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Abstract: The identification of small land targets in remote sensing imagery has emerged as a
significant research objective. Despite significant advancements in object detection strategies based
on deep learning for visible remote sensing images, the performance of detecting a small and densely
distributed number of small targets remains suboptimal. To address this issue, this study introduces
an improved model named YOLOV4_CPSBi, based on the YOLOV4 architecture, specifically designed
to enhance the detection capability of small land targets in remote sensing imagery. The proposed
model enhances the traditional CSPNet by redefining its channel partitioning and integrating this
enhanced structure into the neck part of the YOLO network model. Additionally, the conventional
pyramid fusion structure used in the traditional BiFPN is removed. By integrating a weight-based
bidirectional multi-scale mechanism for feature fusion, the model is capable of effectively reasoning
about objects of various sizes, with a particular focus on detecting small land targets, without
introducing a significant increase in computational costs. Using the DOTA dataset as research data,
this study quantifies the object detection performance of the proposed model. Compared with various
baseline models, for the detection of small targets, its AP performance has been improved by nearly
8% compared with YOLOV4. By combining these modifications, the proposed model demonstrates
promising results in identifying small land targets in visible remote sensing images.

Keywords: remote sensing; multi-scale feature fusion; land target detecting; deep learning; CNN;
reasoning ability; YOLO network; BiFPN

1. Introduction

Optical remote sensing image has the advantages of high resolution and rich feature
information and being intuitive and easy to understand [1]. The primary objective of target
detection is to identify interesting targets from massive data and extract their location
information. The task of target detection in optical images involves the automated analysis
of details about the image characteristics using relevant algorithms, followed by the classi-
fication of targets and extraction of their positional characteristics. During the early stages
of exploration, target detection in optical images primarily relies on manual classification
and positioning, which proves to be both time-consuming and labor-intensive while also
falling short of meeting real-time requirements.

Over the course of several years, the landscape of automatic recognition and detection
methods for optical images has undergone a progressive transformation. This evolution
has encompassed various techniques, such as template matching [2] and image analysis [3].
However, these methodologies necessitate prior manual design and calibration of feature
information. This dependence on expert-engineered feature information introduces a
reliance on a substantial cadre of experts and is characterized by a tailored focus, often
lacking in robust generalization capability. In tandem with the advancement of artifi-
cial intelligence technology, object detection approaches grounded in deep learning have

Land 2023, 12, 1813. https://doi.org/10.3390/land12091813 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land12091813
https://doi.org/10.3390/land12091813
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0002-5022-610X
https://orcid.org/0000-0003-1298-4839
https://orcid.org/0000-0002-9818-9205
https://orcid.org/0000-0002-8040-0367
https://orcid.org/0000-0002-8486-1654
https://doi.org/10.3390/land12091813
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land12091813?type=check_update&version=1


Land 2023, 12, 1813 2 of 17

emerged as prominent contenders. These methods have garnered widespread adoption
and dissemination across numerous traditional disciplines [4–6]. This method uses the
theoretical basis that neural networks can fit any function and studies a neural network
that can automatically complete feature information learning and task reasoning, which
significantly enhances target detection tasks’ speed and precision in natural scenes [7].
While this deep learning-based network has demonstrated remarkable performance in
natural scenes, its application in optical remote sensing images remains challenging due to
significant disparities between the two types of imagery.

As deep learning-based target detection continues to be extensively investigated, an
increasing number of one-stage object-detecting algorithms are being employed in optical
remote sensing images. A mainstream approach is to perform cluster analysis on the
target dataset through an automatic clustering algorithm, then design an adaptive distance
calculation formula to obtain a more meaningful intersection ratio, and finally learn from
the model architecture of the YOLO series to complete the adaptability. For example,
the idea of the Densely Connected Convolutional Networks (Densenet) [8] is applied,
which combines the dense connection layer in the Dense network and the residual block to
improve the network’s capacity to extract feature information. Moreover, within the Neck
network that performs the feature fusion, diverse structures of the characteristic pyramid
are extensively employed, and these prevailing optimization approaches exhibit superior
performance compared to conventional approaches.

