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Abstract: Urban form plays a critical role in shaping the spatial differentiation of land surface
temperature (LST). However, limited research has investigated the underlying driving forces and
interactions of multidimensional urban form, specifically considering two-dimensional (2D) urban
land use and three-dimensional (3D) buildings, on LST. Furthermore, their multi-scale outcomes
remain unclear. Taking the main urban area of Wuhan City as an example, a total of nine indicators—
the proportion of administration land (PA), the proportion of commercial land (PB), the proportion
of industrial land (PM), the proportion of residential land (PR), the proportion of water area (PE),
the building density (BD), the building height (BH), the floor area ratio (FAR), and the sky view
factor (SVF)—were selected; this paper used the geographic detector model to investigate the driving
force of LST spatial differentiation in winter and summer, as well as the interaction of various
influencing factors from a multi-scale perspective. The results showed that (1) the average LST
in industrial land was higher than that in commercial land, both in summer and winter. The LST
in administration land was higher than that in residential land, while in winter, it is the opposite.
(2) The spatial differentiation of summer LST was mainly dominated by 3D buildings, while the
spatial differentiation of winter LST was mainly dominated by 2D land use. (3) BD was the leading
driving force of LST spatial differentiation in summer, and the interaction between BD and any other
indicator showed the most significant explanatory power, which is the same for PM in winter. (4) As
scale increased, the explanatory power of 2D urban land use for LST spatial differentiation gradually
increased both in winter and summer, while the explanatory power of PE on LST spatial differentiation
decreased. The explanatory power of BD, FAR, and SVF on LST spatial differentiation remains
basically unchanged. The explanatory power of BH on summer LST spatial differentiation decreases
with increasing scale, while the explanatory power of BH on winter LST spatial differentiation
remains in a stable state. (5) The interaction among all urban form factors primarily increases as
the scale increases, except for the interaction between BH and 2D urban land use in summer, and
the interaction between PE and PR in winter. The research can provide scientific decision-making
support for the collaborative optimization of multiscale urban forms to improve the urban thermal
environment.

Keywords: LST; urban form; building density; 2D/3D; scale effect; geo-detector

1. Introduction

China’s urbanization rate reached 63.89% by the end of 2020 (National Bureau of Statis-
tics of China, 2020), and dramatic urbanization has inevitably resulted in natural landscapes
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being replaced by artificial surfaces [1,2]. This change directly influences the land surface
energy balance and urban microclimate, and hence induces higher temperatures in urban
built-up areas than the surrounding non-urban areas, which is called the urban heat island
(UHI) effect [3]. The aggravation and deterioration of the urban thermal environment pose
a great threat to the improvement of urban residential quality [4,5], public health [6,7],
and living safety [8,9]. Therefore, the improvement of the urban thermal environment has
become an urgent issue to be addressed, and a clear understanding of the driving factors
affecting land surface temperature (LST) is crucial for reducing their harmful effects and
promoting sustainable urban development.

Currently, UHI effect studies mainly focus on the formation mechanisms [10], spa-
tiotemporal variation [11], driving factors [12], effective simulation [13], thermal com-
fort [14], and mitigation measures [15]. There is a consensus that urban form is one of the
dominant influencers on the UHI effect, particularly within intra-urban regions [16–19].
Urban form is a comprehensive concept that covers multiple aspects [20,21]. Normally, the
measurement of dimensions and the corresponding selection of metrics are tailed according
to the aims of a specific study. For example, a few studies have explored whether the mono-
centric or polycentric urban form can alleviate the UHI effect [22]. Liu et al. (2022) [23]
measured urban form from three aspects—building group, road network, and population
distribution—and analyzed its impact on UHI. Chen et al. (2023) [24] found that building
morphology contributes most to LST, followed by landscape pattern and social develop-
ment. Recently, a large number of scholars have studied the impact of urban forms on UHI
from two-dimensional (2D) land horizontally and from three-dimensional (3D) buildings
vertically [25–27]. The existing research on the relationship between urban form and the
UHI effect provides a wealth of insights, but there are notable gaps and inconsistencies that
warrant further exploration. Specifically, from a 2D perspective, a considerable number of
current studies focus on land cover, such as vegetation and impervious surfaces [28–32],
rather than land use, which is related to the function and management of land. On the
one hand, land cover metrics, such as normalized difference index (e.g., NDVI, NDBI,
NDWI, etc.) and landscape structure (e.g., percentage cover of landscape, largest patch
index, mean patch shape index, mean patch size, etc.) [33], do not necessarily capture
the complexities of human activities, zoning regulations, and urban planning strategies
that are encompassed by land use. On the other hand, the prevalent use of these indices,
while scientifically rigorous, can be less intuitive for urban planners and policymakers. The
translation of these metrics into actionable urban planning strategies can be challenging.
There is a pressing need to adopt land use metrics that bridge the gap between research
and their practical implications in urban planning. From a 3D perspective, building density
(BD), building height (BH), floor area ratio (FAR), and sky view factor (SVF) have been
shown significant impact on LST [34–36]. However, some studies highlight the traditional
urban form with lower BD and SVF exhibiting lower air temperature; others emphasize
that the urban form of low BD and medium BH yielded significantly higher LST. Thus,
while the current body of literature offers a foundational insight into the nexus between
urban form and UHI, it still has gaps and inconsistencies. This highlights an evident need
for a more comprehensive examination of the impact of urban form on LST, particularly
when considering both 2D urban land use and 3D building dimensions.

