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Abstract: The carbon stock (C Stock) is a key soil attribute, especially in areas under degradation.
The objective of this study was to map the C Stock and other physical and chemical attributes on
the soil surface of a micro-watershed located in the Gilbués Desertification Nucleus and to calibrate
pedometric functions to map them, applying spectra obtained by Diffuse Reflectance Spectroscopy
(DRS) in the near-infrared (NIR) region. This study was developed in the Piripiri Stream Micro-
watershed (PSMW), which presents different levels of degradation. A total of 214 composite soil
samples were collected from the 0–0.10 m depth layer. Spectral and laboratory analyses were
performed following traditional methods. The results from 100 samples were subjected to descriptive
analysis, pedometric modeling, and geostatistics, while the remainder were used exclusively for
the prediction and modeling of the predicted attribute maps. C Stock ranged from 0.3 to 11%, with
the highest values associated with the least sandy sites. We assert that stakeholders, including
government agencies, could utilize DRS for mapping main soil attributes, such as C Stocks, soil
granulometry, or total organic carbon, in regions characterized by similar parent material and soil
properties. This application can support informed decision-making regarding land management in
extensive areas facing soil threats.

Keywords: pedometrics; near infrared; partial least square regression; geostatistics; sandy soils; state
of Piauí; land degradation

1. Introduction

Northeastern Brazil is known worldwide for its great productive potential and the
implementation of large-scale agricultural projects involving crops such as soybeans, corn,
and cotton, as well as beef cattle [1,2]. The state of Piauí, Brazil, which is one of the units
of the Brazilian Federation in this territory, besides being known for excelling in food
production, also stands out for harboring the largest area of desertification in the country
(6200 km2), known as the Gilbués Desertification Nucleus [2]. Within this desertification
nucleus, there are clear signs of intense processes of accelerated water erosion, which have
led to the need to investigate the factors contributing to this desertification, as well as
strategies to facilitate its monitoring.

Previous studies have addressed different aspects of desertification in the region.
Lopes and Soares [3] examined changes in soil properties affected by desertification in
Gilbués. Costa and collaborators [4] investigated the impacts of agroforestry systems on
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soil conservation, agricultural productivity, and local socioeconomic well-being. France and
collaborators [5] used satellite imagery to analyze vegetation dynamics and identify areas
susceptible to desertification. Valladares and collaborators [6] characterized and classified
the soils of Gilbués, exploring their relationship with degradation processes. However,
these were focal studies that reflected demands for studies that can be extrapolated to
larger areas.

Land degradation processes represent a global threat that has negative impacts on
ecosystem functioning and the ability to provide ecosystem services such as nutrient
cycling, water retention, and habitat provision [7,8]. In addition, soil degradation also
directly influences biogeochemical cycles, most notably the carbon cycle. During the
degradation process, the reduction of soil organic matter occurs, which results in the release
of carbon dioxide (CO2) into the atmosphere, intensifying the greenhouse effect [9].

Considering that soil is the main carbon sink in terrestrial ecosystems, storing approxi-
mately three times more carbon than forests [10] and almost twice as much as is stored in
the atmosphere [11,12], assessing the effects of degradation caused by accelerated water
erosion can contribute to understanding soil carbon stocks (C Stock).

An alternative for this assessment is the simultaneous analysis of total soil organic
carbon content (TOC), total nitrogen content (TN), nitrogen stock (N Stock), pH, and soil
granulometry. The accurate quantification of these attributes is relevant to understanding
soil carbon dynamics and sequestration capacity. TN and soil pH also play an essential
role in this context, influencing microbial activity and organic matter decomposition, as
mentioned by Bunemann and collaborators [13].

Soil particle size and density (BD) have a direct influence on porosity, aeration, water
infiltration, and nutrient availability. These attributes are fundamental to the stability of
soil aggregates and the preservation of C Stock, as highlighted by Milne et al. [14]. Given
the importance of these factors, the assessment and mapping of soil C Stock in the Gilbués
Desertification Nucleus have become essential tools in understanding degradation pro-
cesses.

The mapping and modeling of soil characteristics play a vital role in mitigating soil
degradation by providing a deeper understanding of the processes and factors that influ-
ence its properties [15,16]. The assessment of soil C Stock through mapping is essential to
support decisions related to land use change, providing valuable information for appro-
priate decision-making [17]. Furthermore, Nijbroek et al. [18] recommended TOC as an
essential parameter to counteract soil degradation.

However, the estimation of soil C Stock based on traditional chemical analysis is a
laborious and costly process, as mentioned by McDowell et al. [19] and Demattê et al. [20].
Faced with the need to obtain faster, more efficient, and cost-effective estimates of these
stocks, innovative methodologies have emerged, such as pedometrics, which allow for the
prediction of a wide range of soil attributes at regional and global scales [21,22].

In this context, Diffuse Reflectance Spectroscopy (DRS) is a low-cost alternative for
the application of pedometrics [23], in which the near-infrared (NIR) region has stood
out as one of the most used for this purpose [22,24]. However, the use of this technique
demands complex data analysis, aiming to associate spectral behavior with the soil attribute
content [25].