In 2019, Ghorbani et al. introduced a novel approach utilizing the PIIFD characteri-
zation operator [9] to address differentiated samples and their background changes. The
study demonstrated the superior performance of this method in optical remote sensing
target detection compared to traditional approaches; Cao C et al. introduced a ship detec-
tion algorithm based on YOLO in 2020 [10], which actually adopts the above mainstream
method. The author deviated from the conventional YOLO approach of utilizing three
anchor boxes and instead recalculated the anchor box parameters, specifically using a
clustering algorithm, and incorporated the detection scale into the output layer of the
network extracting characteristics. The receptive field method enhances the detection
accuracy of smaller objects like ships, reducing the network further. Xu et al. adopted an
improved method by selecting the feature fusion structure of the network [11]. It is difficult
to disseminate low-level semantic information when the target is small.

In the feature extraction network, Yang et al. [12] increased the low-level feature infor-
mation, which is beneficial to the classification and localization of small targets. Meanwhile,
the author changes the connection mode of the network to dense connection, which reduces
the loss of the propagation of the underlying features in the network. Wang et al. [13]
also tried to integrate low-level characteristic details into the network and amplified the
significance of smaller target samples by assigning them higher weights within the loss
function, thus increasing the accuracy of detecting small targets. The deconvolution layer
was employed to integrate shallow characteristics with deep characteristics, thereby aug-
menting the detection capability of small targets in Li et al.’s study [14]. To mitigate the
influence of background information on the detection task. Fu et al. [15] performed weight
distinction before the fusion of low-level characteristic details and characteristic details. The
weight details are implemented by a balance operator, but the robustness is poor. Zhang
et al. [16] utilized the two-stage object detection network Faster RCNN, up-sampling all
candidate objects obtained in the first stage. This feature upsampling operation is usually
done by deconvolution calculation so that a larger-scale feature map can be obtained.
Using a similar idea, Schilling et al. [17] studied scale improvement by adding high-level
feature maps and also used deconvolution layers to achieve this scale expansion and fused
low-level characteristic details with the expanded high-level characteristics to achieve the
final target detection task. Liu et al. [18] replaced the deconvolution calculation with the
atrous convolution calculation to reduce the computational cost. While this enhancement
does yield a reduction in network parameters to some extent, it leads to the loss of certain
features while maintaining the same receptive field. To this end, Ying et al. [19] studied the
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problem caused by atrous convolution by completing partial information fusion through
the attention mechanism.

Optical distant sensing images are not only unique from images in common natural
scenes but also have huge differences between various targets in their own sample images.
This phenomenon of huge differences in appearance and shape makes it difficult to preset
the anchor frame of the network, resulting in the result that the target is missed [20–22].

The current mainstream solution is to increase the number of anchor boxes to try to
cover more possible targets. In addition, the network’s robustness about the appearance
and shape of the object can be enhanced through variable neural networks and key fea-
ture detection. Currently, numerous studies have focused on augmenting the network’s
generalization capabilities toward target appearance by explicitly increasing the quan-
tity and diversity of anchor boxes [23–25]. Since the target angle is relatively random in
optical remote sensing images, it is difficult to fundamentally solve such problems with
poor robustness, and increasing the number of anchor boxes also causes the overall com-
putational cost of the network with greater pressure. It can be seen that the solution at
the current stage is essentially to alleviate the occurrence of this problem through brute
force calculation.

The primary focus of this study is on enhancing the detection capability of small-scale
objects in optical remote sensing imagery without significantly increasing computational
complexity. By improving the channel division method of the Cross Stage Partial (CSP)
structure [26] and simultaneously applying it to the Neck component of the YOLO network,
the reusability of features is enhanced. The proposed enhancements are employed in both
the Neck and Backbone structures of the YOLOv4 network, resulting in the introduction
of the CSPX_1 structure. Given the necessity for specific adaptive improvements to the
CSP structure in the Neck component, ResBlock structures are removed, and a stack of
Cross-body Link (CBL) structures is added. A feature fusion structure named CSPX_2 is
designed to acquire fused features with stronger semantic information. Building upon the
Bidirectional Feature Pyramid Network (BiFPN), the feature fusion network within the
model is improved, introducing bidirectional feature fusion mechanisms into the Neck
network structure of YOLOv4. Adaptive improvements are tailored to the structure of
the YOLO network and the characteristics of remote sensing imagery. The DOTA dataset
is used for experimentation, and during data preprocessing, various data augmentation
schemes are employed to enhance features related to small objects.