Urban areas are dynamic entities that undergo significant changes across seasons.
Vegetation cover, human activities, and energy consumption patterns, among other factors,
vary from summer to winter. These seasonal shifts may influence how the urban form inter-
acts with LST. Furthermore, urban processes and patterns can manifest differently at various
scales; thus, the relationship between urban form and LST may be scale-dependent [24,28].
Understanding the seasonal and scale effects on the urban form–LST relationship has
important implications for urban planning. For instance, urban interventions that work
effectively in summer might not be as effective in winter. Similarly, strategies effective at a
neighborhood scale might not necessarily translate to city-wide benefits. Urban planners
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and policymakers need this knowledge to craft interventions that are both effective and
efficient across seasons and scales.

In terms of research methods, many prior studies have predominantly relied on
correlation analysis [37,38] and regression analysis [39,40] to excavate the relationship
between LST and its determinants. However, such approaches often oversimplify the
interplay of factors, neglecting the fact that spatial differentiation of LST is an intricate
outcome stemming from the synergistic effects of myriad determinants [41–44]. Thus, it
becomes imperative to explore how the interaction of urban form affects LST, given the
multifaceted nature of urban systems. Accordingly, as mentioned above, previous studies
mostly focus on the relationship between land cover and LST [44–48], neglecting the impact
of land use on the LST spatial differentiation in the main urban area. In addition, the
synergetic effect of land use and building on LST remains unclear. Second, the spatial
heterogeneity of LST is affected by 2D land use and 3D buildings with seasonal differences,
which should be emphasized. Third, the geographical scale effect [49,50] is always neglected
when exploring thermal environmental issues.

To address the aforementioned knowledge gaps, this study focuses on the main urban
area of Wuhan. Utilizing Landsat-8 imagery to retrieve LST data for both summer and
winter seasons, we delve into the effects of urban form on LST from a comprehensive
perspective of 2D land use and 3D building. Subsequently, a geographic detector is
employed to unravel the multi-scale drivers shaping the spatial differentiation patterns
of LST. Accordingly, this study attempted to answer the following questions: (1) How do
2D urban land use and 3D building independently and jointly affect LST? (2) What are the
differences in the impact of urban form on LST in summer and winter, separately? (3) How
does the effect of urban form on LST vary with scale effect? (4) What are the implications
for urban thermal environment management? Based on these core questions, the research
significance is summarized as providing operational multi-scale thermal environment
management measures for different seasons by regulating urban planning indicators of
both 2D urban land use and 3D building in practice. The specific structure and arrangement
of the article are as follows (Figure 1).
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Figure 1. Research framework and process (PA represents proportion of administrative land, PB
represents proportion of business land, PR represents proportion of residential land, PM represents
proportion of industrial land, PE represents proportion of water area, BD represents building density,
SVF represents sky view factor, BH represents building height, and FAR represents floor area ratio).
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2. Materials and Methods
2.1. Study Area

The study area, Wuhan City, located at the confluence of the middle and lower reaches
of the Yangtze and Han Rivers, is the commercial and administrative capital of Hubei
Province, China (Figure 2). Wuhan has a tropical monsoon climate that is humid with
plenty of rain and intense sunshine, and it is extremely muggy in summer. In this paper, we
focused on the main urban area rather than the greater metropolitan area, and its total area
is about 522.67 km2. Figure 2c shows the urban land use distribution in the main urban area
of Wuhan. Residential land is the main type of land use in urban built-up areas, accounting
for 28.9% of the total area. Most of the industrial land is clustered in Qingshan Industrial
Park in the northeast of the city, and the Economic and Technological Development Area
is in the southwest; some small industrial land is scattered throughout the inner city. The
commercial and service land tends to be distributed in spots along the main traffic route
and at its junctions.
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2.2. Data

The Landsat8 OLI_TIRS remote sensing images obtained on 13 June 2013 and 23
January 2014 were used as the basic data for retrieving land surface temperature (LST)
in summer and winter, with the strip number 123/19, a spatial resolution of 30 m, and
a high image quality from the United States Geological Survey (USGS). Data calculation
for urban form includes two aspects: urban land use data and building data. Specifically,
the urban land use data are from the urban land use survey, which can be divided into
11 types according to the Urban Land Classification and Planning Construction Land
Standards in China [51]. Only five land use types—administration land (A), commercial
land (B), industrial land (M), residential land (R), and water area (E)—were employed in
this study because of their small areas and nonsignificant driving forces. The building data
were obtained from the Application Programming Interface (API) from Amap developer
platform (https://lbs.amap.com/) accessed on 1 January 2023. There are vector data with
the floor area of the building and the number of the building floors, which can be used for

https://lbs.amap.com/
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the calculation of building density (BD), floor area ratio (FAR), sky view factor (SVF) and
building height (BH). For the convenience of calculation [16,30], we set the average height
of each floor to 3 m and multiplied it by the total number of building floors to calculate the
total height of the building. The calculation process of indicators was completed on the
ArcGIS 10.8 platform.

