland; αi is the standard
deviation. According to a threshold of 0, four categories of LISA are determined, including
High–High, Low–High, Low–Low, and High–Low. A pseudo p-value is used to detect the
significance of LISA through a conditional permutation test [34]. This research included
999 permutations for the conditional permutation test to evaluate the significance of LISA.

2.3.4. Geographically Weighted Regression (GWR) Model

(1) Ordinary Least Squares (OLS) model

The OLS model is carried out as an accuracy reference of the GWR model [36,37]. This
research first explored the driving factors of the NGPR of cropland in the OLS model and
then detected their spatial effects by the GWR model. The equation of the OLS model is
shown in Equation (7):

y = β0 + ∑p
q=1 βqxq+ε, (7)

where y represents the dependent variable, referring to the area of the NGPR of cropland in
this research; β0 denotes the intercept, representing all the variables that are equal to 0 and
the value of the dependent variable; p represents the amount of the independent variables;
βq and xq indicate the regression coefficient and the qth independent variable, respectively;
and ε denotes the error, which represents the changes in the dependent variables which
cannot be illustrated by the selected variables.

(2) GWR model

The OLS model is the normal used method to illustrate the potential driving factors of
a geographic element [38]. However, one of the characteristics of the geographic element is
the spatial location, which the traditional OLS model cannot handle. As an extension of the
traditional linear regression model, the GWR model is developed by combining the OLS
model and the spatial characteristics of a geographic element; consequently, it embodies
the spatial heterogeneity by showing the changing regression coefficients according to
space [39,40]. Thus, the GWR model is chosen to investigate the spatial heterogeneity of
the potential driving factors on the NGPR of cropland. The formula is as follows:

yj = β0

(
µj,γj

)
+ ∑p

q=1 βq

(
µj,γj

)
xjq + εj, (8)

where yj is the observed value of the NGPR of cropland in research unit j;
(
µj,γj

)
represents

the spatial location, which means the combination of the x-coordinate and y-coordinate
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of its barycenter; p represents the amount of independent variables; βq

(
µj,γj

)
shows

the regression coefficient of xq in the research unit j; and xjq indicates the value of the
qth variable.

In the GWR model, the spatial weight is determined by a Gaussian function and
the bandwidth is decided according to the Akaike information criterion (AIC), which is
estimated by the following equation:

AIC = 2p − 2 ln(SSR/m) (9)

where SSR represents the sum of squared residuals and m represents the amount of research
units. AIC can improve the goodness fit of data while avoiding the over-fitting phenomenon.
Thus, the model with the smallest AIC is the preferred choice.

2.4. Explanatory Variables Determination

Societal development brought by urbanization has intensive connections with the
behaviors of the NGPR of cropland in rural areas because of the cropland, capital, labor,
and industrial interactions, consequently affecting the NGPR of cropland [12,41]. For a
long time, driven by the rapid urbanization, the spatiotemporal transformation of cropland
displays complex differentiation characteristics, directly influencing the stability of grain
supply [42]. Taking the advantages of the increasing income, humans are more likely to
transform cropland to non-food business activities with higher economic value, such as
timber, fruits, tea, and aquaculture [43]. Meanwhile, the development of cities needs the
transformation of rural labors to developed urban regions, resulting in the adjustment of
famer’s willingness to plant grain crops based on the number of family labors and cropland
area [44,45]. Furthermore, the farmers balance their activities of planting grain or non-grain
cropland by comparing the revenue of non-agricultural or non-grain employment [15,25].
Eventually, a farmer’s decision on land use might be influenced by the status of cropland,
such as whether it is suitable for grain production, and grain price, etc. [11,46]. Thus,
informed by existing literature and considering the data accessibility, we grouped the
potential driving factors of the NGPR of cropland into five aspects: economic development,
technology, population, land suitability, and utilization degree of cropland. Afterwards, we
selected representing variables (Table 1).