The experimental phase involves a performance comparison between the proposed
model and baseline models. The proposed model showcases approximately a 3.2% im-
provement in mAP (mean Average Precision) compared to the traditional YOLOv4 model.
This validates the effectiveness of the proposed model improvements. Additionally, a
comparison of small object detection performance with multiple detection models further
demonstrates that the improvements made in this study to the YOLOv4 network’s feature
fusion aspect successfully enhance the model’s detection performance and robustness con-
cerning medium to small-scale objects. It proves the feasibility of the weighted bidirectional
multi-scale feature fusion mechanism on the YOLO network architecture and provides
certain improvement ideas for models with similar structures.

The main innovations and contributions of this article are as follows:

1. The main contribution of this research is the improvement in feature fusion of the
YOLOv4 network, which successfully enhances the model’s detection performance
and robustness against small land targets.

2. This study introduces improvements to the CSP structure, which enhances the
reusability of functions. Through the introduction of the CSPX_1 structure, the
CSP enhancement function is integrated into the Neck and Backbone structures of
the YOLOv4 network, which is an innovation aimed at improving the overall detec-
tion performance.

3. Research on introducing the CSPX_2 structure and bidirectional feature fusion mech-
anism into the Neck network structure. This helps capture stronger semantic infor-
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mation and improve object detection accuracy. This research verifies the feasibility of
the weighted bidirectional multi-scale feature fusion mechanism within the YOLO
network architecture. This innovation has the potential to benefit models with similar
structures in various fields.

2. Data
2.1. DOTA Dataset

The DOTA dataset [27] is a comprehensive dataset specially designed for identifying
visible light remote sensing images produced and maintained by Wuhan University. The
dataset comprises a wide range of image sizes, varying from 800 × 800 pixels to large-scale
images measuring 20,000 × 20,000 pixels. The data comes from multiple satellite data and
different platforms, including data from GF-2 and JL-1 satellites, as well as data from Google
Earth and Optical remote sensing imagery. The DOTA dataset includes 15 categories, which
are marked in a total of 2806 image files of different sizes, and a total of 188,282 instances of
real object detection tasks are marked.

2.2. Improvements to the DOTA Dataset

This section aims to improve the quality and usefulness of the DOTA dataset in optical
remote sensing image detection tasks. It does this by segmenting images, augmenting
images with pixel-level augmentation, and applying region-based augmentation methods,
ultimately generating rich datasets for more efficient training and evaluation of network
models. The specific method is as follows.

2.2.1. Sample Cutting Method Based on Sliding Overlapping Area

In this study, the original image files of the DOTA dataset are cut to 832 × 832 size.
This paper tries the method of overlapping area cutting, which adopts the idea of sliding
window to overlap the image with the same step distance to solve the loss of the labeling
box information in the original image after cutting. Finally, it is a more suitable solution to
segment the primary image with a step size of 50%. After cutting, 55,992 optical remote
sensing images, each with dimensions of 832 × 832, were acquired.

2.2.2. Analysis of Pixel-Level Enhancement Methods

In consideration of the inherent properties of remote sensing images, this study em-
ployed various image augmentation techniques, including random rotation, random zoom,
horizontal flip, contrast adjustment, saturation adjustment, translation transformation,
brightness adjustment, noise transformation, vertical flip, sharpness modification, and
random cropping, on the original images. Pixel-level enhancement combination, these
image enhancement methods can expand the size of the primary dataset according to the
actual characteristics of the samples, without bringing irrelevant image feature information
into the new dataset.

The noise transformation method is Gaussian noise transformation. This data enhance-
ment method brings more random data disturbance, which can guide the detection model
to learn more meaningful characteristics and enhance the robustness of network prediction.
In addition, this paper does not perform indiscriminate enhancement on all the original
samples, but randomly selects about 60% of the original samples and applies 3 random
enhancement methods to the samples.

2.2.3. Analysis of Area Random Erase Method

A variety of pixel-level data enhancement methods, including the GridMask [28]
method based on the idea of regional random erasure and the Mosaic method, are applied
to the DOTA dataset through different thresholds and scales, and a new dataset applied to
the improved network model described later is produced. Finally, the self-made dataset
contains 87,382 sample images with a size of 832 × 832 and a total of 334,585 target frames
are marked. The annotation information adopts the Pascal VOC label format, and the file
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is in xml format and follows the xml syntax specification. The annotation information
includes Filename, Aize, Object_Name, Pose, Truncated, and Difficult.