2.3. Two-Dimensional/Three-Dimensional Metrics Selection and Description

In order to detect the influence of urban form on LST, a comprehensive indicator sys-
tem capturing the multi-dimensional aspects of urban form was developed, encompassing
2D urban land use and 3D building characteristics. Most of these selected indicators are in
accordance with the prescriptive regulations of China’s Urban Regulatory Detailed Plan-
ning. As an important means to control and guide urban development and construction,
urban planning restricts and standardizes urban construction through land use nature
(function), building height, building density, floor area ratio and other indicators. Therefore,
the indicators selected in this article are highly related to the controlling elements of detailed
urban planning in China, which is beneficial for improving the feasibility of optimizing the
urban thermal environment. In the horizontal dimension, the planning of land use guides
urban development, human activities, and construction intensity, which determines the
formation of varied heat islands in terms of heat dissipation for daily life and production, or
cold islands provided by ecological land. In the vertical direction, buildings have become
the key factors affecting the local climate [52]. On one hand, buildings generate spatial dif-
ferences in absorbing and blocking heat through their material properties and canopies; on
the other hand, building layout affects ventilation, thereby affecting the accumulation and
diffusion of heat [26]. Urban planners should understand the role that land development
patterns and their spatial distribution area play in the formation of the UHI.

As important components of urban form, five land use indicators were selected, in-
cluding the proportion of administration land (PA), the proportion of commercial and
service facilities land (PB), the proportion of industrial land (PM), the proportion of resi-
dential land (PR), and the proportion of water area (PE), which can effectively represent the
planning purpose. Among these, industrial areas are typically marked by large, low-rise
structures, prevalent use of dark-coloured metal roofing materials, and substantial energy
consumption, all of which contribute to urban heat hotspots [53]. On the other hand, admin-
istrative, commercial, and residential areas are characterized by different building layouts,
green spaces, socio-economic activities, artificial cooling facilities, and different degrees
of release and absorption, thereby potentially resulting in varied LST. Conversely, water
bodies serve as prominent ‘cold islands’ within cities, playing a crucial role in mitigating
the UHI effect [54]. In addition, the data acquisition and previous experience are also the
main criteria for selecting 3D building indicators, including building density (BD), building
height (BH), floor area ratio (FAR), and sky view factor (SVF) [55]. Specifically, BD repre-
sents the building coverage degree, with higher values resulting in stronger absorption
of solar radiation at the surface and reduced air circulation [43]; BH represents the 3D
roughness of the urban surface, which changes the LST mainly by affecting the shading
effect and the efficiency of urban ventilation [24]; FAR represents the ratio of gross floor
area to grid area, the impact of which on warming is related to human production and
domestic heat emissions [39]; and SVF represents the degree of spatial closure of the city
and changes the LST by affecting solar radiation absorption [56]. The formulas and specific
connotations of each indicator are shown in Table 1.
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Table 1. Summary of metric calculation methods.

Type Metric Calculation Description References

2D Land use type area ratio PL = Sa
B

where Sa is the total area of a
certain land use type in the unit. B
is the total area of the research
unit.

[57–59]

3D

Building density BD = ∑n
i=1

Ai
A

where Ai is the base area of
building i. A is the total area of the
study area.

[24,39,55,57]

Building height BH = ∑n
i=1

Hi
n

where Hi is the height of building i
and n is the number of buildings. [24,39,55,60]

Floor area ratio FAR = ∑n
i=1

Ai Hi
A

where Ai is the base area of
building i. Hi is the number of
floors of building in the unit. A is
the total area of the study area.

[24,39,43,55,57]

Sky view factor
SVF = 1

2π

∫ 2π
0 [cosβcos2+

sinβcos(−α)(90− ϕ
−sinϕcosϕ)]dθ

The SVF is calculated by 3D vector
estimation method, and the
calculation process is described in
the literature [61,62], which
reflects the closeness degree of
urban space.

[35,40,56,60,63]

2.4. Methodology
2.4.1. Land Surface Temperature Retrieval

The mono-window algorithm with a high accuracy was used to retrieve the surface
temperature [64]. The thermal infrared band was first subjected to radiometric calibration,
meaning that the digital number (DN) value was converted to the corresponding radiation
intensity value Lε:

Lε = gain× DN + o f f se (1)

where Lε the spectral radiance, and gain and offset are the radiometric rescaling coefficients
obtained from the header file. This is converted to the corresponding radiation brightness
temperature (BT) value Ta:

Ta = K2/ ln(1 + K1/Lε) (2)

where Lε is the spectral radiance, K1 = 774.89 W/(m2·sr·µm), and K2 = 1321.08 K for Landsat
8 band 10. The LSTs were obtained by using the Ta value from Equation (2) as follows:

TS = {a(1− C− D) + [b(1− C− D) + C + D]Ta − DTb}/C (3)

where Ts is the surface temperature, Tb is the brightness temperature, Ta is the average
atmospheric action temperature, a and b are considered as constant coefficients to correct
the accuracy of surface temperature, with the temperature range of 0–70◦ (273–343 K) [65],
a = −67.35535 and b = 0.45861, and C, D are intermediate variables, calculated by
Equations (4) and (5):

