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Abstract: Investigating the distribution characteristics of landscape ecological risk (LER) on terrain
gradients is of great significance for optimizing the landscape pattern of ecologically vulnerable areas
in mountainous regions and maintaining the sustainable development of the ecological environment.
The Yuanmou Basin is a typical ecologically vulnerable area in the southwestern mountainous
region of China, where issues such as soil erosion are pronounced, becoming one of the main factors
restricting regional economic development. This study selected the Yuanmou Basin as the study
area, and, using land use data from 2000, 2010, and 2020, constructed an LER assessment model
based on disturbance and vulnerability. By integrating elevation and topographic position index data,
we examined the spatiotemporal evolution characteristics of LER under different terrain gradients.
The LER assessment results are summarized as follows: (1) From 2000 to 2020, the land use types
of the Yuanmou Basin were mainly grassland, forest land and cropland. The land use showed a
sharp increase in the cropland area and a simultaneous decrease in the grassland area, indicating
a main land use evolution direction from grassland to cropland. (2) Over the span of 20 years, the
average landscape ecological risk in the Yuanmou Basin slightly increased, specifically manifesting
as a significant reduction in low ecological risk areas, while areas of medium and slightly lower
ecological risks saw an increase. (3) The spatial distribution of LER in the Yuanmou Basin presents
a pattern of being low on the periphery and high in the center, with significant positive spatial
correlation, obvious spatial aggregation, as well as “high-high” and “low-low” clustering. (4) Low-
and lower-risk areas in the Yuanmou Basin are distributed in the non-arid thermal zone and the
medium–high terrain zone, while areas of medium, higher and high risk levels are mainly distributed
in the arid thermal zone and the low terrain zone. The research results provide a scientific basis for
optimizing and developing the land resources of the Yuanmou Basin.

Keywords: landscape ecological risk assessment; terrain niche index; land use; spatial autocorrelation
analysis; Yuanmou Basin

1. Introduction

In recent years, with rapid economic development and urbanization, the contradiction
between land supply and demand has become increasingly prominent. Irrational land use
has been adversely affecting the ecological environmental quality and sustainable socio-
economic development. It has led to a series of ecological problems such as low efficiency of
land resource use, soil erosion, land degradation/desertification, and biodiversity reduction.
This greatly increases ecological risks and seriously threatens the stability and equilibrium
of ecosystems [1–4]. With the aggravation of ecological problems, quantitative analyses of
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land use change and the consequent ecological risks to evaluate regional ecological security
has become a research hotspot.

Ecological risk assessment can comprehensively evaluate the possibility and degree
of impacts caused by natural disasters and human activities on natural environments
and ecosystems. It can provide a scientific basis for regional ecological protection and
management [5,6]. In recent years, ecological risk assessment has been attracting increasing
attention from researchers worldwide, and it has become a research hotspot in ecology,
geography, etc. [7,8]. In 1972, ecological risk assessment was first proposed with the con-
cept of sustainable development [9]. In 1990, the United States Environmental Protection
Agency (US EPA) introduced the first ecological risk assessment framework, which helped
to develop basic guidance for the risk assessment [10]. Early ecological risk assessment
methods usually consisted of only one or several specific risk sources, such as soil heavy
metal pollution, increased impermeable surface, pesticide pollution, soil erosion and water
pollution [11–13]. These methods had the advantages of quickly identifying risk sources
that threaten regional ecosystems, precisely determining risk receptors based on the risk
perspective of source sinks, and comprehensively reflecting regional ecological variability.
However, they also showed drawbacks, such as a lack of comprehensive consideration of
ecological risks due to the relatively unified evaluation results [14], and a limited applica-
bility only for areas with clear sources of regional ecological security risks [15].

In recent years, LER assessment based on landscape pattern and land use change has
become an important branch of ecological risk assessment research [16,17]. It can not only
reveal the spatial/temporal evolution and the spatial differentiation pattern of regional
ecological risks, but also provide quantitative descriptions of the degree of ecological risk in
specific spatial patterns [18], which facilitates the extraction of key characteristics of spatial
and temporal changes in ecosystem structure and function [19]. Therefore, this method
is more suitable for areas with relatively complex sources of ecological risks. However,
the focus of regional ecological risk assessment is currently mainly placed on wetlands,
farmlands, oceans, watersheds, mining areas, administrative regions [20] and cities [21].
The relevant research on vulnerable areas of dry–hot river valleys, e.g., the Yuanmou Basin,
are very limited. The high altitude, complex topography and arid climate of the Yuanmou
Basin make the ecological environment vulnerable to human activities [22], leading to
degradation of grasslands, increase in soil erosion, decline in ecosystem function, and loss
of biodiversity. Therefore, intensive studies on land-use patterns and ecological risks based
on topographic gradients in the Yuanmou Basin are urgently required to provide scientific
guidelines for local environmental protection.

