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Abstract: Land degradation is a pivotal environmental concern, bearing substantial impacts in the
Gidabo river basin (GRB) in Ethiopia, prompting a critical need for effective mitigation strategies.
In this study, we aimed to assess the dynamics of land degradation pathways in the context of
change in climate and land use. The identification of potential erosion hotspots and the appraisal
of management strategies was also carried out. The Soil and Water Assessment Tool (SWAT) and
the Good Practice Guidance (GPG) framework was employed. The results revealed a compelling
synergy between land use dynamics and climate changes, asserting joint and individual prevalence
in influencing surface runoff and sediment yield. The past simulation revealed 4–5.9% and 24–43%
increments in mean annual runoff and sediment yield, respectively. While the near (2021–2040) and
mid (2041–2060) future scenarios displayed varying trends under RCP4.5 and RCP8.5. Furthermore,
sub-basins prone to soil erosion risk were identified, thereby enabling targeted conservation efforts.
The assessment of trends in land degradation neutrality (LDN) unveiled the expansion of land
degradation trajectories (by 26%) from 1985–2003 to 2003–2021. This might be attributed to the
dynamic interplay between climate and land use land cover (LULC) change, with croplands and
bare land emerging as high-risk degraded areas. Addressing these concerns, soil/stone bund,
terracing, contour farming, and reforestation practice can significantly reduce the annual sediment
yield in the future. The integration of soil erosion indicators with LDN sub-indicators can provide
a more comprehensive approach that can lead to more effective land management and restoration
strategies to achieve the LDN goal. The findings of this study could contribute crucial insights and
substantial implications for policymakers, land managers, and conservationists. Moreover, future
efforts should be directed to expand investigations into diverse land degradation pathways and
mitigation measures.

Keywords: climate change; land use dynamics; soil erosion; land degradation neutrality; surface
runoff; sediment yield; soil conservation practice; SWAT model; Trends.Earth

1. Introduction

Land has the potential to provide a full suite of goods and services at local, landscape
and global scale [1,2]. Nevertheless, land is coming under growing pressure from ever-
increased competing uses [3] and subjected to increasing degradation trends [2]. Land
degradation has diverse and wide-reaching impacts on the provision of vital ecosystem
services, causing economic and social consequences more severely than ever before [4–7].
These impacts, however, are worse in developing countries, where the majority of the
population directly depends on land resources for its livelihood [8,9]. Most of East Africa,
including Ethiopia, has experienced severe land degradation problems that pose a challenge
to people’s livelihoods [8,10,11]. Different approaches have been used to assess land
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degradation including expert opinions, field measurement, biophysical modeling and
remote sensing, or a combination thereof [11–13].

The expert opinion approach highly relied on the people consulted and is considered
subjective, inconsistent and replicable with difficulty [13,14]. Field measurement involves
local sampling techniques and surveys to provide detailed objective information, for exam-
ple, at a plot level [13]. However, this approach is often criticized for being time-consuming,
labour intensive, costly and applicable to small areas [13]. The biophysical modeling ap-
proach integrate biophysical variables to assess land degradation. Though it is globally
consistent and quantitative, its accuracy might be influenced by inherent error [13,14]. The
remote sensing approach is vital in measuring land degradation, especially over a larger
scale [11,15]. Remote sensing provides a plausible, consistent and useful alternative for
multi-temporal and operational scale monitoring of land degradation. This approach is
considered a cost-effective, reputable and time-efficient [14].

Most recently, the United Nations Convention to Combat Desertification (UNCCD)
introduced the concept of “Land Degradation Neutrality” (LDN) to combat and recover
the current trends in land degradation [16]. LDN that refers to a condition of “zero net
land degradation” became one of the significant targets of the Sustainable Development
Goal (SDG 15.3). An extensive description of LDN is provided in [17,18]. The LDN
assessment is based on three significant biophysical sub-indicators: (i) land productivity
(LP), (ii) land cover (LC) and (iii) soil organic carbon (SOC) [17]. The three indicators
follow the principle of “The One-Out, All-Out (1OAO)” [18,19]. This principle enables
the identification of land degradation more accurately with three dimensions of land
status including aboveground, below-ground, and surface change [19]. Trends.Earth, a
QGIS plugin, is working in combination with the Google Earth Engine to facilitate data
preparation and processing for generating both the sub-indicators and the final SDG
indicator 15.3.1 [20].

Soil erosion is a widely distributed land degradation pathway and an important
complement to the three global LDN indicators that interacts with other environmental
issues [21,22]. In recent decades, with the well-established use of geospatial technologies,
models are becoming increasingly important in the identification of erosion prone areas
at different time and spatial scales [23–25]. Process-based hydrological models are very
accurate owing to their capabilities to simulate and describe the spatial distribution of land
degradation [4]. These models can depict the spatial characters of meteorological conditions,
topography, land cover and soil properties [24]. The soil and water assessment tool (SWAT)
model, the most widely used model [23], considers these factors to identify areas susceptible
to soil erosion [26]. SWAT model provides spatial and temporal distribution and magnitude
of soil erosion and sediment load [4]. Moreover, the SWAT model allows to quantify the
impact of land management practices and is capable of assessing the best management
alternatives in large and complex watersheds [25].

The present study demonstrated an integrated approach to assess the trends of land
degradation in the Gidabo river basin (GRB), located in the Ethiopian rift valley. The basin
has been subjected to substantial landscape alteration, climatic variability and drastic eco-
logical change [27–32]. These changes, triggered by dynamic population growth, exacerbate
soil erosion, excessive sedimentation and eutrophication of waterbodies, hydrological im-
balance and land–water–energy–food nexus resource degradation in the basin [33–38]. The
explicit quantification of spatial and temporal trends of land degradation and its trajectory
help to achieve LDN [15]. Moreover, decisions addressing land degradation problems are
not only based on an assessment of the current land degradation but also on the expected
future state of the land [4].