In the literature, there are various options for pedometrics modeling to use the DRS for
predicting soil attributes. They are usually presented as machine learning, where adopts
algorithms based on models such as multiple linear regression (MLR), principal component
regression (PCR), random forest (RF), artificial neural network (ANN), support vector
machine regression (SVMR) and partial least square regression (PLSR) [26,27]. Each model
has its own particularities, and the pedometrician is free to choose the best one at their own
convenience. Through those models, it is possible to enable a deeper understanding of soil
properties. This approach may contribute to C Stock prediction, as well as to facilitate the
assessment of soil degradation and the effectiveness of management practices.
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In view of the above, obtaining accurate soil carbon content data on a large scale can
facilitate the mapping of degradation and the assessment of the effectiveness of manage-
ment practices. Therefore, the use of DRS represents a promising advance in the estimation
for soil C Stock mapping, contributing to the sustainable management of these areas.

Bearing in mind the potential of DRS in the NIR region as a cost-effective means of soil
attribute assessment, the main aim of this study was to map soil C Stock and other physical
and chemical attributes within a micro-watershed located in the Gilbués Desertification
Nucleus (large area under degradation, 319 km2), Piauí (Brazil), and to calibrate pedometric
functions to map them. We hypothesize that the algorithms employed in our models
will efficiently predict a wide range of soil attributes, including C Stock, using spatial
variables as inputs. To achieve the aim of the study and to test the hypothesis, we collected
214 composite soil samples (0–0.10 m), 100 that were analyzed in the laboratory and used
for pedometric modeling, and the rest for prediction, by combining DRS and PLSR.

2. Materials and Methods
2.1. Study Area

This study was carried out in the Piripiri Stream Micro-watershed (PSMW) in the
Gurguéia river basin, inserted in the Gilbués Desertification Nucleus in the state of Piauí,
Brazil. The PSMW has an area of 319 km2 and is located in the domains of the municipality
of Monte Alegre, which belongs to the micro-region of the upper middle Gurguéia, located
in the south of the state of Piaui, northeastern Brazil (Figure 1). The study site is located
in an ecotone zone between Caatinga and Cerrado, with a predominance of specimens
belonging to Campo Cerrado and Cerrado Strictu Sensu [5,28].
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The local relief is characterized by strong irregularities, with the presence of flat areas
with horizontal structures known as “chapadões”, with an average altitude of 481 m above
sea level, in addition to features strongly eroded by concentrated runoff processes [3]. As
for the climate, a transition from semiarid to dry subhumid is observed, with an average
annual rainfall regime classified as equatorial and continental, ranging between 800 and
1200 mm per year [28–30]. In this region, two well-defined periods occur: a rainy period,
which covers the months of November to April, and a dry period, which occurs from May
to October. Average annual temperatures range from 25 to 35 ◦C [29].

The PSMW is in an area of lithological transition between the Parnaíba and São
Francisco provinces, with more than 70% represented by the Parnaíba province, where
sediments of the Paleozoic era of marine, coastal, and continental origin stand out, de-
posited in almost horizontal layers. These are distributed in the Piauí, Pedra de Fogo, and
Sambaíba Formations, belonging to the Balsas Group, in addition to the Poti Formation,
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which belongs to the Canindé Group [30]. The São Francisco Province occurs in Meso-
zoic terrains distributed between the Areado and Urucuia Formations belonging to the
Balsas Group [29]. Throughout the PSMW, there is a dominance of sedimentary rocks,
especially siltstones, sandstones, claystones, shales, pelite, and conglomerates, as they
present lithologies with characteristics extremely vulnerable to erosion [31].

The five orders of soils predominant in the area are Acrisols (Argissolos/Ultisols), Fer-
ralsols (Latossolos/Oxisols), Luvisols (Luvissolos/Alfisols), Leptosols (Neossolos/Entisols),
and Planosols (Planossolos/Alfisols), according to the World Reference Base for Soil Re-
sources [32], Brazilian Soil Classification System—SiBCS [33], and soil taxonomy [34]
(Figure 1).

Acrisols predominate in the southwestern portion of the MPBR in the domains of the
Areado Formation, occurring mainly in dissected areas and gentle and undulating reliefs
where the intensity of erosive processes is quite pronounced [29]. Ferrasols are distributed
throughout the PSMW, with a predominance on the plateaus or high plateaus [35].

Luvisols, the most abundant in the PSMW, generally have their occurrence associated
with source material rich in mafic minerals [36], while Leptosols are found in areas of lower
topography near water bodies, settled in the Piauí Formation [37]. Planosols are the least
occurring soil order in the PSMW, and their presence in tropical semiarid conditions is
associated with source material with a predominance of felsic minerals [38].