As the most basic natural environmental factor [23], terrain directly affects the migra-
tion of surface materials, as well as the transfer and redistribution of energy in the region,
which in turn influences the type of land use. Therefore, terrain is an important basis for
the construction of land use patterns [24], which make the spatial distribution patterns
of LER under different terrain conditions more complex [25,26]. Current studies on the
correlation between LER and terrain mainly focus on the simple response of ecological
risk indices to topography [27] and the distribution of ecological risks on a single terrain
factor described by terrain niche index (TNI) [28], while only a few works have intensively
investigated the correlation of LER with integrated terrain factors. Therefore, a quantitative
description of the spatial distribution of LER at different topographic gradients from an
integrated perspective can reveal the characteristics of change in LER spatial features, and
provide a reference for regional ecosystem management.

Dry–hot river valleys are dry thermal scrub landscape valleys located in humid climate
zones of the tropics or subtropics [29]. A small number of them are found in the Alps of
Europe and the Cordillera of the United States, while most of them are in the large river
basins of southwest China, such as the Jinsha, Nu and Yuan River basins. The dry–hot
valley of the Jinsha River is located in the Hengduan Mountains, and the Yuanmou Basin is
in the core area of the dry–hot valley of Jinsha River.
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Due to the unique climatic conditions and geotechnical characteristics of this area, as
well as the development of the high mountain valley, a series of environmental problems
have occurred in recent years, including serious imbalance in distribution of water and heat
resources, severe soil erosion, and significant degradation of the ecological environmental
quality. They lead to a large number of eroded poor landscapes with extremely fragile
ecological environments and landscape patterns that are vulnerable to external distur-
bances [30–32]. On the other hand, due to the abundant light and heat resources, as well as
the high crop replanting index derived from the special geographical location, the Yuanmou
Basin is very suitable for planting high quality crops, vegetables and fruits during winter
and spring. With the implementation of large-scale trenching and gardening, the landscape
fragmentation and ecological risks have been increasingly aggravated, which seriously
impacts the quality of regional ecological environment and the sustainable development of
social economy [33]. At the current stage, it is an urgent task and also a big challenge to
integrate and optimize the resources of the Yuanmou Basin to promote economic develop-
ment and to simultaneously protect the ecological environment from damage. Since the
end of the last century, the spatial and temporal changes in landscape ecological security of
the Yuanmou Basin have been studied [34]. Additionally, the variations in ecological envi-
ronment quality and driving forces have also been analyzed [35]. However, the previous
research has mostly focused on Yuanmou County or typical villages/towns. There is still a
lack of multi-dimensional ecological risk assessment of the Yuanmou Basin.

Therefore, considering the complex natural ecological environment of the Yuanmou
Basin, analyses of the spatial and temporal evolution patterns of regional ecological risks
from the perspective of terrain gradients are important. They can provide a decision basis
for ecological restoration, landscape pattern optimization, improvement of ecological envi-
ronment quality and formulation of environmental protection measures. It is of great signif-
icance for realizing sustainable land resource use and high-quality economic development.

2. Materials and Methods
2.1. Study Area

The Yuanmou Basin is located in the northern part of the Central Yunnan Plateau,
within the basin of the Longchuan River (Figure 1), which is a first-order tributary of
the Jinsha River (24◦–26◦15′ N, 101◦27′–102◦06′ E). It has an area of 3515 km2, including
mainly Yuanmou and most of Yongren counties in Chuxiong Prefecture, and also parts
of eastern Dayao County, northeastern Mouding County, western Wuding County and
northern Lufeng City (Figure 1). The study area is in the core area of the dry and hot valley
of Jinsha River. It has a dry–hot climate and an obvious vertical differentiation of land
cover. The Yuanmou Basin is divided into four vertical climatic zones. The dry tropics
of the Pingba Valley are below 1300 m above sea level, with a dry climate and abundant
heat resource. The average annual temperature, rainfall and evaporation are 21.0–22.8 ◦C,
615.1 mm and 3700–4300 mm, respectively. The warm and hot climate zone of the hilly
low mountains is located at 1300–1700 m above sea level. Its average annual temperature,
rainfall and evaporation are 18–21 ◦C, 660–740 mm and 2100 mm, respectively. The middle
mountain warm temperate zone is located at 1700–2000 m above sea level. Its average
annual temperature and rainfall are 15–18 ◦C and 800–850 mm, respectively. The temperate
high and middle mountains are over 2000m above sea level, with an insufficient heat
condition. The average annual temperature is 10–15 ◦C, with surplus moisture during the
rainy season, and annual rainfall >850 mm. Soils in this zone are mainly dry red soil, red
loam, yellow brown soil, and brown soil, with a small amount of purple and rice soils [36].
The natural vegetation is divided into three layers: trees, shrubs and grasses. The trees
are mostly composed of drought-resistant species. They are sparsely scattered among the
shrubs and grasses, forming a plant community that has long been adapted to the dry and
hot environments. The sparse scrub and grassland are mainly distributed in areas below
1600 m above sea level. The scrub grassland and patchy forest are located in regions higher
than 1600 m above sea level [37]. Agriculture is the pillar industry of the Yuanmou Basin,
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which is one of the most important sources of early winter vegetables in Yunnan Province
and China. The agricultural products are widely supplied to more than 200 cities and
regions, such as Beijing, Tianjin and Hebei, the Yangtze River Delta, the Pearl River Delta,
Guangdong, Hong Kong, Macao and the Greater Bay Area, Chengdu and Chongqing, as
well as East and Southeast Asia.
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Figure 1. Location of the study area.