Climate and land use change are intertwined with soil erosion and land degradation.
Understanding these interactions is crucial for developing effective strategies to achieve
LDN goals. It is notable that land degradation can take many forms and that some methods
are not appropriate for measuring all forms of land degradation pathways [11]. However,
previous studies lack spatial and temporal information on the extent and magnitude of
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land degradation in the GRB. Therefore, this study aimed at the integration of SWAT model
and Trends.Earth platform to assess land degradation pathways in the GRB. The specific
objectives were to (1) extensively evaluate the individual and joint impacts of climate and
land use land cover (LULC) change on runoff and soil erosion during the temporal span of
1990 to 2060, (2) conduct an in-depth assessment of trends in land degradation neutrality,
(3) identify erosion hotspots necessitating intensified attention, and (4) evaluate potential
management alternatives aimed at curtailing sediment production.

2. Materials and Methods
2.1. Description of the Study Area

The GRB is located in the Ethiopian main rift valley between 6◦8′ N to 6◦57′ N latitude
and 37◦0′ E to 38◦40′ E longitude with approximately 3549 km2 (Figure 1). GRB is character-
ized by its diverse biophysical composition with dendritic drainage patterns [27], flowing
east–west into Lake Abaya. The area receives bimodal rainfall distribution (March–May
and June–October) with mean annual rainfall of 1315 mm [39]. The average monthly
temperature varies between 11 ◦C and 25 ◦C. Among the land uses, agriculture and agro-
forestry are the dominant contributors to the livelihood of the local community, resulting
in increased trends with the expense of natural vegetation [30]. The population density
increased towards the eastern highland and their livelihoods primarily depend on mixed
crop-livestock farming system [35].
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2.2. Data Source and Processing
2.2.1. Climate Data

The observed data of daily rainfall, temperature, solar radiation, relative humidity
and wind speed were collected from 5 stations (Figure 1). The data were acquired from
the Ethiopian Meteorology Institute (EMI) for the period of 1990–2021 and Dilla station
was used to establish the weather generator database. Filling of missed meteorological
data and temporal homogeneity test was performed using XLSTAT 2022.4 statistical soft-
ware as used by previous studies [39–41]. Moreover, double mass curve (DMC) analysis
was executed to assess the consistency of rainfall [42]. Projected climate data for near
(2021–2040) and mid (2041–2060) future were acquired from Regional Climate Model
(RCM) of Coordinated Regional Climate Downscaling Experiment (CORDEX) (https:
//esgf-data.dkrz.de/search/esgf-dkrz/ (accessed on 11 April 2022)). Two representa-
tive concentration pathways (RCP), i.e., moderate emission (RCP4.5) and highest emis-
sion (RCP8.5) were considered as future scenarios [43]. According to our performance
study [39], RACMO22T (ECEARTH), CCLM4–8 (MPI), CRCM5 (MPI), CCLM4–8 (CNRM)
and REMO2009 (EC-EARTH) were chosen. Thus, the ensemble of these RCMs was used
and bias corrected using distribution mapping (DM) method. DM method provided better
result in the study basin [31]. Moreover, Mann–Kendall (MK) test and Sen’s slope estimator
were used to test the trends in climate variables. A detailed description of these trend test
methods can also be found in Girma et al. [39].

2.2.2. Spatial Data

The long-term LULC dynamics for the baseline years (1985, 2003 and 2021) and
projected years (2035 and 2050) were adopted from our recent study [30]. For erosion
modeling, soil data were extracted from the latest FAO Harmonized World Soil Database
version 2.0 (https://gaez.fao.org/pages/hwsd (accessed on 2 June 2023)) [44]. Additionally,
the SoilGrids raster layer at 250 m spatial resolution developed by the International Soil
Reference Information Center (ISRIC) was used for SOC estimation (https://soilgrids.org/
(accessed on 15 July 2023)). Topographic data were extracted from the Alaskan Satellite
Facility digital elevation model (DEM) (12.5 m resolution) available at https://search.asf.
alaska.edu/#/ (accessed on 20 June 2023).

2.2.3. Hydrology Data

For SWAT model calibration and validation, 18 years (1997–2014) daily streamflow
data at Aposto and Bedessa gaging stations (Figure 1) were used. The two stations were
considered since they have the longest period of flow data. The data were acquired from
the Ministry of Water and Energy (MoWE) of Ethiopia. Due to the lack of continuous-
time step sediment records, sediment yield data were generated using sediment rating
curve (SRC). The SRC is extensively used to overcome the scarcity of temporal sediment
data [45–49]. Hence, the suspended sediment load for Aposto and Bedessa gauging stations
was generated using the sediment discharge rating curve developed by Adi et al. [48] with
an R2 value of 0.96 and 0.91, respectively.

2.3. Assessment of Land Degradation Indicators
2.3.1. Soil Erosion Modeling Using SWAT

To evaluate the effects of climate and LULC change, we applied 20 different simulations
(individual and combined scenarios), as shown in Table 1. Prior to simulation, the study
area was divided into sub-basins using the DEM as input in SWAT2012 (interface of
ArcGIS10.8). Furthermore, each sub-basin was further subdivided into several number
of hydrologic response units (HRUs)

1
with a unique combination of 5% land cover, 10%

soil type and 10% slope thresholds. Then, all the required climatic variables were fed
to the model and a three-year warming-up period was given during simulation. Details
of SWAT model procedure is given in SWAT theoretical documentation [50]. Surface

https://esgf-data.dkrz.de/search/esgf-dkrz/
https://esgf-data.dkrz.de/search/esgf-dkrz/
https://gaez.fao.org/pages/hwsd
https://soilgrids.org/
https://search.asf.alaska.edu/#/
https://search.asf.alaska.edu/#/
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runoff was estimated using the soil conservation service curve number (SCS-CN) method
(Equation (1)) [50].

Qsurf =

(
Rday − 0.2S

)2(
Rday + 0.8S

) , (1)

where Qsurf is the accumulated runoff (mm), Rday is the daily rainfall depth (mm water),
and S is the retention parameter (mm water) mathematical expressed using the curve
number (CN) (Equation (2)). The CN is governed mainly by LULC, soil permeability and a
hydraulic group of soils [50].

S = 25.4
(

1000
CN

− 10
)

, (2)

Table 1. SWAT model simulation setup.