3. Methods
3.1. The Structure of Cross-Stage Partial

The main purpose of the CSPNet [29] is to enhance the network’s structural level in
order to mitigate the computational burden of the network. CSPNet partitions the input
into two distinct components: short-connected edge and convolutional edge.

The convolutional edge extracts feature information through the operation of the
traditional convolution structure, and the short-connected edge is directly processed with
the output of the CSPNet structure after a small amount of processing. Feature maps are
connected, as shown in Figure 1.
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Through this channel division method, CSPNet reduces the memory cost required by
the network in the operation process, and on this basis, improves the learning ability and
maintains the performance of the model.

The main reason why CSPNet can accelerate network processing is that by intercepting
the gradient flow, it prevents the network from continuously calculating repeated content
when updating gradient information, as shown in Equations (1) and (2) for the forward
propagation of ordinary DenseNet and backpropagation [30].

x1 = w1 ⊗ x0
x2 = w2 ⊗ [x0, x1]

. . . . . .
xk = wk ⊗ [x0, x1, . . . , xk−1]

(1)

w′1 = f (w1, g0)
w′2 = f (w2, g0, g1)
w′3 = f (w3, g0, g1, g2)

. . . . . .
w′k = f (wk, g0, g1, g2, . . . . . . , gk−1)

(2)

where ⊗ represents the convolution operator, [x0, x1, . . . , xk] represents feature information
splicing, f is the update method of the weight parameters, gi is the i-th layer’s gradient
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information, wi is the i-th layer’s weight information, while xi is the changed layer’s
feature output.

It can be seen from this formula that a substantial quantity of gradient information is
reused in backpropagation, which causes different hierarchical structures in the network to
learn the same feature information. Therefore, the CSPNet structure proposes to divide
the input feature information, denoted as x0 =

[
x0
′
, x0 ′′

]
. Among them, x

′
0 represents the

shorted edge, x0 ′′ represents the convolution edge, and the output xτ is obtained after
the calculation of the convolution edge of x0 ′′ , and, finally, the final output result xU can
be obtained by splicing xτ and x0. Its forward propagation and backpropagation weight
update rules are shown as Equations (3) and (4) [31].

xk = wk ⊗ [x′′0 , x1, . . . , xk−1]
xτ = wτ ⊗ [x′′0 , x1, . . . , xk] · · ·
xU = wU ⊗ [x′0, xτ ]

(3)

w′k = f (wk, g′′0 , g1, g2, . . . , gk−1)
w′τ = f (wτ , g′′0 , g1, g2, . . . , gk−1)
w′U = f (wU , g′0, gτ)
· · · · · ·

w′k = f (wk, g0, g1, g2, . . . , gk−1)

(4)

From the provided equation, it is evident that each side’s gradient update channel
operates independently. As a result, these channels do not contain redundant gradient
information with respect to each other. This approach prevents the flow of gradients
and thereby mitigates the computation of a substantial portion of redundant gradient
information. While it is true that certain feature information within an individual CSP
structure may not undergo processing by predetermined feature extraction networks, the
CSP structure itself functions as a fundamental component of the network. It incorporates
established computational units from the original network. Consequently, in the practical
application of the CSP structure, the feature extraction segment of the network is formed
by stacking multiple CSP structures consecutively. This approach effectively prevents the
loss of feature information.

YOLOV4 replaces all residual structures of DarkNet with CSP structures in the back-
bone part of the network [27]. This replacement not only substantially enhances the
characteristic extraction ability of the backbone network in YOLOV4, but also reduces the
inference calculation to a certain extent quantity. On this basis, this study explores the
possibility of applying the CSP structure to the Neck part of the YOLO network.

To reduce the amount of computation during inference, this paper uses the CSPX_1
structure shown in Figure 2a. Unless otherwise specified, all CSPX_1 structures in this
article are of this type. For the Neck part, because the task of the backbone network is to
extract features, a large number of residual networks are designed to improve the learning
ability of features. But in the Neck part of the network, its main task is to fuse features, so
specific adaptive improvements are required for the CSP structure of the Neck part. This
article makes modifications on the basis of CSPX_1, deletes the ResBlock structure, and
increases the stacking of the CBL structure. This improvement is to obtain stronger fusion
features of semantic information, and its structure diagram is shown in Figure 2b.