2.2. Data Source

The Yuanmou Basin was extracted based on DEM data using the Basin Domain
Analysis module of ArcGIS10.8 software (Figure 1). The land use and land cover data of
the Yuanmou Basin for 2000, 2010 and 2020 were sourced from the Google Earth Engine
(https://earthengine.google.com/commercial/ (25 May 2023)). These categories included
water bodies, grassland, forest land, farmland, construction land and unused land. DEM
data were downloaded from the geospatial data cloud platform (http://www.gscloud.cn/
(30 May 2023)), and they were used to extract the elevation and terrain position indices.
Administrative zoning data and river data were accessed from the National Geographic
Information Resources Catalogue Service (www.resdc.cn/Data.aspx (10 May 2023)).

2.3. Research Methods
2.3.1. Land Use Classification Methods

The land use and land cover data were derived by constructing a random forest
classification model based on the Google Earth Engine (https://earthengine.google.com/
commercial/ (accessed on 25 May 2023)), where the remote sensing image data for 2000
and 2010 were collected using Landsat5-TM imagery, and the corresponding data for 2020
were obtained from Landsat8-OLI2 imagery that was taken during the dry season with a
resolution of 30 m. By analyzing the regional characteristics and referring to the relevant

https://earthengine.google.com/commercial/
http://www.gscloud.cn/
www.resdc.cn/Data.aspx
https://earthengine.google.com/commercial/
https://earthengine.google.com/commercial/
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classification criteria, the study area was divided into six land use types, including water
bodies, grassland, forest land, farmland, construction land and unused land [38].

2.3.2. Land Use Transfer Matrix

The land use transfer matrix is an important method for studying the dynamic changes
in land use over a specific period of time. It can be used to calculate the direction and
degree of mutual transfers between different landscape types [39]. The matrix applied in
this study for analyzing the interconversion between different land use types is expressed
as follows:

Sij =

S11 · · · S1n
...

. . .
...

Sn1 · · · Snn

 (1)

where Sij represents the area transferred from the initial land use type i to the final land
use type j, and i and j represent the land use types at the beginning and end of the study
period, respectively; and n represents the number of land use types.

2.3.3. Landscape Ecological Risk (LER) Analysis
Division of LER

In order to spatially express the regional heterogeneity of LER of the specific charac-
teristics of Yuanmou Basin and the accuracy of calculation, the study area was divided
into a big number of small ecological risk assessment cells using the equal spacing method.
According to previous studies, the area of the fishnet should be 2–5 times larger than the
average patch area [7,8]. Finally, 3740 grids (each with a size of 1 km × 1 km) within the
Yuanmou Basin were obtained for sampling. For each grid cell, an ecological risk index
(ERI) was calculated and the result was assigned to the central point of the evaluation cell.

Landscape Ecological Risk Index Construction

The ERI is constructed based on the area share of land use types and the landscape
loss index, where the landscape loss is determined through the landscape disturbance and
landscape vulnerability [40]. The ERI can be calculated with the following formula:

ERIx =
n

∑
i=1

Axi
Ax

Ri (2)

where ERIx denotes the ecological risk index of the x-th evaluation unit, Axi denotes the
area (km2) of the i-th type of landscape in the x-th evaluation unit, Ax is the total area (km2)
of the landscape in the x-th evaluation unit, n is the number of landscape types in the study
area, and Ri is the loss index of the i-th type of landscape. By combing the results from
previous research [41] with the characteristics of the study area, six types of land use were
assigned and scored in this work according to their landscape vulnerability (Vi), and the
values were further normalized to obtain the corresponding vulnerability indices: 0.19
for arable land, 0.095 for forest land, 0.143 for grassland, 0.238 for water bodies, 0.048 for
construction land, and 0.286 for unused land. The process for construction of the ecological
risk index and its calculation is shown in Table 1 [8,42,43]. This was followed by using
ordinary kriging interpolation to achieve the spatial distribution of ERI in the whole study
area, and applying the natural breakpoint method [44,45] to classify the ERI of the study
area in 2020 into five levels: low risk (ERI < 0.0267), lower risk (0.0267 ≤ ERI < 0.0408),
medium risk (0.0408 ≤ ERI < 0.0662), higher risk (0.0662 ≤ ERI < 0.1272) and high risk
(0.1272 ≤ ERI). For comparative data analysis, the ERI in other years were also divided
according to the same criterion.
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Table 1. Calculation process of landscape loss index.

Landscape Index Calculation Formula Notation Definition and Meaning

Landscape fragmentation index (Ci) Ci =
ni
Ai

Ci is the landscape fragmentation index; ni is the
number of patches in landscape i; Ai is the total area

of landscape i (km2). Ci indicates the degree of
fragmentation of the landscape. The larger the value,

the less stable the ecosystem.