Simulation LULC Climate RCP

Past period

S1 * 1985 1990–2005 –
S2 2003 1990–2005 –
S3 2021 1990–2005 –
S4 1985 2006–2020 –
S5 2003 2006–2020 –
S6 ** 2021 2006–2020 –

Future LULC change scenario

S7 2035 2006–2020 –
S8 2050 2006–2020 –

Future climate change scenario

S9 2021 2021–2040 RCP4.5
S10 2021 2041–2060 RCP4.5
S11 2021 2021–2040 RCP8.5
S12 2021 2041–2060 RCP8.5

Future combined (LULC and climate change) scenario

S13 2035 2021–2040 RCP4.5
S14 2035 2041–2060 RCP4.5
S15 2035 2021–2040 RCP8.5
S16 2035 2041–2060 RCP8.5
S17 2050 2021–2040 RCP4.5
S18 2050 2041–2060 RCP4.5
S19 2050 2021–2040 RCP8.5
S20 2050 2041–2060 RCP8.5

*, ** represents baseline for past period and future scenario, respectively.

Soil erosion and sediment yield was estimated using the Modified Universal Soil Loss
Equation (MUSLE) (Equation (3)) [51].

SY = 11.8×
(

Qsurf ×Qpeak × areahru

)0.56
×K×C× P× LS×CFRG, (3)

where SY is the sediment yield on a day (metric tons), Qsurf is the surface runoff volume
(mm ha−1), Qpeak is the peak runoff rate (m3 s−1), areahru is the area of the HRU (ha), K is
the soil erodibility factor, C is the cover and management factor, P is the support practice
factor, LS is the topographic factor, CFRG is the coarse fragment factor, and 0.56 is the
delivery ratio.
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2.3.2. SWAT Calibration, Validation and Performance Measures

Multi-site calibration was performed using the sequential uncertainty fitting (SUFI-2)
algorithm in SWAT-CUP. SWAT simulates total sediment load, i.e., suspended load plus
bedload [50]. In most rivers, bed load to suspended load ranges between 10 and 30% [52].
Since most (81%) of the study area was characterized as gentle to moderate steep slopes,
10% of the suspended sediment load obtained from the rating curve were considered as
bedload. Similar assumptions were employed in the Ethiopian rift valley [47,53]. Parame-
ters to be calibrated were initially selected by reviewing previously used parameters in the
GRB [36,37,47,48] and SWAT theoretical documentation [50].

Afterwards, sensitivity analysis was performed and the most sensitive parameters
were identified based on Lenhart et al. [54] sensitivity classes. Furthermore, model per-
formance was evaluated using Nash–Sutcliffe efficiency (NSE) coefficient, coefficient of
determination (R2) and percent bias (PBIAS) according to the ratings given by Moriasi
et al. [55]. The iteration was run for the simulation period of 1997–2014 and the first 3 years
were used for warm-up period. A split sample test was employed to split the remaining
years into calibration period (2000–2009) and validation period (2010–2014) on a monthly
basis [56].

2.3.3. Assessing and Monitoring LDN Indicators

The assessment and monitoring of LDN was carried out based on the Good Practice
Guidance (GPG) prepared for the Sustainable Development Goal (SDG15) [17]. Accord-
ingly, QGIS3.28 Trends.Earth plugin and Google Earth engine was used to quantify the
following sub-indicators.

The LP sub-indicator (in kg/ha/year) were determined from a time series of annual
normalized difference vegetation index (NDVI) dataset [18,57]. In this study, two NDVI
data sources were used to monitor the entire period from 1985 to 2021: (i) the Advanced
Very-High-Resolution Radiometer (AVHRR) data obtained from Global Inventory Mod-
eling and Mapping Studies (GIMMS) were used to assess trends from 1985 to 2003, and
(ii) data provided by the Terra Moderate Resolution Imaging Spectroradiometer (MODIS)
Vegetation Indices (MOD13Q1) Version 6 was used to determine trends from 2003 to
2021 [58]. Moreover, Water Use Efficiency (WUE) correlation method was employed to
correct the effects of climate on LP [18].

To assess the LC sub-indicator, custom LULC data (1985, 2003, 2021) were used
and reclassified to forestlands, grasslands, croplands, wetlands, artificial areas, bare land
and waterbodies using UNCCD reporting and IPCC land classification [58]. Afterwards,
the land cover transition matrix between 1985–2003 and 2003–2021 were analyzed to
identify which pixels remained in the same land cover class, and which ones changed [17].
Based on expertise and local knowledge of the conditions in the study area, table of
degradation typologies was created to identify which transitions correspond to degradation,
improvement, or no change [58]. Finally, Trends.Earth combined the information from the
LULC maps and the table of degradation typologies by LC transition to compute the LC
degradation between 1985–2003 and 2003–2021.

For SOC sub-indicator, the relative change in SOC (t/ha) was determined using a
combined LULC/SOC method in Trends.Earth. Area which experienced a loss in SOC of
>10% during the reporting period (2003 and 2021) was considered potentially degraded,
and areas experiencing a gain of >10% as potentially improved [58].

The sub-indicators were then combined using the 1OAO principle to determine the
extent of land that is degraded as a percentage of the total area [17]. The 1OAO principle
implies that a significant reduction or negative change in any one of the three sub-indicators
is considered to comprise land degradation in a land unit, then the final indicator is assessed
as degraded for the specific land unit [17,20].
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2.4. Soil Conservation Scenarios

The SWAT model simulates the efficiency of land management interventions by adjust-
ing both erosion and runoff parameters [25,59,60]. Thus, five soil conservation scenarios
were examined including filter strips, terracing, soil/stone bund, contour farming and re-
forestation. The filter strips scenario was implemented on croplands by changing the width
of the filter strip (i.e., FILTERW) into 1 m [61,62]. Likewise, terracing, contour farming and
soil/stone bund scenarios were evaluated by modifying the corresponding CN2, USLE_P,
the slope length (SLSUBBSN) and slope steepness (HRU_SLP) on croplands [60,61]. The
reforestation scenario assumes that all the cultivated lands above 15% slope as well as
bare land will be changed into forest [60,61]. Thus, the implementation of the reforestation
scenario was made by changing the land use map [61].