2.2. Soil Sampling and Laboratory Analysis

A total of 214 composite soil samples were collected using a stainless steel Dutch
auger (deformed samples). Each composite sample consisted of eight single samples taken
from the 0 to 0.10 m depth layer around each sampling site. The center point of each
site was georeferenced. The location of the sampling points was determined randomly
while still considering a minimum distance of 500 m between points, accessibility, and
representativeness of all landscape physiognomies (Figure 1). In Figure 2, examples are
presented of the soil sampling procedure (deformed and undeformed), as well as photos of
the laboratory analysis performed in this study.
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Figure 2. Sample collection process exemplification and steps of the laboratory analysis employed in
this study.

The 214 samples were air-dried, homogenized, and passed through a 2 mm sieve. Then,
they were randomly separated into two groups, called the modeling group (MG) and the
prediction group (PG). The MG was composed of 100 samples, while the PG was composed
of 114. Despite there being no specific rule in the literature to proceed with this splitting,
the homogeneity of the sampling point distribution and its soil class representativity along
the studied perimeter were considered for each group. That evaluation was performed
visually, considering the information provided in Figure 1. The laboratory analyses were
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performed exclusively on the samples that composed the MG. These analyses included
C Stock, N Stock, TOC, TN, particle size (sand, silt, and clay), and pH in the laboratory
(Figure 2).

The grain size composition was determined with the pipette method, using 0.1 mol
L−1 sodium hydroxide as a dispersant for the determination of soil texture [39]. The pH
was determined at soil:water ratio 1:2.5 (v/w) in distilled water [39]. TOC was obtained
by the modified Walkley–Black method [40], and TN was determined by the Kjeldahl
method [40]. Samples were taken to obtain the BD by the volumetric ring method [41].

With the TOC, TN, and BD data, the C Stock and N Stock were calculated through the
following Equation (1) [42]:

C Stock or N Stock Mg[ha]−1 = (TOC or TN × BD × e)/10 (1)

where C Stock/N Stock are carbon and nitrogen stocks (Mg ha−1), TOC/TN are soil organic
carbon and total nitrogen (g kg−1), BD is bulk density (g cm3), and e is soil thickness of the
soil layer, which was 0.10 m in this study.

2.3. Spectral Measurements

Reflectance data were obtained on 214 samples using a Fourier transform infrared
spectrometer (FTIR Spectrum Frontier MID NIR—Perkin Elmer) with a near-infrared (NIR)
wavelength of 1000–2500 nm. Samples were packed in Petri dishes and dried in an oven at
45 ◦C for 24 h before readings.

The readout resolution was 2 cm−1 with 32 scans per sample and a sample interval of
0.5 nanometers. Four readings were taken per sample with 90◦ angle rotations to ensure the
representativeness of the analyzed surface [43,44]. Thus, the spectrum value of each sample
is the product of the average of four readings. After every ten scans, the equipment was
calibrated using white spectralon with 100% reflectance (LABSPHERE, NORTH SUTTON,
NH, USA: L124-1634).

The spectral data were subjected to spectral pre-processing techniques. First, the
transformation of reflectance spectra into absorbance was performed using the R to Log
(1/R) approach [45]. Then, the multiplicative scatter correction (MSC) [46] was applied
to minimize unwanted effects. In addition, standard normal distribution with wavelet
detrending (SNV with Wavelet detrending) [47] was used as part of the pre-processing. To
further improve the results, the Savitzky–Golay first derivative [48] was also applied.

2.4. Statistics and Pedometrics Modeling

The MG was used for descriptive statistical analysis, pedometric modeling to obtain
prediction models, as well as for geostatistical analysis and mapping of the studied at-
tributes. The PG, in turn, was employed for the prediction of the attributes of interest
through DRS, in addition to geostatistical analysis and mapping, aiming to obtain the maps
of the attributes predicted by DRS.

Descriptive statistical analysis was conducted to identify the minimum, average (Av),
maximum, and standard deviation (SD) values. Descriptive statistics were calculated
using Minitab® 21.1.1 software [49]. For pedometric modeling, the MG was subdivided
into subgroups, the calibration and external validation subgroups, composed of 70 and
30 samples, respectively. The calibration of the prediction models was performed by
regression analysis, Partial Least Squares Regression (PLSR), using the leave-one-out cross-
validation method.

Once reliable models were found, they were subjected to external validation by com-
paring observed values with predicted values. External validation was performed by the
Bagging-PLSR technique, which consists of randomly extracting data with the replacement
of a training set [45]. After this process, the data were applied to the PG in order to obtain
the DRS predicted values in these 114 samples. The entire process of pre-processing of NIR
spectra, as well as pedometrics modeling (calibration, validation, and prediction), were
carried out using Parles® software, version 3 [45].



Land 2023, 12, 1812 6 of 20

The accuracy of the models was assessed by the adjusted coefficient of determination
(R2

adj), root mean squared error (RMSE), and residual deviation of the prediction Ratio
of Performance to Deviation (RPD), which is the standard deviation of the original data
divided by the RMSE of the validation. The prediction performance of the model was based
on RPD values using the classification from [50], where RPD > 2 indicates that it has good
predictions, RPD between 1.4 and 2 indicates reliable predictions, and RPD < 1.4 indicates
that it has unreliable predictions.