Table 1. Factors and independent variables of the driving factors of the NGPR of cropland.

Factor Variable Description Unit

Economic development GDP in the primary industry The total GDP in the primary
industry. 100 million CNY

Proportion of GDP of the primary
industry in GDP

The proportion of the GDP of
primary industry in total GDP. %

Technology Total power of agricultural
machinery per capita

The mean total power of
agricultural machinery for a person

living in the rural area.
kw

Population Population The total population in the research
unit. 10,000 people

Population urbanization rate The proportion of the population in
urban area of the total population. %

Land suitability DEM The mean DEM in the research unit. m

Organic matter content The mean soil organic matter
content in the research unit. t/km2

Precipitation The total precipitation in a year. m

Utilization degree of cropland Cropland productivity The GDP in the primary industry
per unit of cropland area. 100 million CNY/km2

Cropland area per capita The mean cropland area for a
person in the research area. km2/10,000 people

The economic development factors represent the impacts of economic development
on agricultural production behaviors [35,47]. Considering that our subject is the NGPR of
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cropland, GDP in the primary industry and the proportion of GDP of the primary industry
to the total GDP were chosen.

The technology indicates the technological advances’ influences on agricultural pro-
duction. The agricultural machine can largely enhance the enthusiasm of farmers in
agricultural production. Therefore, the total power of agricultural machinery per capita
was adopted to provide technological support on agriculture and the agricultural mecha-
nization levels.

The population factors are important elements that affect the NGPR of cropland
because of their relationship with food demand and labor. This research takes both the
variables in urban areas and agricultural sectors. Specifically, population and population
urbanization rate were chosen to represent the total food demand in the research unit and
the labors that are appealing in urban areas, respectively.

The land suitability factors are important elements to affect the NGPR of cropland
because of its affection on the output and risk of agricultural planting [35,48]. DEM, organic
matter content, and precipitation were chosen to reflect the land suitability of a region for
grain production because these variables play key roles in grain plant selection and the
difficulty of grain production.

The utilization degree of cropland denotes the level of the cropland being devel-
oped [49]; thus, cropland productivity and cropland area per capita were selected to
represent this factor. The high cropland productivity indicates that a farmer can obtain
additional profit in this cropland parcel when they input the same economic and labor
costs. In addition, cropland area per capita represents whether the cropland in this region
can satisfy the population’s food requirement within this region.

3. Results
3.1. Characteristics of the NGPR of Cropland

Table 2 displays the NGPR of cropland at provincial and prefectural city scales at
Shandong Province in 2019. The comprehensive NGPR of cropland in Shandong Province is
28.99% and varies from 14.67% to 46.55%, representing the ubiquitous phenomenon of the
NGPR of cropland. The NGPRs of different types of cropland, paddy land, irrigated land,
and dry land are 25.50%, 27.26%, and 33.96%, respectively, reflecting a small difference
among them. The NGPR of irrigated land is particularly close to that of cropland, which
has a difference of only 1.73%. This finding is due to the fact that in Shandong Province,
the area of irrigated land takes up the unshakable leading position among different types
of cropland with a total proportion of 72.33%; thus, the NGPR of irrigated land exerts
a major part in the NGPR of cropland in the province. At prefectural city scale, except
Weifang which has the highest NGPR of paddy land with a value of 100%, Linyi has the
highest value of NGPR of cropland, irrigated land, and dry land, indicating the necessity
to administer the NGPR of cropland in Linyi. Additionally, the NGPRs of paddy land of
Weifang, Liaocheng, Heze, and Dezhou are extremely high with a value of over 80%. The
latter is primarily due to the fact that most of the paddy lands in these regions are mostly
selected for planting non-grain crops, such as lotus seed and water chestnuts.