3. Results
3.1. Biophysical Characteristics

More than 70% of the GRB is covered by three soil groups (Figure 2a): Eutric Ver-
tisols (29%) characterized by a significant proportion of clay-sized particles and vetric
property [63], Lithic Leptosols (25%) dominated in the eastern escarpment and have limited
agricultural potential due to their shallow depth, low fertility and poor water-holding
capacity [63], and Chromic Luvisols (22%) are soils with subsurface accumulation of high
activity clays and high base saturation [64]. The altitude of the study area ranged from
1133 to 3197 m above sea level (a.s.l) (Figure 2b) and most (81%) of the basin exhibited
gentle to moderate steep slopes (Figure 2c). The eastern part of the basin is characterized
by longest and very steep slopes (having >45% slope), while the lower part is dominantly
characterized by flat terrain (<3% slope). On the bases of topographic features, the study
area was subdivided in to 35 sub-basins (Figure 2d).
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3.2. Trends in Rainfall and Temperature

The trend analysis indicated that the observed mean annual rainfall experienced
decreasing trend with a magnitude of about 13.4 mm/year from 1990 to 2005 (significantly)
and 0.44 mm/year from 2006 to 2021 (insignificantly) (Table 2). The observed mean
annual maximum temperature showed a significant increasing trend, whereas minimum
temperature declined insignificantly. Under RCP4.5, the projected mean annual rainfall
showed a non-significant decreasing trend with a magnitude of about 4.5 and 6.4 mm/year
(2021–2040 and 2041–2060, respectively). However, both mean annual minimum and
maximum temperature showed statistically significant evidences of increasing trends
(Table 2). Under high emission scenario (RCP8.5), the annual rainfall will decrease (at
a rate of 5.4 mm/year during the near future) and increase (at a rate of 7.8 mm/year
during the mid future) insignificantly, while both the annual minimum and maximum
temperature will increase significantly. The results were consistent with the findings of
previous studies [28,29,32,36]. The spatial pattern of projected mean annual rainfall and
temperature were included in supplementary material (Figures S1 and S2).

Table 2. The Mann–Kendall and the Sen’s slope test results for rainfall and temperature.

Variable Trend Test
Observed RCP4.5 RCP8.5

1990–2005 2006–2021 2021–2040 2041–2060 2021–2040 2041–2060

Rainfall
Z-Score −1.39 *** −0.22 −0.55 −0.49 −0.88 1.14
Sen’s slope −13.4 −0.44 −4.5 −6.4 −5.4 7.8

Minimum
temperature

Z-Score −0.05 0.88 2.63 * 1.46 *** 3.15 * 3.36 *
Sen’s slope −0.003 0.02 0.1 0.02 0.1 0.1

Maximum
temperature

Z-Score 2.63 * −0.44 2.17 ** 0.81 2.95 * 1.72 **
Sen’s slope 0.1 −0.01 0.04 0.02 0.04 0.03

*, **, *** means significant trend at alpha (α) = 0.01, 0.05, and 0.1, respectively.

3.3. Land Use Land Cover Dynamics

Nine LULC classes were identified, including waterbody, grasslands, forestlands, agri-
culture lands, bare land, settlements, agroforestry, shrublands and marshy area
(Figures 3 and 4). A detailed description of the LULC classification and change analy-
sis can also be found in our recent study (Girma et al. [30]). In 1985, the largest land cover
type was shrublands (24.3%) followed by forestlands (21.8%) and agriculture lands (19.8%)
(Figure 3). However, agricultural lands, agroforestry and bare land showed increments
and overturned the dominancy in 2003 and 2021 (Table S1). These unceasing expansion
and trends will also be expected by 2035 and 2050 at the expense of forest, shrub and
grasslands loss (Table S2). Moreover, the expansion of waterbodies (Figure 4), particularly
along the shore side of Lake Abaya might be attributed to the displacement and lateral
expansion of the lake’s water due to the increase in sediment load, resulting from soil
erosion [65–67]. Rapid population growth, social instability, land policy, unproductive
land and climate change were identified as the key driving forces of LULC changes in
the area [33,68]. Land-use changes beyond land’s capability played a significant role in
triggering land degradation [30]. To minimize these adverse consequences of land use
change, it is recommended that adequate land use planning and management strategies
must be implemented.
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3.4. Sensitivity Analysis, Calibration and Validation

A total of fifteen parameters listed in Table 3 with very high to high sensitivity were
selected. The sensitivity result showed the SCS runoff curve number (CN2) as a major key
parameter with highest t-stat and lowest p-value (Table 3), while USLE_C and USLE_P are
the two most important parameters for sediment calibration. The graphical representation
in Figures 5 and 6 showed that the magnitude and temporal variation of simulated and
measured streamflow and sediment yield matched closely. As shown in Table 4, the
R2 values (R2 > 0.74) were satisfactory, as indicated by the goodness-of-fit between the
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measured and simulated dataset. The NSE values indicated good model performance for
stream flow and sediment yield simulation at both stations. The PBIAS showed slight
underestimation at Aposto (streamflow) and overestimation at Bedessa. However, all the
PBIAS values are less than±15% indicating a good simulation [55]. Hence, all the statistical
indices are in the acceptable range.

Table 3. Selected parameters, allowable range and fitted values for SWAT calibration.

Parameters Description
Sensitivity Allowable Fitted

t-Stat p-Value Rank Range Value

Streamflow

CN2 SCS runoff curve number −21 0 1 35–98 0.15

ALPHA_BF Baseflow alpha factor −9.6 0 2 0–1 0.3

SOL_BD Moist bulk density −7.4 0 3 0.9–2.5 1.01

GW_DELAY Groundwater delay 4.5 0.04 4 0–500 272

CH_K2 Effective hydraulic
conductivity 3.8 0.1 5 −0.01–500 67

SOL_K Saturated hydraulic
conductivity −3.7 0.16 6 0–2000 32

SOL_AWC Available water capacity of
the soil layer 1.6 0.34 7 0–1 0.16

Sediment

USLE_P USLE support practice
factor −8.4 0 1 0–1 0.57

USLE_C USLE cover factor −5.8 0 2 0.001–0.5 0.05

CH_COV1 Channel erodibility factor 1.6 0.11 3 −0.05–0.6 0.03

SPCON Linear factor for the
channel sediment routing 1.3 0.25 4 0.0001–0.01 0.01

CH_EQN Sediment routing method 1.2 0.27 5 0–4 3.0

SPEXP Exponential factor for
channel sediment routing −0,68 0.49 6 1–2 1.2

CH_COV2 Channel cover factor −0.64 0.51 7 −0.001–1 0.75

HRU_SLP Average slope steepness 0.59 0.55 8 0–1 0.17
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Table 4. Statistical indices for the SWAT model performance measure.