Landscape Separateness Index (Fi) FI =
A

2Ai

√
ni
Ai

FI is the landscape separation index; A is the total
area of the landscape (km2); Ai is the total area of
landscape i (km2); ni is the number of patches in
landscape i. FI indicates the degree of separation

between patches in landscape I. The larger the value,
the more complex the spatial distribution of patches

in that type of landscape.

Landscape Dominance Index (Di) Di = αLi + βMi

Di is the landscape dominance index; Li is the ratio
of the area of the i-th land use type to the total area
of the study area; Mi is the ratio of the patch number

in the i-th land use type to the total patch number.
According to the expert scores, the weights α and β
of Li and Mi are 0.6 and 0.4, respectively. The larger
the Di value, the greater the influence of patches on
the formation and change of landscape patterns, and

the greater the corresponding ecological risk.

Landscape Disturbance Index (Ui) Ui = aCi + bFi + cDi

Ui is the landscape disturbance index; Ci is the
landscape fragmentation index; Fi is the landscape
separation index; Di is the landscape dominance
index; a, b and c are the landscape fragmentation,
separation and dominance weights, respectively.

They are assigned as 0.5, 0.3 and 0.2, respectively. Ui
indicates the degree of influence of human activities
on the landscape pattern. The higher the value, the

more significantly the ecosystem is affected by
human activities and the less stable the landscape.

Landscape Loss Index (Ri) Ri = Ui ×Vi
Ri is the landscape loss index; Ui is the i-th landscape
disturbance index; Vi is the i-th landscape fragility index.

2.3.4. Spatial Autocorrelation Analysis

In this paper, Moran’s I index and LISA index were used to characterize the spatial
distribution of ecological risks in the study area, and to analyze the relationships between
global and local spatial autocorrelations of ecological risks in the study area. The spatial
autocorrelation Moran’s I index can verify whether the attribute values of risk assessment
units in adjacent or nearby areas are correlated [46]. Its value is generally between (−1,1):
Less than 0 means negative correlation, showing a discrete distribution in global space.
Equal to 0 means no correlation, indicating a random distribution in global space. Greater
than 0 means positive correlation, suggesting a cluster distribution in global space. The
LISA indices consist of four types: Low–low clustering, high–high clustering, low-value
package-high clustering, and high-value package-low clustering [47].

2.3.5. Terrain Gradient Analysis
Terrain Niche Index

The terrain index is used in this work to measure the slope of the terrain, which can
reflect not only the elevation and slope characteristics in an integrated manner, but also the
spatial differentiation of terrain conditions [48,49]. It can be calculated as follows:

T = log
[(

E
E
+ 1
)
×
(

S
S
+ 1
)]

(3)
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where T is the terrain position index, E is the elevation of any raster in space, E is the
average elevation in the study area, S is the slope of any raster in space and S is the average
slope in the study area.

Terrain Distribution Index

In order to effectively eliminate the disturbance of rank between terrain gradient
zones by area, a distribution index is used. It represents the frequency of distribution
in ecological risk areas of the landscape between different terrain zones [44]. It can be
calculated according to the formula below:

P =
Sie
Si

/
Se

S
(4)

where P is the terrain distribution index, Sie is the area of the i-th ecological risk class on
the e-th terrain interval, Si is the area of the i-th ecological risk class within the Yuanmou
Basin, Se is the total area of the e-th terrain interval within the Yuanmou Basin and S is the
total area of the whole Yuanmou Basin. If P > 1, the site type is dominantly distributed,
and the larger the distribution index, the higher the dominance [50]. A flatter curve of the
distribution index suggests that the distribution of a landscape type deviates less from the
standard distribution, and it is more adaptable to terrain differences. Conversely, it is more
susceptible to terrain [51].

In this study, elevation and terrain distribution indices were selected to analyze the
effect of terrain gradients on the ecological risk pattern of the Yuanmou Basin landscape.
According to Jin’s [52] method, the ranges of arid thermal (882–1600 m) and non-arid ther-
mal zones (1600–2843 m) were extracted based on DEM data. Existing research indicates
that topography has a significant impact on the structure and distribution of land use, and
its compositional structure and pattern changes are highly correlated with the spatiotem-
poral distribution and dynamics of landscape ecological risks, therefore referring to the
research results of related scholars on the impact of topographic factors on land use patterns.
Considering the actual situation in the study area, the terrain positions (0.1878–1.1568) were
divided into five levels with a rank interval of 0.1938 using the quantile reclassification.