On the basis of the calculations of the NGPRs of different types of cropland in 2019,
this research classified the results into five levels to gain a clearer understanding as shown
in Figure 3. The spatial characteristics of the NGPRs of different types of cropland have
significant differences. Notably, most of the counties have the NGPRs of cropland lower
than 40.00%. Additionally, several counties’ NGPRs of cropland lies between 40–60%
(Figure 3a). Only the following four counties have the NGPRs of cropland of over 60%:
Chengyang, Lixia, Licang, and Laoshan districts. These districts all directly belong to Jinan
and Qingdao cities, which are the most developed cites in Shandong Province. The spatial
distribution pattern of the NGPR of irrigated land is similar to that of cropland, and only
a few differences can be detected in the northeast and northwest between 40.00–60.00%
and 60.00–80.00% (Figure 3c). As for the spatial characteristics of the NGPR of paddy land,
they are much more different than those of the cropland and irrigated land (Figure 3b).
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However, many counties in Shandong Province have no paddy land; counties with paddy
lands display high levels of NGPR. Most of the counties have the NGPR of paddy land
over 40% because of the following: in Shandong Province, farmers prefer to plant cash crop
such as lotus root and water chestnuts rather than rice. The counties in the southeast coast
and northwest regions have lower NGPR of paddy land. Figure 3d displays the spatial
distribution trend of NGPR of dry land, which shows that the total distribution pattern is
similar to those of cropland and irrigated land; additionally, only a few counties changed
their position from lower to higher values. Specifically, a few counties in the southwest
and northwest have the NGPR of dry land of over 80%, and those of a few counties in the
central area are over 60%.

Table 2. NGPRs of cropland in Shandong Province and prefectural cities in 2019 (%).

Region
NGPRs of Cropland

Cropland Paddy Land Irrigated Land Dry Land

Shandong 28.99 25.50 27.26 33.96
Jinan 25.48 47.38 24.44 28.63

Qingdao 33.11 5.12 32.32 34.04
Zibo 22.65 68.28 20.95 26.83

Zaozhuang 23.86 24.85 20.30 28.90
Dongying 36.79 17.18 37.65 45.42

Yantai 24.51 1.90 26.75 23.21
Weifang 32.01 100.00 36.23 24.00

Jining 23.17 20.79 24.16 19.49
Taian 25.62 53.55 24.11 28.52

Weihai 40.33 0.00 40.07 40.38
Rizhao 43.51 22.80 41.54 44.38
Linyi 46.55 39.31 45.18 48.17

Dezhou 14.67 81.48 14.65 24.93
Liaocheng 23.54 98.75 23.54 40.29
Binzhou 23.86 10.94 23.72 29.20

Heze 30.93 83.93 30.87 30.71
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3.2. Spatial Patterns of the NGPR of Cropland

Figure 4 depicts the spatial characteristics of the SDE for the NGPRs of different types
of cropland in 2019. Moreover, Table 3 shows the detailed key parameters for each SDE.
The SDEs of the NGPRs of cropland, paddy land, irrigated land, and dry land are all
roughly distributed in the southwest–northeast direction, which basically followed the
shape of Shandong Province. The shapes of the standard ellipses of cropland, irrigated
land, and dry land are nearly the same and in similar locations, whereas the paddy land
shows a different shape and location, which is more likely to be a standard circle. In terms
of the parameters of the ellipses, we summarized the rotation, semi-minor axis, semi-major
axis, and oblateness in Table 3. The ellipse parameters of cropland and irrigated land are
nearly equal, and the differences in their abovementioned parameters are −0.39◦, −1.83 km,
1.47 km, and −0.01, respectively. The ellipse parameters of dry land are similar to those
of cropland and irrigated land but with considerable differences among them, especially
for rotation. From the perspective of the ellipse parameters of the paddy land, except
for the semi-minor axis, all of the other parameters are quite different than those of the
ellipse of cropland, with a difference value of 10.41◦, 70.2 km, and 0.16, respectively. This
phenomenon is primarily due to the dispersion of spatial distribution of counties with
paddy land and the high values of the NGPR of paddy land in the majority of the counties.