Model Simulation Period
Aposto Bedessa

R2 NSE PBIAS (%) R2 NSE PBIAS (%)

Streamflow
Calibration 0.89 0.80 −1.5 0.79 0.76 8.9
Validation 0.81 0.75 −3.9 0.84 0.8 11.1

Sediment yield Calibration 0.74 0.67 4.9 0.76 0.72 8.1
Validation 0.8 0.76 3.6 0.84 0.77 13.8

3.5. Estimation of Surface Runoff and Soil Loss
3.5.1. Impacts of Land Use Change on Surface Runoff and Soil Loss

The simulations that were driven from LULC change in the past indicated that the
mean annual surface runoff increased by 15.3 mm (4.5%) and 23.4 mm (6.8%) during S2
and S3, respectively, compared to S1 (base period for past). Similarly, the sediment yield in-
creased by 7.1 t/ha/year (28.8%) and 11.4 t/ha/year (46.2%) during S2 and S3, respectively.
Despite lower precipitation, surface runoff and sediment yield were increased in the past.
This could be attributed to the changes in LULC particularly the expansion of agricultural
land at a rate of 3.23% per year at the expense of natural vegetation (deforestation at a rate
of 2.4% per year) between 1985 and 2021 [30]. Moreover, significant changes were observed
in settlement areas ranged between 1.5 and 9.5%.

Simulations driven by future modeled LULC and observed climate data (S7 and S8)
showed an increase in surface runoff by 64.7 mm (17.8%) and 114.4 mm (31.5%), respectively,
compared to S6 (baseline for future simulations). Likewise, the annual sediment yield
increased by 5.1 t/ha/year (14.4%) and 8 t/ha/year (22.8%) during S7 and S8 compared
to S6. Consequently, the predicted LULC change will lead to an increased surface runoff
and sediment yield assuming a similar climate development as observed in S6. This could
be due to the unceasing expansion of, for example, agriculture land (48.3%, 55%) and
settlements (1.4%, 2%) by 2035 and 2050, respectively (Figure 3). The degradation of soil
and vegetation may increase the area of impervious surface, lowers the infiltration capacity
of the soil and increases the surface runoff [69,70]. The result revealed that land-use
changes have a more positive synergy on surface runoff and sediment yield. The results
were consistent with those in the previous studies [36,48].

3.5.2. Impacts of Climate Change on Surface Runoff and Soil Loss

Simulation obtained from climate change in the past (S4) depicted a decline in surface
runoff by 3.9 mm (1.1%) and sediment yield by 0.9 t/ha/year (3.7%), as compared to S1.
The near-term (S9) and mid-term (S10) simulations driven by future climate data (RCP4.5)
and observed LULC (2021) decreased the surface runoff by 17.7 mm (4.9%) and 20.2 mm
(5.6%), respectively, compared to S6. Likewise, the sediment yield will be reduced by
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2.9 t/ha/year (8.3%) and 3.1 t/ha/year (8.9%) during the S9 and S10, respectively. Un-
der RCP8.5, the surface runoff will decrease by 64.9 mm (17.9%) in the near-term (S11)
and increase by 6.7 mm (1.9%) during the mid-term (S12), compared to S6. Correspond-
ingly, the sediment yield will decrease by 4.6 t/ha/year (13%) in the S11 and increase by
1.7 t/ha/year (4.9%) in the S12. This might be related to the dynamic trends in climate
variables (precipitation and temperature) in the future scenario period, as described in
Table 2. The findings of decreasing surface runoff and sediment yield in the future projected
scenarios were consistent with the results of other studies in the Ethiopian rift valley [36,45].

3.5.3. Combined Impacts of Land Use and Climate Change on Surface Runoff and Soil Loss

Under the combined effect of land use and climate change, there is high variation in
annual surface runoff and sediment yield as compared to the individual effect. The result
obtained from past simulation (S5 and S6) indicated that the annual runoff increased by
13.9 mm (4%) and 20.1 mm (5.9%), respectively, as compared to S1. Under these same
scenarios, the sediment yield increased by 6 t/ha/year (24.2%) and 10.5 t/ha/year (42.7%),
respectively, for S5 and S6. Urbanization and deforestation associated with land use change
reduce the ability of land to absorb water, leading to increased surface runoff. Climate
change can intensify this effect by causing more frequent and intense rainfall events,
resulting in even higher rates of sediment yield. However, the combined effect of projected
LULC (2035, 2050) and climate change indicated a decrease in surface runoff and sediment
yield compared to S6.

Under RCP4.5, for example, the S13 (near-term) and S14 (mid-term) scenario showed
a decrease in surface runoff by 10.3 mm (2.9%) and 13.6 mm (3.7%). Likewise, the sediment
yield decreased by 2.4 t/ha/year (6.9%) and 2.6 t/ha/year (7.4%), respectively, in the S13
and S14. Under RCP8.5, S15 (near-term) showed a decrease in surface runoff and sediment
yield by 41.5 mm (11.4%) and 3.1 t/ha/year (8.8%), respectively. Similarly, S17, S18 and S19
indicated a decrease in surface runoff and sediment yield. Thus, the percentage decrease in
surface runoff ranged from 1.6% (S17) to 10.2% (S19). Similarly, the percentage decrease
in sediment yield ranged from 1.1% (S18) to 5.4% (S19), whereas S16 and S20 showed
an increase in surface runoff by 13.2 mm (3.6%) and 19.8 mm (5.5%), sediment yield by
2.5 t/ha/year (7.2%) and 3.96 mm (11.3%) into the future, respectively. This might be
attributed to the expected increasing trends in the annual rainfall (7.8 mm/year) under the
RCP8.5 scenario (Table 2). It is clearly evident that a little rise in annual precipitation is
resulting in a higher surface flow. These findings were supported by previous studies on the
impact of climate and LULC change on hydrological processes and sediment yield [36,71].