The enhanced CSP architecture introduced in this article also involves the division
of feature channels after the input of features. However, the data flow from these two
divisions is managed by predetermined computational units. The resulting outputs from
these units do not require dimension adjustment before being directly concatenated. This
approach not only enhances feature reusability compared to the traditional CSP structure
but also adheres to the core principles of the CSP architecture. Moreover, it reduces
computational complexity in comparison to standard convolutional structures by truncating
gradient information.
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3.2. The Structure of BiFPN

YOLO network’s first characteristic fusing method was influenced by the Feature
Pyramid Network (FPN) structure and introduced into YOLOV3’s Neck network. Although
many cross-scale feature fusion network structures have been developed since FPN, such
as Path Aggregation Network and Neural Architecture Search-feature Pyramid Networks
used in the YOLO series, these structures are used to fuse feature information extracted from
different network levels. However, these input feature information from different network
levels often has different resolutions, so the input feature information of different scales
also has unequal contributions to the output feature information after fusion. Therefore, it
is a reasonable solution to weigh the feature information of different scales when fusing
features, allowing the network adaptively to learn the weight during training.

This is one of the main design ideas of BIFPN [32], which introduces weights that can
be adaptively learned by the network to distinguish the importance of characteristic details
at different scales for effective feature layers. In addition, the feature fusion mechanism,
rooted in the FPN concept, clarifies the importance of feature fusion between different levels,
but these methods all use simple upper- and lower-layer connections as a fusion method
and do not consider the problem of excessive abstraction of feature information caused
by such repeated fusion, so BiFPN also proposes a bidirectional cross-scale connection
feature fusion mechanism. By adding a skip connection to the network at the same level,
the underlying semantic characteristic is enhanced, and since the connected characteristic
is at the same network level, it does not introduce too much computational cost. Figure 3
illustrates FPN’s structures and its variants.

The feature fusion network described in this paper fully absorbs the idea of BiFPN,
introduces the bidirectional feature fusion mechanism into the Neck network structure of
YOLOv4, and makes adaptive improvements to the structure of the YOLO network.
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The orange data flow in the figure represents the horizontal skip connection, and the
red and blue data flow represents the bidirectional cross-scale connection. As mentioned
above, considering the fine-grained and densely distributed features exhibited in optical
remote sensing images, the YOLOV4_CPSBi network proposed in this paper removes the
horizontal skip connection at the top of the traditional YOLOV4 network and transfers the
computation of the connection to the bottom of the network. It provides more abundant
underlying feature information for the small target detector. This improvement effectively
improves the detection ability of small-scale objects in optical remote sensing images
without escalating computational complexity.

4. Experiment
4.1. Performance Index

Table 1 provides a comprehensive overview of the common performance indicators
employed in this study for the target detection model [33]. Specifically, the main perfor-
mance metric utilized in this experiment is mAP@0.5, which is computed based on the
precision and recall rates. The recall rate (Recall) signifies the proportion of accurately
detected targets in relation to total similar targets present in the test dataset, and its calcula-
tion is defined in Equation (5). On the other hand, precision indicates the ratio of correctly
identified objects to all the detected objects, and its calculation is described by Equation (6).

Recall =
TP

TP + FN
(5)

Precision =
TP

TP + FP
(6)

Table 1. Common performance metrics.

True Label Prediction Results Common Performance Metrics

True Positive TP
True Negative TN
False Negative FN
False Positive FP

The data of Recall and Precision are formed into two tuples. Under the determined
IoU threshold, the area enclosed by all the two tuples above the two-dimensional coordinate
axis is calculated as each category. The AP are averaged together to derive the mAP index
value, which is defined in Equations (7) and (8).

AP =
∫ 1

0
P(y)dy (7)

mAP =
∑N

i=1 APi

N
(8)

4.2. Software and Hardware Environment

All the experimental data mentioned in this study were generated in the environment
shown in Tables 2 and 3.

Table 2. Software environment.

Software Environment Version

Python V 3.6+
TensorFlow V 2.7.0

CUDA V 11.2
CuDNN V 8101

Matplotlib V 3.5.0
TensorBoard V 2.7.0

Operating System Ubuntu 20.04.2 LTS
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Table 3. Hardware environment.