Land 2024, 13, x FOR PEER REVIEW 11 of 24 
 

Figure 3. Spatial characteristics of the NGPRs of cropland (a), paddy land (b), irrigated land (c), and 
dry land (d) at county scale. 

3.2. Spatial Patterns of the NGPR of Cropland 
Figure 4 depicts the spatial characteristics of the SDE for the NGPRs of different types 

of cropland in 2019. Moreover, Table 3 shows the detailed key parameters for each SDE. 
The SDEs of the NGPRs of cropland, paddy land, irrigated land, and dry land are all 
roughly distributed in the southwest–northeast direction, which basically followed the 
shape of Shandong Province. The shapes of the standard ellipses of cropland, irrigated 
land, and dry land are nearly the same and in similar locations, whereas the paddy land 
shows a different shape and location, which is more likely to be a standard circle. In terms 
of the parameters of the ellipses, we summarized the rotation, semi-minor axis, semi-
major axis, and oblateness in Table 3. The ellipse parameters of cropland and irrigated 
land are nearly equal, and the differences in their abovementioned parameters are −0.39°, 
−1.83 km, 1.47 km, and −0.01, respectively. The ellipse parameters of dry land are similar 
to those of cropland and irrigated land but with considerable differences among them, 
especially for rotation. From the perspective of the ellipse parameters of the paddy land, 
except for the semi-minor axis, all of the other parameters are quite different than those 
of the ellipse of cropland, with a difference value of 10.41°, 70.2 km, and 0.16, respectively. 
This phenomenon is primarily due to the dispersion of spatial distribution of counties 
with paddy land and the high values of the NGPR of paddy land in the majority of the 
counties. 

 
Figure 4. SDE of the NGPR of cropland. 

  

Figure 4. SDE of the NGPR of cropland.

Table 3. SDE parameters of the NGPR of cropland.

Rotation (◦) Semi-Major Axis (km) Semi-Minor Axis (km) Oblateness

Cropland 67.59 230.19 123.37 0.84
Paddy land 57.18 159.99 117.29 0.68

Irrigated land 67.98 232.02 121.90 0.85
Dry land 64.42 221.97 125.71 0.82
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The global Moran’s I scores of the NGPRs of different cropland types and their corre-
sponding P- and Z-values are displayed in Table 4. The global Moran’s I score (0.443) of the
NGPR of cropland among cropland, paddy land, irrigated land, and dry land indicates a
significant spatial agglomeration trend in the distribution of the NGPR of cropland. The
NGPR of irrigated land has the second highest global Moran’s I score with a figure of 0.431,
whereas the NGPR of dry land has the lowest score (0.113). The P-values and Z-values
represent significance and effectiveness on all the spatial autocorrelation results; among
them, those of paddy land and dry land are relatively higher, which may be due to the lack
of samples.

Table 4. Scores of global Moran’s I of the NGPRs of different types of cropland.

Global Moran’s I p-Value Z-Value

Cropland 0.443 0.001 5.0699
Paddy land 0.186 0.088 1.3822

Irrigated land 0.431 0.001 4.9771
Dry land 0.113 0.092 1.1998

Figures 5 and 6 display the scatter plots of local spatial analysis and the LISA detection
results of the NGPRs of different types of cropland. The scatter plot of paddy land is
relatively dispersed compared to those of other cropland types. Moreover, the scatter plots
of cropland and irrigated land are relatively concentrated. Regarding the local spatial
cluster pattern, those of the NGPRs of cropland and irrigated land have similar patterns:
both the mostly distributed spatial cluster patterns are Low–Low and High–High clusters
and largely located in the northwest and southeast areas, respectively, whereas the subtle
differences can be noticed in the peninsula region, where the NGPR of irrigated land
distributed a High–High cluster pattern. The High–High and Low–High clusters took
up the leading position in the spatial cluster pattern of the NGPR of paddy land, and
the High–High cluster was largely located in the center. For the spatial cluster pattern of
the NGPR of dry land, the High–Low and Low–Low cluster patterns took up the leading
position, and only one county reported the High–High cluster pattern. The High–Low
cluster agglomerated in the middle, and the Low–Low cluster was distributed in the east.
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3.3. Spatial Heterogeneity of Driving Factors