3.6. Identification of Soil Erosion Hotspots

The identification of erosion hotspot areas is crucial for effective land and water
resource management, as well as for developing targeted erosion control and mitigation
strategies. Hence, the average annual soil loss of GRB was classified into five sediment
severity classes (Table 5). The classes were adapted from Dananto et al. [47]; Guduru and
Jilo [38]. Table 5 indicated that most (>77%) of the study area experienced high to severe soil
erosion rate in a given scenario. The past analysis depicted that a mean annual soil loss of
42.9 t/ha/year and 45.6 t/ha/year was accounted for in S1 and S5, respectively. Moreover,
Figure 7 showed the spatial variability of mean annual soil loss at sub-basin scale under the
different scenarios. The highest amount of soil loss was showed in the southern as well as
in eastern part of the basin (Figure 7 and Figures S1 and S5), characterized by widespread
steep slopes and more often, the southern part received the high amount of rainfall [39].
On the contrary, most of the sub-basins in the western and northern part experienced low
to high soil loss. The results are consistent with Dananto et al. [47]; Adi et al. [48]; Guduru
and Jilo [38].
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Table 5. The percentage of erosion severity areas (Area%) in the past and future scenarios.

Severity Class Description
Past Near Future Mid Future

S1 S5 S13 S15 S18 S20

0–5 Low 4.9 4.9 0.7 0.7 0.7 0.6
5–10 Moderate 18.6 13.6 0.9 0.9 4.1 0.1
10–25 High 38.8 33.7 26.9 32.8 51.5 10.5
25–50 Very high 32.7 40.1 51.3 52 26.2 60.8
>50 Severe 5 7.7 20.2 13.6 17.5 28
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Furthermore, the spatial variability of sediment yield was identified for future com-
bined scenarios. The combined scenario analysis (Section 3.5.3) depicted the insignificant
intra-variability within each RCP scenario. Hence, we used a combination of one future
period (2021–2040, 2041–2060) correspondingly for each projected land use (LULC 2035,
LULC 2050) under each RCP (2 LULC × 2 pathways × 1 climate = 4). In this line, S13 and
S15 as well as S18 and S20 were considered for near and mid future scenario, respectively.
Thus, the near future average annual sediment yield varied between 28.25 t/ha/year and
29.57 t/ha/year (S13 and S15, respectively), while the mid future average annual sediment
yield ranged from 30.71 t/ha/year to 43.5 t/ha/year (S18 and S20, respectively). Among
the 35 sub-basins (Figure 7), sub-basins 6, 19, 25, 27, 29, 30, 33, 34 and 35 will generate the
highest amount of surface runoff and sediment yield in to the future (S13, S15, S18 and
S20); thus, they were categorized under critical sub-basins.

3.7. LDN Indicators
3.7.1. Land Productivity Dynamics

From 1985 to 2003, most (83.2%) of the study area was characterized under stable
productivity class and smaller (1.6%) proportion of the study area showed improvements
in productivity (Table S3). The LP trend showed early signs of decline in 13.2% of the
area. Another 1.4% of the study area showed decline land productivity and insignificant
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proportion (0.01%) of the study area characterized as stressed. Based on the LP trend
analysis applied between 2003 and 2021, 67% of the study area was marked as stable
(Table S3). Furthermore, 18.4% and 14.1% of the study area were under early signs of
decline and decline, respectively. Similar to the previous years, an insignificant proportion
(0.03%) of the study area was characterized as stressed between 2005 and 2021.

The stress or pressure on land productivity varied with land use and land cover. For
example, out of the total stressed area, 48% were found in croplands. Similarly, the largest
share of early signs of decline (68%) and decline (71%) categories were contributed from
croplands in 1985–2003 (Figure 8). Furthermore, the share of the area with early signs of
decline (52%) and decline (53.8%) were higher in croplands from 2003 to 2021 (Figure 8),
while around 57% of the stressed category were found in artificial areas between 2003 to
2021. From 1985–2003 to 2003–2021, the area where LP was improved and stable were
reduced while the land area degraded were increased (Figure 9a,d, respectively).
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3.7.2. Land Cover Degradation

The outputs for the land cover sub-indicator revealed that land area with stable
land cover were dominant (52% and 47%) in both periods (1985–2003 and 2003–2021,
respectively). Additionally, the degraded land cover was increased from 36% during
the 1985–2003 to 42% during the 2003–2021 (Figure 9b,e). However, land area with im-
proved land cover was slightly reduced from 12% during the 1985–2003 to 11% during the
2003–2021 (Table S3). The long-term LULC dynamics indicated that GRB experienced
significant landscape alteration between 1985 and 2021 (Table S1). Croplands covering 20%
of the study area (in 1985) experienced the highest relative expansion by 25% and 40% (in
2003 and 2021, respectively). Similarly, the spatial extent of agroforestry was increased from
13% to 15% and 20% over the study years. The other major rate of change was recorded
in the residential areas from 1.5% to 9.5% between 1985–2003 and 2003–2021, respectively.
This reflects the intensification of agricultural practice and urbanization activity in the GRB.
Furthermore, the expansion of agroforestry was mainly attributed to cultural values and
traditional beliefs in the study area [68].

3.7.3. Soil Organic Carbon Loss

Figure 9c,f showed the spatial distribution of SOC over the two periods (1985–2003
and 2003–2021, respectively). The results indicated that 13% and 12% of the study area
showed improvement in SOC, 53% and 49% of the GRB displayed stable condition during
1985–2003 and 2003–2021, respectively (Table S3). In addition, it appeared that the percent-
age of degraded areas were increased from 35% in 1985–2003 to 39% in 2003–2021. This
could be attributed to the significant conversion of forestlands (–1.16%, –4.23%), grasslands
(−1.31%, −3.26%) and shrublands (−2.41%, −3.59%) to other land uses, mainly croplands
(Table S3) and extractive nature of the farming practice. In line with this, Negasa et al. [72]
and Okolo et al. [73] indicated that conversion of native forest to other land uses and the
intensification of agricultural activities resulted in a significant decrease in the SOC stocks
across Ethiopia.