Hardware Model Performance Parameters

GPU RTX 3090 × 1 25.4 GB
CPU Xeon Gold 6142 × 6 2.6~3.7 GHz
RAM DDR5 6000 16 GB × 4 64 GB
ROM SAMSUNG 980 PRO 400 GB

4.3. Pre-Training Parameter Settings

This experiment employed a pre-training approach, where the main portion of the
network underwent parameter updates on the VOC dataset. Despite the VOC dataset
consisting of natural images, the universality of image features allows for increased training
efficiency. This approach also serves to prevent significant oscillations in model perfor-
mance during training. The training of the pretrained model, including the number of
initially frozen epochs and other parameter configurations during network training, is
outlined in Table 4.

Table 4. Network training parameters.

Parameter Setting Related Parameter Setting

Freeze_Epoch 50

YOLOV4_CSPBi triggers EarlyStop at 41
YOLOV4 triggers EarlyStop at 25

BatchSize: 12
Freeze_lr is set to 0.001

UnFreeze_Epoch 150
Turn off the EarlyStop mechanism

BatchSize: 6
UnFreeze_lr set to 0.0001

Optimizers Adam CosineDecayRestarts, initialize Lr to 0.0001

5. Results
5.1. Quantitative Analysis of the Detection Performance of YOLOV4_CSPBi

This section uses the parameters provided in Section 4.3 for quantitative analysis of the
detection performance of YOLOV4_CSPBi. Figure 5 shows the Loss curves of the training
process of the proposed model and the baseline model.
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Figure 5 presents that during the phase of freezing the backbone characteristic extrac-
tion network due to the low degree of feature fusion of the traditional YOLOV4 network,
the convergence of this training stage is entered earlier. The proposed YOLOV4_CPSBi
model, by enhancing the reusability of feature details within the feature fusion network,
triggers the Early_Stop mechanism later in the freezing stage of the backbone network and
has a stronger learning ability.

From the experimental findings presented in Table 5, it is evident that YOLOV4_CPSBi
exhibits significantly enhanced target detection capabilities compared to YOLOV4.

Table 5. Comparison of mAP and FPS indicators of the two networks.

Target Category YOLOV4 YOLOV4_CPSBi

Plane 84.92 88.47
Baseball Diamond 79.58 80.17

Bridge 46.62 48.73
Ground Track Field 71.78 75.51

Small Vehicle 70.67 73.38
Large Vehicle 63.29 69.57

Ship 77.37 79.42
Tennis Court 86.71 87.96

Basketball Court 81.69 81.2
Storage Tank 70.73 72.88

Soccer Ballfield 61.94 62.39
Roundabout 60.11 63.03

Harbor 71.08 77.71
Swimming Pool 68.27 76.25

Helicopter 48.81 55.44
TOTAL_mAP@0.5 69.57 72.8

FPS 45 38

The mAP metric has demonstrated an improvement of approximately 3.2% compared
to the traditional YOLOv4 model. Moreover, across the majority of object categories, the
proposed model exhibits notably superior detection performance. In the case of four
specific object categories—large vehicles, harbors, ships, and helicopters—the detection
AP has achieved enhancements of 6.3%, 6.6%, 8.0%, and 6.6%, respectively. These results
vividly highlight the efficacy of the various enhancements introduced in YOLOv4_CPSBi.
Figure 6 presents a visual illustration comparing the final detection outcomes.
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Figure 6a showcases the detection effect obtained using the conventional YOLOV4
network, while Figure 6b portrays the detection effect achieved by the YOLOV4_CPSBi
network. The detection confidence of the traditional YOLOV4 network is generally lower
than that of YOLOV4_CPSBi, and three tennis courts and a large number of car targets
are missed. Among them, the reason for the missed inspection of the tennis courts is that
the three tennis courts that were missed are all because their directions have changed
greatly. However, the dataset used in this experiment has been enhanced and expanded on
the features of rotation in similar directions, so it can be shown that the YOLOV4_CPSBi
model has a stronger learning ability for this rotation difference feature than the traditional
YOLOV4 network.

5.2. Ablation Experiment

This section primarily focuses on validating the impact of the Focal Loss [34] and the
two optimizers on both the baseline model and the proposed YOLOV4_CPSBi in terms
of performance. Focal Loss is a specific loss function based on the target detection model,
which addresses the uneven distribution of positive and negative samples while detecting
the one-stage target. The loss function is a relatively simple sample image with a small loss
weight. The method improves the detection success rate of difficult samples. Its formal
expression is shown in Equation (9).