Taking the OLS and GWR models, this research explored the potential driving factors
of the NGPR of cropland at a county scale. A comparison of the key parameters of the OLS
and GWR models in AIC, R2 and adjusted R2 was carried out to detect the reliability of
the GWR model (Table 5). The AIC of the GWR model reduced to 57.87, and the R2 and
adjusted R2 increased to 0.251 and 0.271, respectively, reflecting a better fitting result. Thus,
the GWR model is more suitable than the OLS model in analyzing the driving factors of
the NGPR of cropland.

Table 5. Assessment of the GWR model.

AIC R2 Adjusted R2

OLS 1173.03 0.418 0.371
GWR 1115.16 0.669 0.642

Comparison −57.87 0.251 0.271
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3.3.1. Economic Development

The effects of GDP in the primary industry on the NGPR of cropland presented half
of the positive influence and half of the negative influence: the negative effects were
concentrated in the south of the central axis and the positive effects were distributed in
the north area (Figure 7a). Shandong is a province with a large grain output, and its
grain output increases steadily year by year owing to its stable climatic conditions. The
increase in the GDP of the primary industry is somewhat due to enlarging the planting of
the cash crops, such as vegetables and fruits, thus increasing the proportion of cropland
that intercrops grain/non-grain and timber/grain plants as well as the NGPR of cropland.
However, in the north regions, the growth of GDP in the primary industry has in turn
further encouraged the enthusiasm to work on grain production.
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Most of the counties displayed positive coefficients, indicating that the increase in the
proportion of GDP of the primary industry in GDP can lead to the increase in the NGPR of
cropland in most of the research units (Figure 7b). The increase in the proportion of GDP of
the primary industry in GDP reflected the growth rate of the GDP of the primary industry
which was higher than that of the GDP, implying that the proportion of cropland that
planted grain crops was smaller than that of planting cash crops, consequently increasing
the NGPR of cropland.

3.3.2. Technology

The negative effects of the total power of agricultural machinery per capita on the
NGPR of cropland were distributed in nearly all of the research area and the positive
coefficients can only be noticed in the southeast (Figure 8). The total power of agricul-
tural machinery per capita reflected the agricultural machinery level. The increase in the
agricultural machinery can release additional agricultural labors to work on the second or
the third industry for extra income, and only a few labors can handle a large amount of
cropland for grain production. Thus, it can alleviate the NGPR of cropland. Notably, the
counties with relatively higher absolute value of regression coefficients are the counties
with more mountains and higher DEM.
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3.3.3. Population

The regression coefficients of the population of the counties primarily displayed a
distribution pattern of gradual reduction from the south to the north (Figure 9a). The
counties with positive regression coefficients took up most of the research area, indicating
that for most of the research units, population, and the NGPR of cropland change in the
same direction. In the peninsula region and the Yellow River delta region, the regression
coefficients were mainly negative, which meant that population increase can lead to the
decrease in the NGPR of cropland. This finding is mainly due to the fact that these regions
were developed regions with a large amount of population. Thus, the increase in population
more easily awakens the human desire to protect grain planting.
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The regression coefficients of the population urbanization rate for most of the counties
were positive, and a small number of negative regression coefficients were noticed in
the central and west areas, meaning that the increase in the population urbanization rate
resulted in the growth of the NGPR of cropland in most of the research units (Figure 9b).
This phenomenon is primarily due to the fact that the high level of population urbanization
rate attracts a large number of agricultural labors to stay in urban areas, and then increases
the urban requirement for fruit and vegetable. Consequently, the population urbanization
rate increases the NGPR of cropland from the perspectives of both agricultural labor loss
and planting structure adjustment.