C = ε ∗ τ (4)

D = (1− τ)[1 + (1− ε)τ] (5)

where ε and τ are the surface emissivity and atmospheric transmissivity of the thermal
infrared band, respectively [66]; ε represents the surface emissivity based on NDVI and
vegetation coverage [67] and τ represents atmospheric transmissivity calculated based on
atmospheric parameters derived from NASA’s website (http://atmcorr.gsfc.uasa.gov/),
accessed on 10 January 2023.

http://atmcorr.gsfc.uasa.gov/
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2.4.2. Geographic Detector

A geographic detector is a set of statistical methods to detect driving forces and
mechanisms of spatial stratified heterogeneity, including four modules: the factor detection,
the interaction detection, the risk area detection, and the ecological detection [46]. The
most significant advantage of the geographic detector model over other methods is that
the relationship between driving factors and the geographic phenomena can be detected
without any linear assumptions, and its calculation process and results are not affected by
multi-collinearity [68]. In this paper, factor detectors and interaction detectors are used to
quantitatively analyze the driving factors of LST in the main urban area of Wuhan City and
their interactions.

(1) Factor detection. Detect the spatial differentiation of variable Y, and the extent to
which a factor X explains the spatial differentiation of attributes. Measured by the q
value, the expression is

qx,y = 1− 1
nσ2

Y
∑m

i=1 nx,iσ
2
Tx,i

(6)

where qx,y is expressed as the explanatory power of the influence factor X on the
surface temperature Y; n is the total number of samples in the study area; σ2

Y is the
variance of surface temperature; m is the number of categories after the discretization
of impact factor X; nx,i and σ2

Tx,i
are the sample number and surface temperature

variance of influence factor X in class i, respectively. The value range of qx,y is [0~1],
and the higher the q value, the stronger the explanatory force of the impact factor X
on the dependent variable Y.

(2) Interaction detector. The interaction detector judges the characteristics of the inter-
action between two variables by comparing the q value of a single factor and the q
value of the interaction between two factors. The q(xi∩xj) value is used to determine
whether the interaction between factors Xi and Xj will enhance or weaken the explana-
tory force of surface temperature. The interaction between the two factors is shown in
Table 2.

Table 2. The type of factor interaction.

Judgement Types of Interactions

q(X1∩X2) < Min(q(X1), q(X2)) Nonlinear weakening
Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2)) Single-factor nonlinear weakening
q(X1∩X2) > Max(q(X1), q(X2)) Two-factor enhancement
q(X1∩X2) = q(X1) + q(X2) Independent
q(X1∩X2) > q(X1) + q(X2) Nonlinear enhancement

3. Results
3.1. Spatial Distribution of the Land Surface Temperature

The LST spatial distribution in the main urban area of Wuhan in summer and winter
is shown in Figure 3. The areas with high summer LST are mainly distributed west of the
Yangtze River and north of the Han River, as well as industrial zones and economic devel-
opment zones located in the northeast and southwest parts of the study area, respectively.
The highest surface temperature reached 54.06 ◦C in summer. The area of the highest LST in
winter was relatively small with a concentrated distribution. LST in the central urban area
was low, but the industrial zones located in the urban fringe had high surface temperatures.
Furthermore, both in winter and summer, the water area showed obvious characteristics of
a “cold island”. Under the substrate constraint of the blue-green space in the main urban
area of Wuhan, the LST of Wuhan presented a rather fragmented spatial pattern. In order
to analyze the relationships between LST and urban form metrics at various scales, ArcGIS
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10.8 was employed to create a fishnet to divide five grid units (150 m, 300 m, 500 m, 700 m
and 1000 m) as the analysis unit (Figure 4).
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The LST was also analyzed in various urban land use types (Figure 5). In summer, the
average surface temperature was ranked as M (40.238 ◦C), B (39.112 ◦C), R (38.158 ◦C), A
(38.064 ◦C), and E (30.515 ◦C), while the average surface temperature in winter is ranked as
M (13.728 ◦C), B (12.119 ◦C), A (11.992 ◦C), R (11.604 ◦C), and E (10.732 ◦C). It can be found
that the average LST of industrial land was the highest both in winter and summer, and
the average LST of the commercial land ranked in second place, while the average LST of
water area was the lowest. The average LST of administration and public service land use
was higher than that of residential land in summer, while it was the opposite in winter.

Previous studies have primarily focused on the urban thermal environment within the
context of LCZ or urban function zones, neglecting the influence of land use characteristics
on LST [52,69–71]. These two pre-classification methods are indeed helpful in facilitating
comparisons across different divisions. However, their subjective classification standards
can result in inconsistent and incomparable outcomes. Therefore, it is essential to directly
study the spatial differentiation of LST based on land use itself. The findings of this study
indicated that industrial land exhibited the highest average surface temperature during
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both winter and summer seasons, followed by commercial land, which is consistent with
Li et al. (2020) [72] and inconsistent with Chen et al. (2022) [69].
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Figure 5. Mean summer (a) and winter (b) LST in the various urban land use types (A represents ad-
ministration and public service land; B represents commercial and service facilities land; R represents
residential land; M represents industrial land; E represents water area).