FL(pt)= −(1− pt)
γlog(pt)

pt=

{
p, y = 1

1− p, else
(9)

As shown in Table 6. Adam and SGD optimizers have little effect on model perfor-
mance, but the addition of Focal Loss greatly diminishes the model’s overall efficiency.
This may happen because the Focal Loss incorrectly marks the correct samples of lower
quality as Difficult, which instead makes the model pay more attention to some False Posi-
tives, resulting in an increase in the false positive rate. However, in view of the successful
application of Focal Loss in the RetinaNet network, after fully studying its positive and
negative sample calibration principle, it is theoretically possible to improve the difficult
sample mining ability of the YOLO series network, which is also one of the directions that
should be continued in the future.

Table 6. Ablation experiment results.

Focal Loss Optimizer YOLOV4 Map@0.5 YOLOV4_CPSBi Map@0.5 Change

\ Adam 69.57 72.80 —√
Adam 61.64 66.26 ↓√
SGD 62.38 65.77 ↓

\ SGD 70.44 72.45 ~

In Table 6, \ represents that Focal Loss is not used, and
√

represents that Focal Loss is
used. — represents no change; ~ represents the same level and little change; ↓ represents
performance degradation.

5.3. Quantitative Analysis Detection Capability for Small and Medium-Sized Objects

Since YOLOV4_CPSBi has made adaptive improvements for remote sensing images
with small and dense targets, this paper focuses on the comparison of the detection perfor-
mance in the DOTA dataset specifically for small and medium-scale objects, employing the
same type of network. The scales are divided into small-scale objects (S, image size less
than 56 × 56 pixels), medium-scale objects (M, image size less than 126 × 126 pixels), and
large-scale objects (L, image size larger than 126 × 126 pixels).

In this experiment, YOLOV3, YOLOV4, SSD, and RetinaNet of the same type as
YOLOV4_CPSBi were selected as comparison models. These models are all representative
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networks of the one-stage target detection model. The main advantage is that the network
performs the inference task of classification and localization, and the speed of object
detection is higher than that of other types of networks.

Table 7 presents the comparative data of this experimental study, wherein AP_L, M,
and S denote the average precision values for large, medium, and small scales, respectively.

Table 7. Comparison of the same type of network for medium and small-scale target detection.

Detection Model Backbone Network Total_AP AP_L AP_M AP_S

YOLOV3 Darknet-53 61.16 69.72 63.44 50.32
YOLOV4 CSPDarknet-53 69.57 77.58 70.42 60.71

SSD VGG-16 63.71 71.93 64.77 54.43
YOLOV4_CPSBi CSPDarknet-53 72.8 77.47 72.42 68.51

S2ANet ResNet-152 73.97 80.41 71.66 69.84

It is evident from the results that YOLOV4_CPSBi, which eliminates the horizontal
feature fusion connection in the large-size target detector, exhibits a slight decrease in AP_L.
However, it demonstrates a notable enhancement in the detection capability of AP_M
and AP_S, particularly in detecting small targets, where its AP performance shows an
improvement of nearly 8% compared to YOLOV4.

S2ANet is specifically designed for rotating object detection in aerial images, so it may
perform better in the presence of some oriented objects. However, the method proposed in
this article is designed for small and dense objects rather than directional objects, so there
are certain differences from S2ANet on the DOTA dataset.

Based on the favorable performance indicated in the table, this paper selects YOLOV4
and YOLOV4_CPSBi for further visual comparison when faced with a substantial amount
of small and densely distributed detection samples, as depicted in Figure 7.
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Figure 7a represents the detection outcomes of the YOLOV4 network, while Figure 7b
corresponds to the detection results of the YOLOV4_CPSBi network. Notably, the orange
boxes indicate Large-Vehicle (LV) targets, while the purple boxes represent Small-Vehicle
(SV) targets. It is evident from the visual analysis that YOLOV4_CPSBi exhibits higher
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detection accuracy for small targets. YOLOV4 missed 6 cases of SV targets and 1 case of LV
targets, while YOLOV4_CPSBi only missed 2 cases of SV targets.

Moreover, in Figure 7, a noticeable observation can be made regarding the stronger
robustness of the YOLOv4_CPSBi network. The YOLOv4 network demonstrates a signifi-
cant number of false positives in the detection image, inaccurately classifying 13 instances
of negative samples as Small-Vehicle targets and 1 instance of a negative sample as a
Large-Vehicle target. In contrast, the detection results of YOLOv4_CPSBi do not exhibit any
misclassifications. This further validates that the improvements made in this study to the
YOLOv4 network’s feature fusion aspect have successfully enhanced the model’s detection
performance and robustness concerning medium to small-scale objects.