2.5. Geostatistical Modeling

Geostatistical modeling was performed following the recommendations of [51]. The
semivariograms were fitted to theoretical models, whose best fitting performance was based
on obtaining lower RMSE values and higher R2 values. For this purpose, the spherical,
exponential, and Gaussian models were considered. After adjusting the semivariograms,
the Spatial Dependence Degree (SDD) was observed by the ratio between the nugget effect
(C0) and the plateau (C0 + C).

SDD was classified according to the criteria proposed by [52], where strong spatial
dependence < 25%, 25% < moderate > 75%, and weak > 75%. Ordinary kriging was used
to spatially interpolate the data. Geostatistical analysis was performed with GS+™ v.7
Build 17 software (Gamma Design Software, LLC, Plainwell, MI, USA) in combination with
Surfer v. 9.11.947 Copyright© 1993–2010 (Golden Software, LLC, Golden, CO, USA).

3. Results
3.1. Descriptive Analysis

Soil properties at PSMW showed a high variation, highlighting the granulometric
fractions (sand, silt, and clay) with the highest standard deviations, followed by C Stock
and TOC content, as shown in Table 1. A wide range of variation in the proportions of
particle size fractions was observed: sand ranged from 4 to 96%, silt ranged from 2 to 60%,
and clay ranged from 1 to 38%.

Table 1. General statistics of soil samples from the group used for modeling the calibration and
external validation models.

Variable n Minimum Average Maximum SD

Sand (g kg−1) 100 46.90 768.20 958.20 195.80
Silt (g kg−1) 100 21.60 134.30 607.60 139.10

Clay (g kg−1) 100 17.93 97.59 381.85 74.98
C Stock(Mg ha−1) 100 5.76 71.42 234.73 43.12
N Stock (Mg ha−1) 100 0.08 0.93 2.63 0.56

TOC (g kg−1) 100 3.87 48.12 153.21 30.81
TN (g kg−1) 100 0.06 0.63 2.41 0.41
BD (g/cm3) 100 1.05 1.51 1.80 0.14
pH (H2O) 100 4.59 5.42 6.63 0.42

n, number of samples; SD, standard deviation; C Stock, carbon stocks; N Stock, nitrogen stocks; TOC, total soil
organic carbon; TN, total nitrogen; BD, bulk density.

Notably, the sand fraction predominated in the region, especially in areas with higher
occurrence of Ferralsols, Luvisols, and Leptosols, as illustrated in Figure 1. C Stock and ni-
trogen showed variations from 0.3 to 11% and from 0.004 to 0.13%, respectively. In addition,
TOC content ranged from 0.4 to 15%, while nitrogen content ranged from 0.004 to 0.13%.
The highest concentrations of C Stock and TOC were observed in areas predominantly
composed of Acrisols and Leptosols.

BD is a measure of the amount of mass present in a given volume of soil. At PSMW,
BD values ranged from 1.05 to 1.80 g cm−3, as indicated in Table 1. Soils with sand, sandy
loam, and sandy loam textures were found to have the highest density values. This means
that these soils have a higher compaction, which can have several implications for their
management and quality.
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At PSMW, pH values ranged from 4.59 to 6.63, as presented in Table 1. This range
of values indicates a slightly acidic to acidic soil reaction. Soils classified as Leptosols,
Luvisols, and Ferralsols showed the lowest pH values, indicating that they are the most
acidic soils in the region. The mean granulometric fraction content in the PSMW soils was
in the followed order: sand (77%) > silt (13%) > clay (10%).

This granulometric composition results in textural classes with a predominance of
sand, sandy loam, sand loam, and loam, as illustrated in Figure 3. This information is
relevant for understanding the physical characteristics of the soil, such as its water and
nutrient retention capacity. Considering the average density of the soils studied in the
PSMW, it can be stated that they present typical characteristics of sandy soils, which
generally have a lower water retention capacity and lower natural fertility.
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Figure 3. Texture triangle with sand, silt, and clay content concentrations for PSMW soil samples
(red dots). Cl, clay; SaCl, sand clay; SaClLo, sand clay loam; SaLo, sand loam; LoSa, loamy sand; Sa,
sand; ClLo, clay loam; Lo, loam; SiCl, silty clay; SiClLo, silty clay loam; SiLo, silt loam; Si, silt.

3.2. Spectral Characteristics and Prediction Models

Figure 4a shows the results of the spectra for MG. The reflectance spectra of the soil
samples showed similar behaviors, which means that they share light absorption and
reflection patterns influenced by soil properties such as C Stock, clay, and sand contents. It
was observed that soils with higher C Stock, clay, and lower sand contents showed higher
reflectance with less expressions of spectral vales, as illustrated in Figure 4b.

On the other hand, soils with lower C Stock, clay, and higher sand contents showed
lower reflectance, however, with significant expression of spectral vales. In addition, when
comparing the reflectance intensity between the different soil classes, it was found that
Leptosols, Luvisols, and Ferralsols showed higher reflectance than Acrisols and Planosols.
This indicates that these soil classes have distinct spectral properties, reflecting more light
compared to the other classes mentioned.