3.2. Factor Detection at Various Scales

Based on the analysis results of the single factor detector, the q values of nine factors
in five scale units were tested and analyzed (Table 3). In summer, the q value of BD with a
range of 0.449–0.538 ranked in the first place, followed by FAR, PE and SVF. The q value of
PA showed the weakest driving force with a range of 0.046–0.129. Except for the water area,
all 2D urban land use metrics showed rather weaker explanatory powers of LST spatial
differentiation than that of 3D buildings. Generally, the impact of 3D buildings on LST is
much higher than 2D urban land use. In winter, the q value of PM had the largest impact on
LST with an explanatory power of 0.226–0.279, followed by PE and BH. The q value of PB
had the smallest. In short, the metrics of 3D buildings did not show a stronger explanatory
power of LST spatial differentiation compared with those of 2D urban land use in winter.

Table 3. Testing for scale effects.

Unit PA PB PR PM PE BD BH SVF FAR Sum
SU. 150 0.046 0.062 0.093 0.147 0.402 0.449 0.334 0.234 0.396 2.163

300 0.070 0.104 0.127 0.174 0.425 0.515 0.263 0.330 0.427 2.435
500 0.102 0.155 0.148 0.209 0.412 0.526 0.216 0.373 0.430 2.571
700 0.107 0.165 0.163 0.233 0.228 0.538 0.152 0.385 0.437 2.408

1000 0.129 0.214 0.170 0.274 0.340 0.518 0.130 0.424 0.432 2.631
WI. 150 0.009 0.001 0.08 0.226 0.132 0.050 0.110 0.029 0.036 0.673

300 0.026 0.005 0.093 0.254 0.130 0.064 0.109 0.052 0.028 0.761
500 0.047 0.009 0.092 0.274 0.131 0.051 0.110 0.065 0.022 0.801
700 0.074 0.021 0.102 0.279 0.108 0.044 0.100 0.078 0.022 0.828

1000 0.087 0.023 0.124 0.272 0.111 0.036 0.125 0.069 0.026 0.873
Note: The darker the color of the same indicator in different grid units, the higher the q value. PA represents
proportion of administration and public service land, PB represents proportion of business land, PR represents
proportion of residential land, PM represents proportion of industrial land, PE represents proportion of water
area, BD represents building density, SVF represents sky view factor, BH represents building height, and FAR
represents floor area ratio.

The q value of each factor is tremendously affected by the scale effect. In summer, the
effect of PA, PB, PR, PM, and SVF on LST showed a trend of increasing q value with the
increase in grid scale. However, the effect of PE and BH on LST shows a trend of decreasing
q value with the increase in scale. The effect of BD and FAR on LST have low sensitivity to
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the scale transformation, showing relative stability. In winter, PA, PB, PR, PM, and SVF
show a trend of increasing q value with the increase in grid scale like that in summer. While
PE and BD show a trend of decreasing q value with the increase in scale, BH and FAR
exhibit slight fluctuations of q value as the scale increased. Overall, the ranking of the total
q values for each factor under the different grid cells in summer was at 1000 m, 500 m,
700 m, 300 m, and 150 m. In winter, the ranking was at 150 m, 300 m, 500 m, 700 m, and
1000 m.

3.3. Interaction Detection at Various Scales

The “interaction detection module” was employed to assess the influence of pairwise
interactions. The interaction between any two factors exhibited a stronger explanatory
power for the spatial differentiation of LST than any individual urban form metric. In
summer, the highest q value was observed for the interaction PE∩BD at 150 m, 300 m, 500 m,
and 700 m, while PR∩BD exhibited the highest q value at 1000 m (Figure 6). As illustrated,
the q values for PM∩PB, PM∩PR, and PM∩PA at 150 m, 300 m, 500 m, and 700 m, as well
as those for PM∩PR and PM∩PA at 1000 m, surpassed the sum of the individual factors,
indicating a non-linear mutual enhancement. Another type of interaction observed was
bivariate enhancement, in which single factors exhibit an effect lower than the sum of their
individual impacts.
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Figure 6. Interactive detection results of urban form metrics on LST in summer (PA represents
proportion of administration and public service land, PB represents proportion of business land,
PR represents proportion of residential land, PM represents proportion of industrial land, PE repre-
sents proportion of water area, BD represents building density, SVF represents sky view factor, BH
represents building height, and FAR represents floor area ratio).

Overall, the interaction between metrics of 2D urban land use alone had a lower ex-
planatory power for revealing the spatial differentiation of surface temperature compared
to the interaction between metrics of 2D urban land use and 3D buildings, as well as inter-
actions involving 3D building metrics. The stronger interactions were primarily observed
in PE∩BD, PM∩BD, PM∩FAR, and PR∩BD at various scales. As the scale increased, PA, PB,
and PM exhibited more pronounced interactions with other 2D urban land use indicators
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compared to PE. Additionally, PA, PB, and PM showed stronger interactions with 3D
building indicators, except for BH. The interaction between PE and other 2D urban land
use and 3D building indicators demonstrated a significantly higher explanatory power for
the spatial differentiation of LST. However, this interaction exhibits an unstable fluctuation
state as the scale increases. With increasing scale, the interaction between BH and 2D
urban land use indicators exhibited a decreasing trend. On the other hand, the interaction
between BH and 3D building indicators demonstrated an increasing trend as the scale
expanded. The interaction between SVF and other 2D urban land use and 3D building
indicators exhibited a gradually increasing trend as the scale increased. FAR demonstrated
a robust interaction with other 2D urban land use and 3D building indicators, and as the
scale increased, this interaction became more pronounced. Notably, the explanatory power
of FAR in explaining the phenomenon of interaction exceeded 40%.