3.3.4. Land Suitability

The spatial heterogeneity of the influences of DEM on the NGPR of cropland is shown
in Figure 10a. In this figure, it can be seen the positive impacts were mostly distributed in
the peninsula region and the southeast where mountains and hills are located, whereas the
negative coefficients were fundamentally clustered in the central and west areas. Shandong
Province is located in the North China plain and has flat land. Thus, the impacts of DEM
are relatively small.
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Figure 10. Spatial characteristics of the regression coefficients of land suitability factors detected by
the GWR model.

The growth of organic matter content can lead to the increase in the NGPR of cropland
in most areas of Shandong Province. This finding is due to the fact that most of the
counties had positive regression coefficients of this variable, and only a few counties had
negative coefficients; additionally, the negative coefficients’ absolute values were quite
small (Figure 10b). The cropland in Shandong Province is fertile; thus, the impacts of
organic matter content on the NGPR of cropland are relatively slight. In addition, the
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increase in organic matter content may increase the output of the cash crops and promote
farmers’ willingness to intercrop or apply NGPR on cropland.

The impacts of precipitation on the NGPR of cropland are similar to those of the
organic matter content: for most of the research units, it can significantly promote the
NGPR of cropland (Figure 10c). Shandong Province has a temperate monsoon climate
with simultaneously hot and rainy seasons; wheat and corn are the dominated grain crops
which do not require excessive precipitation. For most of the season, the precipitation is
enough for grain production but insufficient for fruit and vegetable production. Thus, the
increase in precipitation can lead to an increase in the NGPR of cropland.

3.3.5. Utilization Degree of Cropland

The NGPR of cropland has close connections with the utilization degree of cropland.
The characteristics of the regression coefficients of cropland productivity displayed a pattern
of the positive influences distributed in the southwest, east, and peninsula region and the
negative agglomerated in the other research units (Figure 11a). For the distribution pattern
of the cropland area per capita, the positive regression coefficients were mostly clustered in
the south, and the others were negative (Figure 11b). These phenomena indicated that the
increases in cropland productivity and cropland area per capita can alleviate the NGPR
of cropland. The output of cropland and the increase in cropland density can both reflect
the income of grain farming. Thus, the increase in these two variables promotes farmer
willingness to conduct grain production.
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4. Discussion
4.1. Understanding the Spatial Patterns of the NGPR of Cropland and Its Driving Factors

The level of the NGPR of cropland is closely correlated to global food security and the
green development of society because it is one of the key parameters that can determine
grain production [50]. The regional food security is under threat if a region has high level
of the NGPR of cropland, regardless of the size of the existing area of cropland [51,52].
Existing studies have exerted a considerable amount of work to detect the NGPR of
cropland in different regions and scales [12,14]. However, when detecting the NGPR
of cropland, the existing literature usually considers the cropland as a whole and does
not classify the cropland in detail [49]. In addition, most of the NGPR calculations in
previous research were based on the statistical data or land use transfer data, which may
lead to uncertainties [15,19]. Therefore, this research classified the cropland into paddy
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land, irrigated land, and dry land on account of the actual condition of the cropland use
in the case region. Afterward, it calculated their NGPRs and the NGPR of cropland in
2019 based on the land survey data, which is the most accurate land use data in China.
Distinct from previous research, this study showed that different types of cropland have
different levels of NGPRs across regions, and the NGPRs of irrigated land and cropland are
relatively similar because the area of irrigated land takes up 72.34% of the total cropland
in Shandong Province. In 2019, the NGPR of cropland in Shandong Province is 28.99%
(Table 2), which is lower than that in Sichuan Province and the mean level in China reported
by Liang et al. [25] and Zhao et al. [19], showing the high efficiency in grain cultivation in
Shandong Province. Interestingly, the NGPR of paddy land is the lowest, which may be
due to its small area. As for the spatial characteristics of different types of cropland, the
SDE model and the spatial autocorrelation analysis presented that the NGPR of cropland,
irrigated land, and dry land shared a similar spatial pattern; by contrast, that of paddy land
had its unique trend. Furthermore, a significant spatial cluster pattern exists in the spatial
distribution of the NGRPs of all types of cropland, coinciding with the research conducted
by Zhang et al. [20]. This phenomenon is due to the reasons listed as follows: (1) the NGPR
of cropland is mostly decided by the NGPRs of irrigated land and paddy land because
of their high proportion in cropland; (2) in Shandong Province, the paddy land is usually
split up from the historical irrigated land where its irrigation water has disappeared; thus,
paddy land and irrigated land typically share similar spatial distribution; (3) the paddy
land is mainly distributed near the water source to ensure the water requirement, which
has different location than the other types of cropland; (4) the paddy land in Shandong
Province is mainly used to plant cash crops and thus has a high level of NGPR.