The reflectance spectra of the soils studied also showed specific characteristics, such
as well-established absorption features at wavelengths of 1400, 1900, and 2200 nm. These
absorption features can be indicative of certain soil properties or the presence of specific
components, providing valuable information for the characterization of the soils studied.

In summary, this result describes the spectral characteristics of the PSMW soils, high-
lighting the influence of soil properties on the behaviors of the reflectance spectra and
showing differences in reflectance intensity between soil classes. Absorption features at the
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mentioned wavelengths are also highlighted as distinctive elements in the spectra of the
analyzed soils.
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The results of the pedometric parameters, which are used to predict soil properties, are
presented in Table 2. In general, sand and clay fractions showed more significant prediction
values (evaluated by R2

adj, RMSE, and RPD indices) during data cross-validation. Next,
the C Stock, silt, and TOC properties also had considerable prediction values.

Table 2. Results of pedometric parameters to evaluate the performance of the spectral model.

Attributes NF

Cross-Validation External Validation

(n = 70) (n = 30)

R2
adj RMSE RPD R2

adj RMSE

Sand (g kg−1) 8 0.77 78.06 2.11 0.62 186.37
Silt (g kg−1) 8 0.61 62.33 1.59 0.53 144.25
Clay (g kg−1) 8 0.75 29.26 1.84 0.67 43.13
C Stock (Mg ha−1) 5 0.62 11.08 1.75 0.53 67.99
N Stock (Mg ha−1) 2 0.04 0.48 1.03 - -
TOC (g kg−1) 5 0.62 11.08 1.52 0.52 49.79
TN (g kg−1) 2 0.05 0.33 1.04 - -
BD (g cm3) 4 0.07 0.14 0.92 - -
pH 6 0.16 0.40 1.05 - -

NF, number of factors; n, number of samples; C Stock, carbon stock; N Stock, nitrogen stock; TOC, total soil
organic carbon; TN, total nitrogen; BD, Bulk density; R2

adj, coefficient of determination adjusted; RMSE, root
mean squared error; RPD, residual prediction deviation.

When performing the external validation of the models (evaluated by R2
adj and RMSE

indices), the distribution of the highest prediction values occurred in the following order:
clay > sand > C Stock > silt > TOC (Table 2). The prediction models for C Stock, TOC, sand,
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silt, and clay demonstrated calibration fits that are considered reliable for predicting these
soil properties.

This means that the models were well fitted to the data during the calibration process
and showed a good predictive ability of the soil properties. On the other hand, the attributes
N Stock, TN, BD, and pH did not have accurate prediction models, indicated by the low
RPD values. This suggests that these models were not able to accurately predict the soil
properties corresponding to these attributes.

To reinforce the estimates of the MG soil properties, Variable Importance in Projection—
VIP plots—were plotted (Figure 5) to identify the most important wavelengths for the
prediction of sand, silt, and clay content, as well as C Stock and TOC. The VIP values for C
Stock and TOC were similar, with prominent peaks around 1000, 1400, and 2200 nm, with
the highest VIP values in the 1021 nm range. Sand and silt had the highest VIP values in
the 1414.5 nm range, and clay had its highest value in the 2206 nm range.
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3.3. Spatial Variability of Chemical Properties and Granulometric Fractions

The parameter values of the spatial statistics of MG and PG are organized in Table 3.
For most of the soil properties, the models that best fit the variability of the data were the
exponential for PG and the spherical for MG, making it possible to observe a moderate
degree of spatial dependence for MG and strong for PG. When comparing the two datasets,
it can be seen that the range for most soil properties of the MG had higher values, with the
exception of sand and silt. Both MG and PG attributes had a coefficient of determination
(R2) greater than 0.7. The geostatistical results for the external validation of the PG attributes
had R2 values greater than 0.9 and a RMSE close to zero, as illustrated in Table 4.

Ordinary kriging, used to map soil properties, can be seen in Figure 6, where the
spatial distribution for MG and PG soil properties is presented. There was similarity in
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the maps produced, attesting to the efficiency of the technique for the prediction of the
evaluated attributes. It was found that for both MG and PG, the highest values of C Stock
and TOC were concentrated in the region of predominance of Acrisols, which is in the
southwestern part of the study area. In the northwestern and southeastern part, where
Leptosols predominate, there was also a concentration of C Stock and TOC in lowland areas.

Table 3. Spatial statistics for the modeling and prediction groups of the samples collected in
the PSMW.

Attributes Data Set Model C0 C0 + C SDD (%) Range (m) R2

Sand (g kg−1)
MG Exponential 710 19,440 3.65 1930 0.86
PG Exponential 15,300 47,000 47.20 2000 0.82

Silt (g kg−1)
MG Gaussian 10 19,100 0.05 1400 0.95
PG Exponential 7710 22,540 34.20 1960 0.85

Clay (g kg−1)
MG Spherical 700 5671 12.34 2800 0.93
PG Exponential 2710 9350 28.98 2260 0.82

C Stock (Mg ha−1)
MG Spherical 1 1898 0.05 2160 0.95
PG Exponential 57 948 6.01 1100 0.94

TOC (g kg−1)
MG Spherical 1 1000 0.1 2170 0.92
PG Exponential 24 429 5.59 1110 0.94

C0, nugget effect; C0 + C, still; SDD, spatial dependence degree; R2, coefficient of determination; MG, modeling
group; PG, prediction group; C Stock, carbon stock; TOC, total soil organic carbon.