In winter, the interaction among metrics of 2D urban land use, as well as the interaction
among 3D building metrics, had a low explanatory power for LST spatial differentiation
(Figure 7). The strongest interactions mainly manifested in the interaction between PM,
PE and PR with other urban form metrics at various scales. As the scale increased, the
interaction between PM and any other 2D urban land use and 3D building indicators
became stronger. The interactions between PE∩PA and PE∩PB gradually intensified
with increasing scale, while the interaction between PE∩PR weakened. Additionally, the
interactions between PE and any 3D building indicators exhibit an unstable and fluctuating
pattern. On the other hand, the interactions of PR∩PA, PR∩PB, PR∩BH, and PR∩SVF
strengthened as the scale increased. However, the interactions between PR∩BD and
PR∩FAR reached their peak at a scale of 700 m, followed by a slight decline at 1000 m.
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4. Discussions 

4.1. Driving Forces of Urban Form on LST Spatial Differentiation in Summer and Winter 

Urban form plays a key role in LST spatial differentiation [73,74]. However, there is 

a notable gap in research regarding the spatial differentiation of LST from a comprehen-

sive perspective that includes urban land use and buildings. This study reveals that the 

LST spatial differentiation in summer and winter is influenced by different dominant fac-

tors. The LST spatial differentiation in summer was mainly affected by 3D building ele-

ments, while the LST spatial differentiation in winter was mainly affected by 2D land use 

elements. These seasonal disparities may come from multiple factors. Specifically, during 

summer, with direct sunlight hitting the ground, buildings and other man-made struc-

tures, such as concrete and asphalt, play a pivotal role in modulating the thermal environ-

ment. These materials, characterized by their thermophysical properties, exhibit a propen-

sity to absorb and store substantial amounts of heat, leading to a rise in LST. Moreover, 

urban structures, particularly the height and density of buildings, can impede natural 

ventilation processes, further exacerbating the urban heat phenomenon [75]. While di-

verse land use types and their associated socio-economic activities introduce variability in 

the urban thermal environment, the dominance of impervious surfaces in urban cores 

largely dictates the LST spatial variations. During winter, the retention effect of buildings 

is less pronounced compared to summer due to the reduced intensity and duration of 

winter sunlight. Land use patterns, which determine the distribution of various heat 

sources and sinks, become more critical. For example, anthropogenic activities, such as 

heating systems in residential areas, as well as production heat release, are more closely 

associated with land use types than with building structures [76,77]. 

Due to the complexity of surface processes, the factors usually do not work inde-

pendently but interactively. The interactive effect of any two factors also revealed some 

interesting findings. Specifically, the interaction of pairwise factors has enhanced the ex-

planatory power for LST spatial differentiation both in summer and winter. Although the 
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factors, which is similar to the single factor results. Furthermore, the interaction between 

BD and any indicator demonstrated the strongest explanatory power for LST spatial dif-

ferentiation during summer, whereas the interaction between PM and any indicator ex-

hibited the strongest explanatory power for LST spatial differentiation during winter. No-

tably, the interaction of most factors presented a non-linear enhanced pattern in winter, 

and this interaction pattern was mainly found among 2D urban land use, which is differ-

ent from the interaction pattern in summer (mostly two-factor enhancement). This may 
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Figure 7. Interactive detection results of urban form metrics on LST in winter (PA represents pro-
portion of administration and public service land, PB represents proportion of business land, PR
represents proportion of residential land, PM represents proportion of industrial land, PE repre-
sents proportion of water area, BD represents building density, SVF represents sky view factor, BH
represents building height, and FAR represents floor area ratio).

4. Discussions
4.1. Driving Forces of Urban Form on LST Spatial Differentiation in Summer and Winter

Urban form plays a key role in LST spatial differentiation [73,74]. However, there is a
notable gap in research regarding the spatial differentiation of LST from a comprehensive
perspective that includes urban land use and buildings. This study reveals that the LST
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spatial differentiation in summer and winter is influenced by different dominant factors.
The LST spatial differentiation in summer was mainly affected by 3D building elements,
while the LST spatial differentiation in winter was mainly affected by 2D land use elements.
These seasonal disparities may come from multiple factors. Specifically, during summer,
with direct sunlight hitting the ground, buildings and other man-made structures, such as
concrete and asphalt, play a pivotal role in modulating the thermal environment. These
materials, characterized by their thermophysical properties, exhibit a propensity to absorb
and store substantial amounts of heat, leading to a rise in LST. Moreover, urban structures,
particularly the height and density of buildings, can impede natural ventilation processes,
further exacerbating the urban heat phenomenon [75]. While diverse land use types
and their associated socio-economic activities introduce variability in the urban thermal
environment, the dominance of impervious surfaces in urban cores largely dictates the
LST spatial variations. During winter, the retention effect of buildings is less pronounced
compared to summer due to the reduced intensity and duration of winter sunlight. Land
use patterns, which determine the distribution of various heat sources and sinks, become
more critical. For example, anthropogenic activities, such as heating systems in residential
areas, as well as production heat release, are more closely associated with land use types
than with building structures [76,77].