3. Results
3.1. Analysis of Land Use Change

In this paper, the land use classification accuracy was validated using a confusion
matrix. The overall classification accuracy was 85.65%, 87.40% and 87.59% in 2000, 2010
and 2020, respectively, and the Kappa coefficients were 80.53%, 83.33% and 84.13% in 2000,
2010 and 2020, respectively (Figure 2). As shown in Figure 3, grassland, forestland and
farmland were the most widely distributed land use types in the Yuanmou Basin from
2000 to 2020, accounting for ca. 97.30% of the total area, while the area of construction
land, water bodies and unused land accounts only for a small proportion of 2.69%. From
2000 to 2020, the area of farmland increased by 290.51 km2, and its proportion increased
from 12.93% to 21.20%. The area of construction land expanded rapidly, from 18.46 km2 in
2000 to 60.46 km2 in 2020, with a 20-year total increase of 228.06% and an average annual
growth rate of 11.40%. The rapid increase in the areas of construction land and farmland
can be explained by the population expansion and accelerated urbanization, which induce
industrial and agricultural development, as well as the expansion of towns and arable land
in the flat topographic areas of the study area. The area of cultivated land also increased,
and forestland expanded with an increase in its area proportion from 23.29% in 2000 to
25.79% in 2020, i.e., a change rate of 10.73%. However, grassland showed a rapid decrease
in its proportion by 11.87% from 2000 to 2020. In terms of water bodies, its area slightly
increased from 22.51 km2 in 2000 to 29.55 km2 in 2020 (relative increase of 31.27%). In
addition, the area of unused land decreased slightly, with its share declining from 0.43% in
1980 to 0.13% in 2020.
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Figure 3. Percentages of land use type area in Yuanmou basin.

The detailed statistical data are also listed in Table 2, and reveal frequent transfers
between land use types in the Yuanmou Basin from 2000 to 2020. The area of grassland
decreased by 655.71 km2 during the 20-year period, which transferred mainly to forestland,
farmland and construction land, with the areas of 222.11, 396.20 and 31.13 km2, respectively.
The largest change was the increase in the farmland area by 431.19 km2, which showed
more frequent spatial interconversion with other land types. In general, the farmland
transferred mainly from grassland with an area of 396.20 km2 and transferred to forestland,
construction land and grassland with areas of 23.57, 18.03 and 93.21 km2, respectively. The
increase in construction land was 51.72 km2, which could be attributed to the expense of
farmland and grassland in the watershed. The area of forest land increased by 245.97 km2,
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mainly due to the transfer from farmland and grassland. Water bodies had an increased
area of 13.14 km2, which was mainly from arable land and grassland. The area of unused
land decreased by 12.35 km2, mainly because of the transfer to farmland and grassland.
In the Yuanmou Basin, only grassland and unused land have shown decreased areas over
the past 20 years, while forestland, construction land, farmland and water bodies have all
expanded their ranges.

Table 2. Land use transfer matrix of Yuanmou Basin from 2000 to 2020 (km2).

2000

Type of Land Use
2020

Water Forestland Farmland Construction Land Grassland Unused Land Total

water 16.41 0.25 4.04 0.71 0.88 0.21 22.51
forestland 0.95 660.38 17.65 0.20 139.11 0.04 818.34
farmland 5.62 23.57 313.91 18.03 93.21 0.30 454.63

construction land 0.34 0.02 6.44 8.84 2.49 0.32 18.46
grassland 5.34 222.11 396.20 31.13 1529.61 0.93 2185.32

unused land 0.89 0.02 6.86 1.64 2.95 2.93 15.28
Total 29.55 906.35 745.10 60.56 1768.25 4.72 -

3.2. Landscape Ecological Risk Analysis

As can be seen from Figures 4 and 5, the average LER level of the Yuanmou Basin
increased slightly from 0.0287 in 2000 to 0.0291 in 2010 and 0.0297 in 2020. The LER values
show that the Yuanmou Basin is dominated by low and lower ecological risk areas, with
high-risk areas mainly in the central part of the Basin and low-risk areas in the peripheral
regions of the Basin. The area of the low ecological risk zone decreased by 11.25% between
2000 and 2020, corresponding to an area decrease of 395.32 km2, mainly in the eastern and
southern parts of Yuanmou County and the junction between counties in the peripheral
areas of the Yuanmou Basin, which have relatively better climatic conditions due to the
higher altitude and more rainfall. The area of the lower ecological risk zone increased
by 11.15%, which was equivalent to an area expansion of 395.56 km2, mainly scattered in
the surrounding regions of the low-risk zone in the study area. The area of the medium
ecological risk zone increased by 1.99%, i.e., an area increase of 70.02 km2, concentrated in a
continuous manner in the central areas of Yuanmou and Yongren counties. The higher-risk
area decreased by 49.73 km2 (1.41%) mainly in the central and northern parts of Yuanmou
County along the Jinsha and Longchuan rivers. The high-risk area decreased by 16.67 km2

(0.47%) mainly in the northern part of Yuanmou County at the confluence of the Jinsha and
Longchuan rivers, where there is a large distribution of unused land and water bodies, and
vegetation is scarce, making the landscape more fragile. This vulnerability contributes to
landscape loss and ultimately leads to an increase in the LER.