Table 4. Cross-validation parameter values for the ERD-predicted dataset (n = 114).

Attributes R2 RMSE

Sand (g kg−1) 0.92 0.12
Silt (g kg−1) 0.90 0.13

Clay (g kg−1) 0.95 0.11
C Stock (Mg ha−1) 0.96 0.15

TOC (g kg−1) 0.97 0.15

R2, coefficient of determination; RMSE, root mean squared error; C Stock, carbon stock; TOC, total soil
organic carbon.

Regarding the granulometric fractions, there was a predominance of the sand fraction
in almost all of the PSMW (Figure 6). The highest sand contents were found mainly in
Leptosols, Luvisols, and Ferralsols. In turn, silt and clay had their highest concentrations in
the Acrisols region in the southwestern most part of the PSMW. It is possible to identify
a relationship between granulometry and C Stock and TOC, and in areas with high sand
content, the lowest values for the latter were verified. When the same properties were
related to the clay contents, it was observed that the higher the values for clay, the higher
the C Stock and TOC contents.
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4. Discussion
4.1. Pedogenesis

The variability of grain size in the soils studied is a result of differences in the degree
of weathering between the different soil orders present in the PSMW. It is important to
highlight that the samples collected come from soils formed by different materials of origin
and are located in different positions of the landscape, which results in varied pedogenetic
processes. In addition, these soils are also affected by human action, as observed in
previous studies performed by Oliveira and collaborators [53] on soils of the Brazilian
semiarid. Silva et al. [54], when evaluating the texture of Brazilian tropical soils, related
the granulometric variability to the size of the study area, which influences the factors and
processes of soil formation.

Another important fact to be highlighted is that the areas with the highest levels of
degradation were identified in the most southwestern part of the PSMW, where Acrisols
predominate. It is possible that the collection (0–0.10 m) contemplated material from
subsurface horizons with a greater accumulation of clay, such as the “B textural” horizons
of Acrisols [29]. The values found for TOC and TN, as well as for C Stock and N Stock, are
related to the different levels of degradation present in the study area. The C and N contents
decrease with the local erosive processes; however, the agricultural activities developed in
the PSMW may have provided different agricultural inputs and plant material to the soil,
justifying the high amplitude in the values [1].

In a recent study performed by Gomes et al. [55], the C Stock mapping in Brazilian
soils showed that the low concentrations of this attribute found in the Brazilian semiarid
region were associated with extreme climatic conditions, which favor strong soil losses by
erosion in the rainy season and lower contributions of organic matter by small vegetation.
However, the mean TOC value presented in this study (48.12 g kg−1) was higher than the
mean value estimated for the state of Piauí by the survey of the spectral library of Brazilian
soils [20]. These variations in mean values are attributed to the differences found between
the soil orders of the study area [56,57], vegetation density [58], and topography [59].

These results draw attention to the impacts on soil carbon storage capacity, especially
with land use change [60]. Considering the soil reaction, PSMW soils were classified as
strongly acidic according to the classification recommended by Raij and Quaggio [61],
being common in the region due to the source material developed from base-poor rocks, as
reported by Mendes et al. [62]. Thus, this information can be useful, contributing to the
construction of the spectral library for soils in Piauí.

BD is an important measure that reflects soil compaction and physical quality, and is
influenced by factors such as poor management, heavy machinery traffic, and intensive
land use. High BD values may indicate a condition of soil degradation, compromising
porosity and water holding capacity. A study conducted by Souza et al. [63] on cerrado
soils in Brazil investigated the effects of soil degradation on BD. The results showed that
degraded areas had significantly higher BD values compared to preserved areas.

The authors concluded that compaction due to degradation negatively affected soil
structure and physical quality, resulting in high density values. Another relevant article of
research is the study conducted by Blanco-Canqui and collaborators [64], who investigated
the relationship between soil degradation and density. The results indicated that areas with
a history of intensive management and inadequate soil management practices had higher
BD values, evidencing the association between soil degradation and compaction.

4.2. Pedometrics

The shape of the soil spectral curve is largely affected by its composition, with em-
phasis on iron oxides, organic matter content, and soil texture [22]. Thus, the qualitative
analysis of soil spectral signatures plays a crucial role in the identification and interpretation
of bands in the near infrared (NIR) related to soil constituents. The upward slope in the
1000–2100 nm spectral region in soil spectra may be related to different processes associated
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with soil degradation in view of the relationship of this spectral region with the chemical,
physical, and biological composition of the soil.

Stevens et al. [65] investigated the relationship between soil degradation and reflectance
spectra in different areas. They observed that the upward slope in the 1000–2100 nm region
can be attributed to the reduction of organic matter and the increased concentration of
low-quality clay minerals in degraded soils. These changes in mineralogical composition
and organic matter affect the interaction of electromagnetic radiation with the soil, resulting
in the upward slope observed in the spectra. Chabrillat et al. [66] reiterated this theory by
investigating the relationship between soil degradation and reflectance spectra in areas
affected by mining.