Due to the complexity of surface processes, the factors usually do not work inde-
pendently but interactively. The interactive effect of any two factors also revealed some
interesting findings. Specifically, the interaction of pairwise factors has enhanced the ex-
planatory power for LST spatial differentiation both in summer and winter. Although
the interaction between 2D and 3D elements was the primary driving force for the spatial
differentiation of LST both in summer and winter, the spatial differentiation of summer
LST was also influenced by the interaction among 3D building factors, while the spatial
differentiation of winter LST was influenced by the interaction among 2D urban land use
factors, which is similar to the single factor results. Furthermore, the interaction between
BD and any indicator demonstrated the strongest explanatory power for LST spatial differ-
entiation during summer, whereas the interaction between PM and any indicator exhibited
the strongest explanatory power for LST spatial differentiation during winter. Notably,
the interaction of most factors presented a non-linear enhanced pattern in winter, and this
interaction pattern was mainly found among 2D urban land use, which is different from
the interaction pattern in summer (mostly two-factor enhancement). This may be due
to complex interactions and feedback mechanisms between different land use types. For
example, the cooling effect of blue-green spaces extends beyond its immediate location
and also impacts the surrounding areas, which will lead to nonlinear LST responses [78,79].
That is to say, the relationship between the structural changes produced by adjustments in
land use types and LST is non-linear, meaning that even minor changes in land use can
lead to significant changes in LST. Therefore, special attention should be paid to land use
adjustments when improving the thermal environment.

4.2. Scale Effect of Urban Form on LST

In-depth assessments of how urban form drivers impact the spatial differentiation of
LST across scales are essential for improving the urban thermal environment effectively [80].
As the spatial scale increased, the explanatory power of 2D urban land use elements for the
LST spatial differentiation gradually increased both in winter and summer. In contrast, the
explanatory power of BD, FAR, and SVF on LST spatial differentiation remained basically
unchanged as the spatial scale increased both in summer and in winter, which indicates that
3D building indicators play a robust role in driving the spatial differentiation of thermal
environments. The performance of scale effects on 2D and 3D indicators is inconsistent.
Specifically, the influence of land use on LST varies with scale for several reasons. On
one hand, as the scale increases, the spatial heterogeneity of 2D land use intensifies. This
amplification means that distinctions between land use types—such as water bodies,
residential zones, and commercial sectors—become more obvious. Each of these categories
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possesses unique thermal attributes, which can markedly impact the LST [81]. On the
other hand, with the scale increases, smaller land use patches tend to be aggregated into
broader, more homogenized zones (urban functional zones). This aggregation highlights
the influence of the dominant land use type on LST, thereby strengthening the explanatory
power of 2D land use. However, the influence of 3D buildings on LST, especially in terms
of heat storage and radiation, tends to be more localized and consistent across different
scales.

However, there are two exceptions for PE and BH. The explanatory power of the
PE on the LST spatial differentiation decreased with the increase in scale. There may
be two reasons for this. Firstly, the distribution, shape, and size of water bodies have
a significant impact on LST at the micro-scale [76], while in larger research units, these
features may be averaged, leading to a decrease in explanatory power for LST spatial
differences. Secondly, as the scale increases, spatial heterogeneity gradually increases,
with an increasing proportion of other urban elements and decreasing LST differences
within the research unit, which reduces the explanatory power of PE for LST spatial
differentiation. The explanatory power of BH on the summer LST spatial differential
decreased with increasing scale, while the explanatory power of BH on winter LST spatial
differentiation remained in a stable state. This is mainly because BH plays a dominant
role in summer LST spatial differentiation, and when the scale increased, the difference
in BH decreased, resulting in lower explanatory power. However, the 2D urban land use
plays a dominant role in winter, so the increase in scale had little impact on the explanatory
power of the LST spatial differentiation driven by BH. Consequently, based on the basis of
comprehensive consideration of robust indicators and changeable indicators, differentiation
and homogenization strategies should be proposed at different scales to achieve multi-level
management collaboration, targeting sets of needs tailored to different spatial scales.

4.3. Implications for Urban Planning and Management

The findings in this study can provide effective and practical implications for urban
planning and management to help cities enhance their climate adaptation and resilience.
The three strategies can be summarized as the Priority of Planning Indicators, the Collabo-
rative Arrangement of Urban Form, and the Specific Adaptation.