3.7.4. Land Degraded Status

Combining all the three sub-indicators, 45% and 56% of the study area were under
degraded status, 41% and 31% unchanged, 14% and 12% improved over the periods
between 1985–2003 and 2003–2021, respectively (Table 6). From 1985–2003 to 2003–2021,
the proportion of degraded land was increased by 26%, while stable and improved land
areas were reduced by 25% and 9%, respectively. The expansion of degraded area might be
attributed to the dynamic interplay of climate and LULC change. The high-risk degraded
land was mainly located in areas dominated by croplands and bare land (Figure 10).

Table 6. The extent of degraded, stable, and improved land according to the SDG 15.3.1 indicator.

Land Degradation Status 1985–2003 (% of Land) 2003–2021 (% of Land)

Stable 40.9 30.9
Improved 13.7 12.3
Degraded 44.6 56
No data 0.8 0.8
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3.8. Sediment Yield under Soil Conservation Scenarios

The average annual sediment yield reduction (% reduction) with respect to the soil
conservation practices was presented in Table 7. The result revealed that soil/stone
bund generated the lowest value of sediment yield (5.7–10.3 t/ha/year), then terracing
(6.4–12.7 t/ha/year) and contour farming (7–12.6 t/ha/year), followed by reforestation
(9.1–16.1 t/ha/year) and filter strip of 1 m (16.8–29.1 t/ha/year). Furthermore, Figure 11
shows the distribution of average sediment yield (t/ha/year) in critical sub-basins under
the proposed conservation scenario. The analysis justified that soil conservation practices
used in each scenario could significantly reduce the annual sediment yield. At the imple-
mentation of terracing, for example, there are no areas within the severe sediment yield
category. Accordingly, 64.8% and 59.4% (Low), 21.6% and 27% (moderate), 13.6% (high
to very high) were classified during S13 and S15, respectively. Likewise, 36.4% and 29.2%
of the study area were accounted for low severity class during S18 and S20, respectively,
while 51.9% and 47.2% were identified as moderate class. The remaining (11.7% and 23,6%)
were grouped under high to very high class during S18 and S20, respectively. The results
attained are comparable with the findings of previous studies in GRB [47,48]. Similarly,
Lemma et al. [25], Gashaw et al. [60], Admas et al. [61], Leta et al. [74] quantified the
significant contribution of the aforementioned conservation scenarios in different part of
the country.
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Table 7. Mean annual sediment reduction in soil conservation scenarios over the entire basin.

Conservation Scenarios
Sediment Yield (% Reduction) *

S13 S15 S18 S20

Terracing 77.2 63.1 78.9 70.8
Contour farming 72 58.4 77.1 71
Filter strip 38.7 38.4 45.2 33.1
Stone/soil bund 79.8 67.9 81.1 76.2
Reforestation 67.9 55.7 70.4 63

* Compared to the corresponding “without SWC” scenario.
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4. Discussion
4.1. Key Features and Variables

While there has been a significant decline in rainfall in the earlier past (1990–2005),
the trend in the more recent years (2005–2021) was relatively stable in the GRB. The future
projections under different emission scenarios (RCP4.5 and RCP8.5) indicated varying
trends, with temperature increases being a consistent feature. This indicates that the
basin is likely to experience warmer conditions in the future, which can have various
implications for ecosystems, water resources and human activities. For example, rising
temperatures will amplify the impact of droughts, reducing soil moisture availability and
cropland productivity [75]. Since majority of the livelihoods were primarily dependent
on subsistence rainfed agriculture [35], these trends could have significant effects on
agricultural practices and might be the determinant factor for various socio-economic
problems in the basin. These findings emphasize the need for robust climate monitoring
and adaptation strategies to address the potential impacts of changing climate conditions
on water resources, agriculture and overall environmental sustainability in the region.

The existing diverse range of LULC types reflects the complex nature of the landscape
and its susceptibility to change. The results revealed significant shifts in land cover over
the past several years (1985–2021). The “from–to” analysis in Tables S1 and S2 showed a
substantial conversion of natural landscapes into cultivable areas and settlements. By 2035
and 2050, it is expected that agricultural lands, agroforestry and bare land will continue to
expand at the expense of forest, shrub and grasslands. These projections are indicative of
ongoing land use changes that could have far-reaching environmental and socio-economic
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consequences [76]. The increase in human population often leads to higher demands for
land, particularly for agriculture and settlements [33]. Effective land-use planning and
management are critical for achieving sustainable and resilient landscapes.

4.2. Land Degradation Pathways

The results of the simulations, which were driven by land use and climate change
scenarios, provide valuable insights into the impacts on soil erosion and land degradation.
Comparing baseline (S1 and S6) and land use change alone, the simulations indicated
a substantial increase in surface runoff and sediment yield. Therefore, the study boldly
underscored that land use change alone have a more positive synergy on surface runoff and
soil loss. For example, the conversion of natural landscapes, such as forestlands, shrublands
and grasslands into agriculture land and urban areas, including impervious surfaces like
roads and buildings, reduced the land’s ability to absorb and retain water [69,70]. These
lead to an increase in surface runoff while decreasing infiltration. Moreover, deforestation
and clearing of natural vegetation leave the soil exposed to the erosive forces of water
and leading to more water reaching the ground and contributing to runoff. Additionally,
land-use changes can modify natural drainage patterns, leading to the concentration of
runoff into specific areas. This might result in localized flooding and erosion.

The comparison between the baseline and climate change scenario showed decrease
that might be attributed to a decrease in precipitation and an increase in temperature.
The impacts of climate change on surface runoff and soil loss are interconnected. For
example, Mana et al. [32] revealed the reduction in stream flow in the future due to the
decrease in precipitation and an increase in evapotranspiration (associated with an increase
in temperature). It has also been shown that there is a significant relationship between
streamflow and sediment yield [45,48]. Thus, the result implies that the reduction in
sediment yield (S9, S10 and S11) in the future period is associated with the reduction in
streamflow, which is, in turn, linked with climate changes.

Despite increased impervious surface through increased settlement areas and bare
land, lesser runoff and sediment yield were predicted in most of the combined future
scenario compared to base period (S6). Additionally, the increments of runoff and sediment
in these scenarios were lower compared to land use change alone (S7 and S8). This
could be due to the offset of runoff and sediment reduction by climate change (i.e., lower
precipitation and higher temperature projections) in the coupled climate and land-use
change scenario. This indicates that climate change has greater contribution on hydrological
process compared to land use.