In this research, the authors observed that soil degradation caused by mining can
result in changes in soil properties, such as a decrease in organic matter and an increase in
the concentration of clay minerals. On the other hand, the morphological features of the
spectra assume an almost linear downward slope in the region between 2100 and 2500 nm.
This spectral behavior is common in Brazilian soils [67,68]. They state that this characteristic
is largely due to the presence of clay minerals.

The sample with higher C Stock and high presence of clay showed a lower amount of
reflected energy when compared to the sample with lower C Stock and clay (Figure 4b).
Soils with a more clayey texture and with the presence of organic matter absorb a greater
share of light transmitted by Vis-NIR [68]. On the other hand, soils with a sandy texture
containing low levels of iron oxides showed higher reflectance intensity compared to clayey
soils [69,70]. The high reflectance for the samples with high sand content occurred due to
the predominance of quartz in the sand fraction [20,71].

In the survey of the global spectral library to characterize the world’s soils, researchers
stated that dark soils with high organic matter contents have low reflectance [72]. Demattê
et al. [20] associated the low reflectance of soil samples from Brazil with the presence of
iron oxides, opaque minerals, and TOC. In general, the spectra with higher and lower
reflectance showed prominent absorption features around 1000, 1400, 1900, and 2200 nm
(Figure 4).

In the near-infrared region, the main chemical elements interacting with electromag-
netic radiation in soils were free water and hydroxyl (OH), usually being part of the soil
solution or linked to the clay–mineral network that promotes greater moisture retention
in the soil [73]; organic matter; carbonates [72–74]; and the presence of kaolinite and other
phyllosilicates of common occurrence in the soils of the Brazilian semiarid region [67,75].

The technique using DRS combined with PLSR was efficient in predicting the particle
size fractions for the TOC and C Stock of PSMW (Table 2). The granulometric attributes,
such as sand and clay, showed predictive performance, this being due to the texture being
a structural constituent of the soil, having well recognized absorption characteristics in the
Vis-NIR and MIR regions [43]. Among the predicted attributes, TOC presented the lowest
predictive capacity, which may be related to the dominant textural classes in the PSMW,
which were sandy, sand loam, and sandy loam (Figure 5).

Soils with this texture have a higher marcroporosity and, consequently, a higher
degree of degradation of organic matter by aerobic microorganisms [20]. On the other
hand, sandy-textured soils provide a higher dispersion of spectra in the bands between 400
and 2500 nm, which results in a poorer TOC concentration prediction [76]. Another issue
to be considered is the fact that TOC shows better predictive results in the mid-infrared
(MIR) region due to its stronger direct relationship with MIR spectral data produced by
fundamental vibrations [43]. Even in the face of these factors, the models generated for
TOC and C Stock from this research were sufficient for their prediction and, subsequently,
the mapping of these attributes in PSMW.

The low accuracy for the predictive models of TN and N Stock is probably due to the
low concentrations of these attributes in the studied samples. The unsatisfactory predictive
model for BD is related to the structural condition of the pore space, which makes it difficult
to capture by NIRS and MIR spectra [20]. The low performance of the PLSR model for pH



Land 2023, 12, 1812 14 of 20

is associated with the low relationship between this attribute and the wavelengths in the
spectral range between the visible (Vis) and NIR regions [73]. Wang and Wang [77], as well
as Wan et al. [78], also found unsatisfactory predictions for soil pH in the Vis-NIR region by
this method, lacking further research to improve this technique for other soil attributes.

The VIP plots (Figure 5) are considered indicators of the correlation between infrared
frequencies and the soil constituents of interest, in this case, C Stock, TOC, sand, silt, and
clay. In Figure 5, four wavelengths are identified (1000, 1400, 1900, and 2200 nm) that
presented greater influence for the creation of the models of the evaluated attributes. The
VIP expressions near 1000 are related to the soil color, especially the presence of soil organic
matter, and iron oxides such as goethite and hematite [79]. The peaks in the 1400 and
1900 nm bands are associated with water adsorption and the presence of phyllosilicates,
such as 2:1, 1:1, or interstratified minerals [67,80–82].

The VIP peak at 2200 nm may be associated with the presence of kaolinite and gibbsite,
the likely cause being the OH bonds at 1400 nm [78]. Demattê and Terra [83] also agree that
the peak near 1400 nm may be associated to kaolinites. This association is the reason why
the higher VIP peak for clay was expressed at 1400 nm. This association was also observed
by Gozukara et al. [84] and Hong et al. [85]. The expression near 1900 nm may be a result
of the OH stretch combined with the Al–OH network because of the vibrations of water
in the structure of phyllosilicates or absorbed on mineral surfaces [86]. This information
explains the results of this research since the soils of the state of Piauí are rich in kaolinite
and gibbsite; Mendes et al. [62] used the same narrative to explain the spectral behaviors
found. It is important to highlight that kaolinitic and gibbsitic soils are predominant in
tropical environments due to advanced weathering [86].