The transitions between different LER levels in the Yuanmou Basin from 2000 to
2020 are shown in Figure 5, where it can be seen that the low ecological risk level mainly
transferred to the lower ecological risk level, with a transfer area of 581.83 km2. The
lower-risk level mainly transferred to the low- and medium-risk levels, with a transfer area
of 241.88 and 109.72 km2, respectively. The above two risk level transitions indicate that
the local LER of the Yuanmou Basin had been increasing. To maintain the stability of the
regional ecology and to avoid further increase in the LER, special attention should be paid
to the change in the landscape structure in the study area. In addition, the medium-risk
level mainly transferred to the lower-risk level, with a transfer area of 151.63 km2, and
the higher-risk level predominately transferred to the medium-risk level, with a transfer
area of 75.47 km2. The high-risk level mainly transferred to medium- and higher-risk
levels, with transfer area of 10.18 and 9.40 km2, respectively. In recent years, with the
implementation of the Upper Yangtze River Protection Forest Project and the Return of
Cultivated Land to Forests and Grasses Project, as well as the guidance of the Scientific
Outlook on Development, the concept of sustainable and green development to maintain
the virtuous cycle of the ecosystem has attracted considerable public attention. At the
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current stage, the monitoring of the LER transition from low to medium levels and from
medium to high levels should be strengthened due to its special importance.
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3.3. Spatial Autocorrelation Analysis of Ecological Risk in the Landscape

The GeoDa1.16.0 software was used to calculate the global Moran’s I index of LER
values in each risk unit of the Yuanmou Basin. It can be seen from Figure 6 that the global
Moran’s I indices in 2000, 2010 and 2020 are all greater than 0 and the p-values are all
less than or equal to 0.001, indicating spatial aggregation, with similar levels of landscape
ecological risk in adjacent spatial units. However, the index value decreases over time,
indicating that the spatial neighboring units are weakening each other and the spatial
aggregation is gradually decreasing.

LISA analysis on the ecological risk of the study area was also conducted using the
GeoDa software. Figure 7 shows the results of the LISA analysis and the local spatial
autocorrelation analysis. The high–high aggregation of ecological risk values in the study
area is mainly distributed in the central and northern parts of Yuanmou County and the
central part of Yongren County, where the ecological environment has become very fragile
and the level of ecological risk has risen rapidly. The low–low aggregation is mainly
distributed in the eastern and southern parts of Yuanmou County, the western parts of
Dayao and Mouding Counties, and the western and northern parts of Yongren County in
the marginal areas of the study area. The landscape types in this area are mainly woodland
and grassland, which have high internal stability and are only weakly disturbed by human
activities. Besides, the study area also has a small number of low–high and high–low
aggregations, which show sporadically and irregular distribution behavior, with strong
spatial heterogeneity and relatively stable changes over 20 years. With the implementation
of ecological protection policies, the ecological environment in the study area has been
continuously improved, and the ecological risks are stably maintained at low levels.
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3.4. The Impact of Topography on Ecological Risk
3.4.1. Landscape Ecological Risk Characterization Based on Elevation Categories

The elevation of the Yuanmou Basin ranges from 882 to 2843 m (Figure 1). Dry–hot
river valleys are dry thermal scrub landscape valleys located in humid climate zones of
the tropics or subtropics [29]. With the increase in elevation, the temperature and dryness
decrease, and the precipitation increases. This leads to a gradient change of the natural
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environment with elevation. The definition of the ranges of arid and non-arid thermal zones
is mainly based on elevation. In this study, the influence of elevation on the distribution of
LER levels was investigated in both dry–hot and non-dry–hot zones. As shown in Table 3
and Figure 8, the dry–hot zone in the Yuanmou Basin covers an area of 1514 km2 and the
non-dry–hot zone has an area of 2001 km2, accounting for 43.07% and 56.93% of the total
area studied in this work, respectively.
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Table 3. Landscape ecological risk levels at different elevations.

Zoning Ecological
Risk Zones

2000 2010 2020

Area (km2) Percentage (%) Area (km2) Percentage (%) Area (km2) Percentage (%)

Dry-hot area

Low 863.15 57.01 831.34 54.91 500.99 33.09
Lower 282.67 18.67 294.35 19.44 524.93 34.67

Medium 215.51 14.23 263.54 17.41 380.19 25.11
Higher 124.24 8.21 101.00 6.67 93.38 6.17
High 28.35 1.87 23.70 1.57 14.46 0.96

Subtotal 1514 100 1514 100 1514 100

Non-dry-hot
area

Low 1383.94 69.18 1304.98 65.23 1350.87 67.49
Lower 420.40 21.01 475.73 23.78 570.70 28.51

Medium 168.21 8.41 188.93 9.44 73.55 3.67
Higher 25.20 1.26 27.39 1.37 6.33 0.32
High 2.87 0.14 3.61 0.18 0.00 0.00

Subtotal 2001 100 2001 100 2001 100
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The LER of the dry–hot zone is mainly at low and lower levels. From 2000 to 2020, the
proportion of lower- and medium-risk areas in the dry–hot zone increased from 18.67% to
34.67% and from 14.23% to 17.41%, respectively. It is mainly distributed in the central part
of Yuanmou County. The proportion of the area with other LER levels decreased but the
change was small. During the 20-year period, 56.16%, 78.67% and 86.78% of the total area
of their risk zones were located within the dry heat zone for the medium risk, higher risk
and high ecological risk zones. Similar to the dry–hot zone, the non-dry–hot zone is also
dominated by low- and lower-risk level areas, which cover 67.49% and 28.51% of the total
area, respectively. No less than 61.09% and 52.09% of the area at risk. It is mainly found
in Yongren County and Dayao County. Generally, the overall composition of the areas
with different LER levels in the dry–hot and non-dry–hot zones has remained relatively
stable over the 20-year period, with low- and lower-risk areas as the main components in
both zones. The medium-, higher- and high-risk areas of the Yuanmou Basin are mainly
distributed in the dry–hot zone, while low- and lower-risk areas are mainly distributed in
the non-dry–hot zone.