Most of the critical sub-basins (28% of the total area) were characterized by shallow
(Leptosols) and clay dominant soils (Vertisols), dominated by agriculture and grasslands,
and very steep slopes. Moreover, the southern part of the GRB will receive high amount of
rainfall under both RCPs (Figure S1). Regardless of differences in rainfall, surface runoff
and soil erosion were much higher on croplands and grazing lands [77]. This is largely due
to excessive tillage operations and intense grazing by livestock which lead to increased
soil disruption and vulnerability to erosion. Moreover, high values of surface runoff were
correlated with Vertisols owing to slow internal drainage and low infiltration capacity after
getting wet [78,79]. On the contrary, sub-basins 4, 7, 8, 28 and 31, which represented 4.7%
of the total area, were under low sediment severity class. These sub-basins were dominated
by shrublands and forestlands with a slope ranged between 3 and 12%.

According to the LP dynamics, croplands accounted for 68.4% and 53% of the degraded
area in 1985–2003 and 2003–2021, respectively. These areas are characterized by lower tree
cover, unsustainable land management practices, accelerated carbon decomposition and
erosion. In line with this, Degefa [80], Debelo et al. [81] and Hassen et al. [82] indicated
that trend in agricultural productivity has declined over the last decades given that climate
change, soil erosion, and poor soil and water conservation (SWC) practices were mentioned
as the main drivers. This, in turn, resulted in increased demand for farm inputs (e.g.,
fertilizer, pesticides) and increased production costs. Moreover, studies identified that
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human and livestock population in regions of limited resources, unsustainable farming
techniques, an insecure land tenure system, poverty and climate change as major drivers of
LULC and land degradation [76,83–85]. As a result of the expansion of land degradation
over time, agricultural productivity has decreased and worsened food insecurity and
poverty in the GRB [35].

4.3. Enhancing Land Degradation Assessment

Soil erosion, as a key driver of land degradation, directly impacts soil quality and
land productivity. Soil erosion assessment provides insights into erosion extent, severity
and vulnerability of areas that may not be fully captured by the LDN sub-indicators alone.
Moreover, soil erosion indicators can help to evaluate the success of land restoration activi-
ties, providing valuable feedback on the effectiveness of LDN interventions, and ultimately
supports land management and conservation efforts. Therefore, the integration of soil
erosion indicator into LDN assessments can complement the existing sub-indicators, allows
for more comprehensive understanding of land degradation and restoration dynamics.

4.4. Potential Management Alternatives

Addressing these concerns, the study underscored the implementation of soil/stone
bund, terracing, contour farming and reforestation practice. While these conservation
practices had varying levels of effectiveness, they can significantly reduce the annual
sediment yield and will help to achieve the LDN in the future. For example, soil/stone bund
generated the lowest sediment yield values, indicating its high effectiveness in reducing soil
erosion, while filter strip, although beneficial, was not as effective as the others. In line with
this, Hassen et al. [86] revealed the positive correlation between soil conservation practice,
agroecology and soil physicochemical properties in the GRB. Particularly, the traditional
agroforestry system and plantation work has a significant contribution to soil fertility
improvement and local communities’ livelihood [82,87]. Apparently, the integration of the
proposed conservation scenarios with the traditional practice might reduce the soil erosion
and also improve the LDN indicators, thereby reducing related degradations.

5. Conclusions

This study was conducted in the GRB, in an Ethiopian rift valley, to assess trends
in land degradation and evaluate management alternatives. The study employed an
integrated approach combining the SWAT model and the Trends.Earth. The GRB faces
substantial landscape alteration and climatic variability, and significant challenges related
to soil erosion and land degradation. Historical changes in LULC led to an increase in
mean annual surface runoff and sediment yield despite lower precipitation. This increase is
attributed to the expansion of agricultural land and deforestation, which reduced the land’s
ability to absorb water and increased surface runoff. Future projection showed further
increases in surface runoff and sediment yield due to the ongoing expansion of agriculture
and settlements. Past simulations as well as future climate change scenarios under the
RCP4.5 showed a decline in surface runoff and sediment yield, while under RCP8.5, results
showed decreases in the near-term (2021–2040) and increases in the mid-term (2041–2060) in
surface runoff and sediment yield. The interplay between land use and climate change led
to varied outcomes, with some scenarios (e.g., S5 and S6) showed increases in surface runoff
and sediment yield, indicating a synergy between land use change and climate change,
while certain future scenarios (e.g., S13, S14, S15) showed decreases in surface runoff and
sediment yield. The findings revealed that significant portion of the study area, particularly
the southern and eastern parts of the basin, exhibited high to severe soil erosion rates. The
LP dynamics indicated that the proportion of land categorized as stable were decreased,
while areas displayed early signs of decline and decline were increased from 1985–2003
to 2003–2021. Concurrently, land-cover degradation and SOC loss was also increased.
Overall, the proportion of degraded land expanded significantly emphasizing the need
for sustainable land management practices to mitigate further degradation. The study
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evaluated various soil conservation practices in the context of sediment yield reduction,
with soil/stone bund emerging as the most effective measure, followed by terracing,
contour farming and reforestation. These practices exhibited the potential to significantly
reduce annual sediment yield and are crucial for achieving LDN goals.
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//www.mdpi.com/article/10.3390/land12091809/s1, Figure S1: The spatial pattern of projected
mean annual rainfall under RCP4.5 and RC8.5; Figure S2: The spatial pattern of projected mean
annual temperature under RCP4.5 and RC8.5; Table S1: Transition area matrix (ha) of LULC between
1985–2003 and 2003–2021; Table S2: Transition area matrix (ha) of LULC between 2021–2035 and
2035–2050; Table S3: Summary of land degradation indicators based on SDG 15.3.1.
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Notes
1 Changes in land use resulted in variations in the number and distribution of HRUs in the GRB. Therefore, 261 HRUs for 1985, 237

HRUs for 2003, 175 HRUs for 2021, 178 HRUs for 2035 and 163 HRUs for 2050 were created.
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