4.3. Spatial Variability of the Soil Properties

The spherical and exponential models are the most widely used in the adjustment
of most attributes studied in soil science [87–89]. Thus, the SDD presented by MG in this
study was associated with soil formation factors (climate, parent materials, and topography,
as well as natural variations in soils, such as soil texture and soil classes) [90,91].

Moderate spatial dependence, on the other hand, was conditioned by a homogeniza-
tion of soils, which resulted from the interaction between inherent soil characteristics and
management with land use change [92–94]. Therefore, the SDD presented for the PG may
be correlated to the levels of degradation present in the study area, as well as to land use.

The range values for the MG and PG datasets were high, showing a higher spatial
autocorrelation and wider homogeneous scale and indicating that the estimated soil prop-
erties are influenced by natural factors over large distances [95–97]. The results presented
in the cross-validation of the predicted data (Table 4) were considered excellent considering
the criteria of [98]. According to [99], the smaller RMSE values can generate the kriging
predictions of soil properties closer to the estimated values.

Thus, the semivariogram models proved to be reliable for the prediction of soil prop-
erties at unsampled sites, and for this reason, the produced isoline maps can be used for
the assessment and monitoring of PSMW C Stocks. It is possible to observe a similarity
in the distribution of the C content and physical and chemical properties evaluated in
PSMW. There is a positive correlation between TOC, C Stock, and soil clay fraction, as
well as a negative correlation between the same attributes and the sand fraction (Figure 6).
Fernández-Martínez et al. [100] obtained similar results estimating texture and organic
carbon by DRS.

Although the southwestern region of the watershed has the areas most affected by soil
degradation, it also has well-preserved sites free of the erosive processes, justifying the high
C values of TOC and C Stock in this region. It is also associated with high concentrations of
clay and silt contents, which may be attributed to the shorter distance between particles,
reducing carbon loss by oxidation, despite soil degradation. It is worth mentioning that
this region is dominated by Acrisols and Luvisols, and in a study developed by [55], soils
with 57% more C Stock were found in Ferralsol and Acrisol soils in Brazil.
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This is due to these soils being less susceptible to degradation when compared to other
soil orders because they are deep, well-drained, and, with higher concentrations of clay,
well-structured, which facilitates aggregation and greater accumulation of C and N when
well managed [101]. In northeastern Brazil [102], the highest C Stock content in Ferralsols
and Acrisols was found.

According to Ribeiro and collaborators [103], the C dynamics in soils also depend on
a set of factors and their interactions beyond the flora diversity. Hence, in this study, it is
necessary to consider the addition of carbon from rainfall sediments loaded with organic,
particulate, and solubilized compounds, which were deposited annually at these sites. The
same does not occur in less degraded sites of the basin, however, without the influence of
sediments of pluvial origin and because they have higher sand contents, which results in
greater soil aeration, facilitating the loss of carbon by oxidation [104].

In fact, soils with sand fraction occurred in almost all of the PSMW, which is attributed
to the dominance of poorly weathered soil classes and/or horizons of sandier texture in the
surface layer since the samplings occurred from 0 to 0.10 m. This characteristic contributed
to the low concentration of the C Stocks in the studied area, as was reported in similar
conditions by [103], who stated that even in dense Caatinga, soils with high sand contents
presented low concentrations for the C and N stocks at depth.

The models obtained need to be adjusted and extrapolated to other areas of the Gilbués
Desertification Nucleus in order to ensure their applicability throughout this region. It
is also important to develop new studies to improve the modeling of other pedotransfer
functions, which can predict other attributes of relevance to the mitigation of the erosion
process in the region. The information presented here can serve as a tool to assist territorial
management, aiming at soil and water conservation in the Brazilian Cerrado region.

5. Conclusions

DRS is efficient in predicting particle size, C Stock, and total TOC in the Piripiri Stream
Micro-watershed. Among the physical and chemical attributes used for prediction and
mapping, the external validation of the models by the distribution of the highest prediction
values occurred in the following order: clay > sand > C Stock > silt > TOC of the PSMW.
The results showed that the percentage of C Stock is inversely proportional to the solid
particle sizes of the 0–0.10 m layer of the studied soils, allowing for the prediction of these
parameters for soil mapping by DRS.

The southwestern region of the Piripiri Stream Micro-watershed retains the highest C
Stock, where the highest concentrations of clay and silt predominate, even in the face of
greater degrees of degradation. These results suggest that in this portion of the watershed,
accelerated water erosion was more intense, exposing on the surface of the studied soils
the subsurface horizons (Bw) and being richer in particles < 0.002 mm. Clay-sized particles
are more sensitive to the electromagnetic spectrum in the near-infrared range, especially at
wavelengths at 1400, 1900, and 2200 nm.

With this, it is suggested that government agencies in the region apply the DRS to map
these same attributes in other territories within the Gilbués Desertification Nucleus so that
strategies to control the erosive process can be adopted. It is also suggested that further
studies be conducted to improve these models for greater reproducibility of predictions.
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