3.4.2. Distribution of Ecological Risk Levels under different Terrain Distribution Indices

It can be seen from Figure 9 that the terrain distribution index of low-risk areas
increases with the terrain position index from 2000 to 2020. It is greater than 1 at the 3–5
terrain position interval, indicating that there is a higher terrain position index for low-risk
areas, mainly because the higher-terrain areas are less affected by human activities. It is
distributed in the high-altitude area of Yuanmou Basin. With the increase in the terrain
position index, the distribution index of lower-risk areas first increases and then decreases.
It is greater than 1 at the level 2 terrain position interval, suggesting that this interval is
dominated by lower-risk areas. It is distributed in the central part of Yongren County. The
distribution index of medium-risk areas tends to change consistently. It decreases with the
increase in the topographic position index, and it is greater than 1 between the 1 and 2 level



Land 2023, 12, 1759 14 of 19

terrain position zones, indicating that these zones are dominated by medium-risk areas. It is
distributed in the central part of Yuanmou County. The distribution indices of higher- and
high-risk areas decrease as the terrain position index increases, and they are greater than
1 at the level 1 terrain position interval, demonstrating that this interval is dominated by
higher- and high-risk areas. The medium-high and high-risk zones are mainly distributed
in the central part of Yuanmou County. In general, low-risk areas are more concentrated
at high terrain positions, and lower-risk areas are spread across all terrain positions. The
medium-, higher- and high-risk areas are distributed at low terrain positions. This can be
explained by the fact that human activities are mainly concentrated in the lower terrains
of the flat dams and river valleys, impacting the ecological environment of these areas,
while the higher-terrain zones are less affected by human disturbances. This makes the
distribution of ecological risk areas distinctly different between low- and high-terrain areas.
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Figure 9. Distribution index of ecological risk levels on terrain gradient from 2000 to 2020.

4. Discussion
4.1. Landscape Ecological Risks in Response to Land Use Change

LER assessment based on land-use change is an effective method to evaluate the
spatial and temporal distribution and evolution characteristics of regional landscape fea-
tures [53,54]. Previous studies have shown that land use change can lead to variation
in landscape patterns, impacting ecological security and health [55,56]. Therefore, we
constructed an assessment model based on the landscape pattern index to investigate the
correlation between land use change and landscape ecological risk, providing an efficient
and convenient procedure for assessing the spatial and temporal variability characteristics
of LER. The assessment model has been widely used for evaluation of LER caused by land
use change [57,58]. The LER pattern in the Yuanmou Basin has obvious spatial differentia-
tion characteristics, with an overall trend of high in the center and low in the surroundings,
which can be related to the distribution of different land use types. The central part of the
study area shows main land use types of arable land, construction land and unused land.
Especially in the built-up areas of towns where buildings are relatively dense, the LER
is significantly higher than that in other regions. In the surrounding areas, the land use
types are mainly woodland and grassland, with higher habitat quality and lower ecological
risk of the landscape. From 2000 to 2020, the average LER values in the study area have
continued to increase slightly over time. The area of high-, higher- and low-risk levels
decreased significantly, while the medium- and lower-risk area expanded dramatically.
Variations in LER are significantly influenced by land use change and government policy.
Since the end of the last century, in order to fundamentally prevent the rapid deterioration
of the ecological environment and to mitigate the contradictions between socio-economic
development and ecological protection, the Chinese government has been implementing
the projects of “Protected Forests in the Middle and Upper Reach of the Yangtze River” and
“Returning Farmland to Forests and Grass”. This has successfully improved the quality of
the ecological environment and reduced the ecological risk of the landscape [59,60], which
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are reflected in the gradual increase in the proportion of forested land and the total area
of low- and lower-risk levels in the Yuanmou Basin. The implementation of a series of
government policies has led to land use changes, ecological improvements and effective
control of ecological risks in the landscape [61]. However, it is noteworthy that, from 2010
to 2020, the medium-risk area in the central part of the Yuanmou Basin increased signif-
icantly because of the flat gullies and gardens project model that was started in 2010 by
enterprises and farmers in the region, which used large machinery to develop and exploit
eroded and poor land in gullies on a larger scale and planted larger areas to huge economic
benefits [62,63].This development model has led to a rapid expansion of cultivated and
built-up land in the region and increased fragmentation of the land landscape, resulting in
increased ecological risks of the landscape.