6. Discussion

This paper preliminarily discusses the application and improvement of YOLO series
networks in target detection in optical remote sensing images. This study introduces a
novel network architecture tailored for the task of small object detection in remote sensing
images, thereby improving the accuracy of the traditional YOLOv4 model in this field.

The key aspects encompass:

(1) Enhanced Dataset Construction: Leveraging the DOTA dataset as the foundational
dataset, several strategic approaches were employed to enhance and refine optical
remote sensing images. These strategies encompassed techniques such as sample
segmentation utilizing a sliding window concept, pixel-level data augmentation,
mosaic-based enhancements, and the implementation of GridMask with the concept
of area random erasing. These efforts culminated in a dataset containing 87,382 sample
images with dimensions of 832 × 832, encompassing a total data size of 87.2 GB and
comprising 334,585 target boxes. Comparative experiments substantiated the efficacy
of the improved dataset in enhancing the learning capacity of pertinent deep learning
neural networks.

(2) Augmented Feature Multiplicity: To bolster feature multiplexing, the study advanced
the channel division methodology within the CSP structure. The enhanced CSP
structure was incorporated within the backbone and neck components of YOLOV4
networks. Through the fusion of bidirectional multi-scale connections and a weighted
feature fusion technique, the study effectively reallocated computational resources
from large-scale target detection to small-target detection. This refinement signif-
icantly fortified the network’s capacity to detect small targets, without incurring
substantial computational overhead. The resultant enhanced model, denoted as
YOLOV4_CPSBi, demonstrated a noteworthy 3.2% improvement in mean Average
Precision (mAP) compared to the conventional YOLOV4 model. Particularly no-
table was the approximately 8% enhancement in Average Precision (AP) performance
pertaining to small target detection when juxtaposed with YOLOV4.

However, certain limitations persist, as outlined below:

(1) Potential Expansion of Rotation Angle Index: To further optimize densely arranged
target detection, it is conceivable to augment the rotation angle index of the target,
akin to methodologies employed in detectors such as SCRDet [35] and IENet [36],
with the aim of achieving superior outcomes;

(2) Holistic Contextual Comprehension: Most existing target detection techniques pre-
dominantly rely on visual characteristics derived solely from the target, thereby
neglecting the pivotal process of holistic image comprehension and contextual inter-
pretation. While some endeavors have incorporated contextual and global informa-
tion, they predominantly concentrate on visual attributes and lack the incorporation
of high-level semantic knowledge, thus yielding diminished interpretability.

7. Conclusions

The detection of targets within optical remote sensing images holds significant im-
plications across both civilian and military contexts. This study centers on the intricate
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challenge presented by the identification of small and densely clustered land targets within
such images. To address this challenge, we propose an enhanced target detection network,
denoted as YOLOV4_CPSBi, which builds upon the conventional YOLOV4 network. This
novel network architecture enhances convolution computations and augments the tech-
nique of feature fusion. Furthermore, it fosters improved feature information utilization by
employing a bidirectional cross-scale weighted connection approach.

The efficacy of the proposed model approach is substantiated through an exhaustive
array of comparative experiments, establishing its prowess in target detection. In particular,
the mAP metric of the proposed model when applied to the DOTA dataset surpasses that of
the conventional YOLOV4 model by a margin of 3.2%. This augmentation in performance is
consistently pronounced across numerous target categories, with a notable boost observed
in the detection accuracy for objects such as carts, ports, ships, and helicopters. Impressively,
the detection AP for these target categories demonstrates improvements of 6.3%, 6.6%,
8.0%, and 6.6%, respectively.

Additionally, the YOLOV4_CPSBi model showcases remarkable advancements in its
detection capabilities, particularly in the context of AP_M and AP_S, attributes that are
especially pertinent to small-scale target identification. Comparative evaluation indicates a
nearly 8% enhancement in AP performance when juxtaposed with YOLOV4. Collectively,
these results validate the substantial enhancement that the proposed model brings to land
object detection tasks in optical remote sensing images. Notably, its heightened robustness
concerning medium and small-scale target recognition reinforces its utility and efficacy in
this domain.
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