Specifically, first of all, our study, utilizing a ranking based on ‘q’ values, delineates
the hierarchy of planning indicators essential for urban thermal environment improvement.
During summer, BD emerges as a dominant factor, explaining over 50% of LST spatial
variations, which is consistent with the main conclusion of relevant research [12,17,35].
Similarly, other indicators like FAR (over 40%) and SVF (over 30%) are identified as signifi-
cant. While water bodies undoubtedly serve as essential cooling landscapes, the intrinsic
natural characteristics of urban areas, coupled with the limitations posed by intensive land
development, curtail the expansion of blue-green spaces. Hence, our findings suggest a
priority hierarchy for summer LST: 3D indicators (BD > FAR > SVF > BH) over 2D indicators
(PE > PM > PR > PB > PA). In contrast, the winter season presents a distinct set of priorities.
The emphasis shifts more towards 2D aspects (PM > PE > PR > PA > PB) over 3D (BH > SVF
> BD > FAR). This provides a clear understanding of the planning indicators’ priority in
shaping the urban thermal environment across different seasons.

Secondly, through interactive detection, our study highlights that the interaction
between various urban form indicators can intensify spatial differentiation in the urban
thermal environment. This suggests that urban planning practices should pay particular
attention to the building characteristics of specific land-use types and the configuration of
certain land-use types. It is essential to holistically consider the synergistic effects of both
2D and 3D urban form attributes. For instance, during summer, emphasis should be placed
on the configuration of the BD and FAR in industrial areas, as well as the BD and FAR in
residential zones. Conversely, in winter, the focus should shift to the BH, SVF, and FAR in
industrial lands, and the proportionate configuration of residential and industrial lands
within the same planning unit.
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Finally, through the examination of scale effects, our study emphasizes that planning
and regulatory units are not a “one-size-fits-all” approach for urban thermal environment
improvement. The key indicators that need primary consideration vary across different
scales. During the summer, the driving force of 2D land use indicators for the LST increases
with the expansion of spatial scale. However, 3D building indicators, except for BH, remain
relatively consistent across spatial scales. Furthermore, during winter, the influence of
urban form on the LST shows minimal variation across scales. This indicates the importance
of tailoring land use configurations at smaller scales to optimize thermal benefits.

4.4. Significance and Limitations

The driving mechanism of the LST spatial differentiation is a very complex geographi-
cal process [82]. This paper explored the seasonal differences in the effect of urban form on
LST with scales. These findings can provide unique insights for policies of urban planning
and management in China to improve the thermal environment by using the indicators
related to urban planning. In the practice of climate-adaptive urban renewal and planning,
the adjustment of land use nature and quantity can be carried out from a macro perspective,
while the layout of buildings can be determined based on specific circumstances. Special
attention should be paid to controlling BD and PM not only by their own contribution
to the thermal environment, but also by their interaction with other indicators. We also
provide multi-level thermal environment improvement strategies targeting multiple scales
and specific optimization backgrounds (such as various seasons, units, etc.).

However, there are some limitations. The metrics selected in this paper may be
insufficient to fully reflect the urban form. More 2D and 3D morphological metrics related
to urban planning should be introduced in future research, such as the volume ratio of
vegetation and building, the ratio of street height width and other metrics [83–85]. Due to
the comprehensiveness and complexity of the regional system, the mechanism explained
in this paper may not be universally appropriate, which would result in discrepancies
in different study case areas. In addition, due to the limitation of data acquisition, this
paper did not carry out multi-time series research on the LST. Research on the synergistic
mechanism of 2D urban land use and 3D buildings on LST spatial differentiation will
strengthen various regions and periods.

5. Conclusions

This study offers a multiscale and comprehensive understanding of the driving forces
of LST spatial differentiation from 2D urban land use and 3D buildings using geographic
detectors. The findings contributed to enriching the current knowledge on how urban form
affects seasonal LST and providing insights on integrating scale dependency into urban
thermal environment management to promote sustainability. The main findings are as
follows.

(1) There are significant differences in average LST on different urban land use types.
Industrial land has the highest average LST in both summer and winter, followed by
commercial land. This finding can provide guidance to urban planners in selecting
priority areas for thermal environment regulation.

(2) The factors that primarily drive and interactively drive the LST spatial differentiation
are different in summer and winter. The spatial variation of LST in summer is
primarily influenced by 3D buildings, whereas in winter, it is predominantly affected
by 2D land use. BD is the leading driving force of LST spatial differentiation in
summer, and the interaction between BD and any other indicator shows the most
significant explanatory power, which is the same for PM in winter.

(3) As scale increases, the explanatory power of 2D urban land use for the LST spatial
differentiation gradually increases both in winter and summer, except in the case of
PE. In contrast, the explanatory power of 3D buildings on LST spatial differentiation
remains basically unchanged, except in the case of BH. The interaction among urban
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form metrics primarily increases as the scale, except for BH and 2D urban land use in
summer, and PE and PR in winter.

(4) A comprehensive strategy of the Priority of Planning Indicators, the Collaborative
Arrangement of Urban Form, and the Specific Adaptation was suggested to improve
urban thermal improvement, taking into account land use and building, seasonal
differences, and scale effects. These strategies can be used as an effective guide
for future planners to improve the urban thermal environment and promote urban
resilience and climate adaptation. Moreover, future studies should prioritize the
development of metrics and models that are not only scientifically robust but also
practically relevant and actionable for urban planning and policy formulation.
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