The driving factors analysis is a key process for understanding a typical phenomenon
to better manage and promote its scientific development [53–55], which has been ex-
plored in many fields, for instance, land use change [56], ecosystem services [57,58], house
price [59], carbon emission [60], etc. To obtain a clearer understanding of the NGPR, ac-
cording to the previous studies, this research selected ten potential variables based on the
aspects of economic development, technology, population, land suitability, and utilization
degree of cropland at county scale and then explored the spatial effects of the driving
factors on NGPR of cropland in 2019. The most effective way to manage the NGPR of crop-
land scientifically is on account of the spatial heterogeneity of driving factors at different
administrative units [61,62]. Therefore, formulating targeted policies is the key for scientific
management of the NGPRs of cropland across counties.

This research analyzed the specific influence of economic development, technology,
population, land suitability, and utilization degree of cropland factors. The GDP in the pri-
mary industry, technology, and utilization degree of cropland factors was identified to have
a predominantly negative effect on the NGPR of cropland, whereas other factors promoted
the occurrence of the NGPR of cropland (Figures 7–11). These results are in line with the
existing studies [18,25]. This research also found that the influence degree of different vari-
ables on the NGPR of cropland varied with their distributions. To be specific, the positive
coefficients of population and proportion of GDP of the primary industry in GDP displayed
both a spatial distribution of gradually deceasing from the south to the north and the
negative coefficients mainly located in the peninsula region. These phenomena are mainly
due to the relatively unstable geographical environment in hilly areas causing the small
population and the relatively backward agricultural development in these regions [63,64].
The population urbanization rate affects the NGPR of cropland positively nearly in the
entire research area. This finding can be explained by the following: on the one hand, the
migration of population from rural to urban areas leads to labor loss in the agricultural
sector and further leads to cropland abandonment; on the other hand, it increases the trans-
formation from grain production to vegetable and flower production [36,65]. Precipitation
as well as organic matter content also have a positive impact across the entire research area,
which coincided with the study by Wang et al. [11]. By contrast, these two variables have
negative coefficients only in the hilly regions. The factors that have a negative effect on
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the NGPR of cropland include total power of agricultural machinery per capita and the
utilization degree of cropland factors, which are similar to the results of Hu et al. [49]. The
former indicates the high input and scale production of cropland and the later represents
the environment status of grain production [66]. Therefore, the increase in these factors
brings out the reduction in the NGPR of cropland. In addition, every research unit should
focus on the factor that can decline the NGPR of cropland in its own unit for good control
efficiency.

4.2. Policy Implications

According to the analysis in this research, some policy references were suggested for
the government, which require considerable attention to decrease the NGPR of cropland
while protecting grain production.

(1) Strictly control the NGPR of irrigated land and improve grain utilization efficiency
of paddy land and dry land. In Shandong Province, the irrigated land takes up
the primary position; its proportion is more than 70%. The NGPR of irrigated land
is closely related to the NGPR of cropland, regardless of its figure and its spatial
distribution both at prefectural city and county scales. Therefore, controlling the
NGPR of irrigated land is vital for decreasing the NGPR of cropland. Additionally, the
proportion of paddy land and dry land is relatively low, but their NGPRs are relatively
high, especially for paddy land (Table 2 and Figure 3). Thus, the targeted policies
related to paddy land and dry land should be implemented by decision makers.

(2) Based on the spatial patterns of the NGPR of cropland, the focuses and proposals pay
close attention to the cluster areas with high NGPR. Additionally, these regions need
to draw inspirations from cluster regions with low NGPR. The spatial distribution
of NGPR of cropland shows district characteristics, where the High–High cluster is
located in the southeast and northeast and the Low–Low cluster is distributed in the
northwest, regardless of the types of cropland (Figure 6). Consequently, to administer
the NGPR of cropland in high-NGPR cluster regions, the government should consult
the experiences of the regions with low NGPR. Moreover, the low-NGPR regions need
to take precautions against the future increase in NGPR.

(3) By identifying the spatial heterogeneity of key factors at different counties, promulgate
policies for regional differentiation to relieve the NGPR of cropland. This research
identified that the total power of agricultural machinery per capita and the utilization
degree of cropland factors affected the significant decrease in the NGPR of cropland,
although impact degree varied across counties. Therefore, we suggest that nearly
the entire research area can improve these abovementioned three factors to reduce
the NGPR in Shandong Province. Meanwhile, we also found that a few factors can
reduce the NGPR of cropland in specific regions; for instance, the population and
proportion of GDP of the primary industry in GDP in the peninsula region and GDP
in the primary industry in the south. Therefore, the regional differentiations should
be reflected in policies.

4.3. Limitations

This research has estimated the NGPRs of cropland, paddy land, irrigated land, and
dry land in 2019 and explored the driving factors of the NGPR of cropland in Shandong
Province at county scale. Thus, this research has made contributions to future policy
implementations. However, due to the data limitations, several limitations need to be
ameliorated by further research. First, the NGPRs of different croplands at patch scale
should be explored. This research only investigated the NGPRs of croplands at county
scale and failed to identify which patch is under the progress of NGPR, which is the key
element to manage and promote the NGPR of cropland to ensure grain production. Second,
the effects of factors on NGPR are not constant. They varied with the value of factors. This
research failed to investigate the non-linear effects of the factors on NGPR. Finally, the
influences of labors in different sectors should be considered, because the loss of labors in
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the agricultural sector might result in cropland abandonment, which will exacerbate the
phenomenon of NGPR.

5. Conclusions

Identifying the actuality of the NGPR of cropland and its driving factors is vital for
maintaining grain supply and food security. However, a knowledge gap persists in the
NGPRs of different types of cropland and their drivers. Thus, taking a grain production
base, Shandong Province, China, as a case, this research explored the spatial features of
the NGPRs of cropland, paddy land, irrigated land, and dry land in 2019, respectively, and
identified the spatial heterogeneity of drivers of the NGPR of cropland from economic
development, technology, population, land suitability, and utilization degree of cropland.
The conclusions are as follows: (1) The NGPR of cropland is relatively lower in Shandong
Province and dominated by that of irrigated land; (2) The phenomenon of NGPR of cropland
is much more severe in the southeast of Shandong Province; (3) Spatial heterogeneity
of driving factors exists in the impacts of the NGPR of cropland. The total power of
agricultural machinery per capita and utilization degree of cropland factors can relieve
the NGPR of cropland in nearly the entire research area. The proportion of GDP of the
primary industry in GDP, urban population rate, DEM, and precipitation are the obstacles
that influence the reduction in the NGPR of cropland. To control the NGRP of cropland, at
a provincial scale, the government can improve the agricultural technology and increase
the quality of cropland. At a regional scale, every county should make policies according
to their exact driving factors. This research emphasized the importance of identification
on the causes of NGPR of cropland and put forward targeted relieving the NGPR policies
with regional differentiations.
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