4.2. Influence of Terrain Gradients on the Distribution of Ecological Risks

Previous studies have shown that terrain features determine land use patterns and
vegetation community distribution, so terrain is one of the main drivers of spatial land
use distribution [44,63], and LER is closely related to land use change. Therefore, the
influence of terrain on the ecological environment cannot be ignored [64]. Due to the
undulating topography and the obvious vertical climatic zonation, the Yuanmou Basin
shows a complex distribution of LER with the change in terrain. The land use landscape
pattern of the basin has changed dramatically with the population expansion to meet the
demands of production and livelihoods. The high-, higher- and medium-risk areas in
this region are dominated by the distribution index in the 1st order terrain gradient and
the dry–hot zone. Since 2010, the basin has been subjected to a large-scale gully levelling
project, which has greatly reduced the area of grassland and increased the areas of arable
land and building land. The disruption of the original landscape pattern resulted in a
staggered distribution of various land use types [65], and deteriorated landscape structure
and stability. This has led to an abnormal increase in the ecological risk index in the 1st
order terrain gradient and the dry heat zone. Over time, the cumulative hazard effect
on ecological components becomes apparent, causing an increase in the medium-risk
distribution index of this region, growth in the proportion of medium-risk areas, and a
decline in the ecological stability, which can seriously impact the overall ecological risk [41].
This suggests that human activity in the Yuanmou Basin is the main external factor for
the aggravation of ecological risk in the landscape. The lower-risk areas dominate the
two terrain gradients and non-dry–hot zones with a distribution index greater than 1.
The lower-risk areas dominate the 3–5 terrain gradients and non-dry–hot zones with a
distribution index greater than 1. As this region is dominated by forests and grasslands
at higher altitudes, it is less susceptible to human activities and the land use types do not
change frequently, maintaining a stable landscape structure. Moreover, since the end of the
last century, a series of ecological forest protection measures have been carried out in this
region, which has increased the area of woodland and effectively restored the vegetation
cover in the high-altitude areas. The results of the study show that the high-risk areas are
mainly located in the dry–hot zone and the low terrain zone, which are heavily disturbed
by human activities. The distribution of ecological risk with terrain gradients is mainly
limited by climatic and topographic factors [66], while terrain conditions and disturbance
from human activities are the main factors causing the increase in ecological risk. Therefore,
based on the LER assessment results, effective environmental protection and improvement
measures should be developed and implemented to mitigate the impact of human activities
on the ecosystem [67].

4.3. Enlightenment and Limitation

The Yuanmou Basin, which ranges from low to high altitudes and changes in climate
from dry and hot to humid, exhibits the specificity of synergistic evolution with the to-
pographic gradient. In this work, the spatial heterogeneity of LER in the study area is
analyzed from a multidimensional perspective [68]. The results are valuable for ratio-
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nalizing and coordinating the distribution patterns of each land use type under different
topographic conditions, which contribute to sustainable socio-economic and territorial
spatial development of the study area. However, there are still some limitations. Firstly, the
results of LER are highly dependent on the accuracy of land use classification [50], but the
land use in the Yuanmou Basin changes rapidly and intensely. Therefore, improvement of
the land use data accuracy is of great importance in future work to reduce the uncertainty
of LER [69]. Secondly, determination of the best evaluation unit is an important basis for
improving the spatial accuracy of ecological risk [46]. Finally, quantification of the value of
ecosystem services should be incorporated into the system of ecological risk assessment in
the future.

5. Conclusions

In this study, the Yuanmou Basin was selected as the research object, and the land
use data during the three periods of 2000, 2010 and 2020 were used to construct a LER
assessment model. Combined with the elevation and terrain position indices, to explore
the spatial and temporal evolution of the LER under different terrain gradients. The
conclusions from this study are summarized as follows:

(1) From 2000 to 2020, the land use types in the Yuanmou Basin were mainly grassland,
forest land and arable land, with the area of forest land, construction land, water bodies and
arable land increasing and the area of grassland and unused land decreasing. The transfer
of land use types was mainly from grassland, forest land and cropland to construction
land, and from grassland to forest land and cropland, with the largest area of grassland
converted to cropland.

(2) During the 20-year period, the average value of LER in the study area increased
slightly, specifically in the form of a decrease in low-, higher- and high-risk areas, and
an increase in medium- and lower-risk areas. The transfer of medium-risk areas is more
complicated.

(3) The spatial distribution pattern of LER in Yuanmou Basin was characterized to
be low surrounding and high middle, with significant positive spatial correlation and
obvious spatial aggregation, mostly dominated by “high-high” and “low-low” clustering.
However, the spatial aggregation and spatial autocorrelation of LER decreased during the
20-year period.

(4) From 2000 to 2020, the LER levels and their changes in the study area differed
significantly across the terrain gradients. Low- and lower-risk areas are distributed in the
non-arid thermal zone and the medium–high terrain gradient, while medium-, higher- and
high-risk areas are mainly distributed in the arid thermal zone and the low terrain gradient.

Comprehensively considering the distribution of LER levels in the Yuanmou Basin on
the topographic gradient, future land policies may be tailored according to the topographic
gradient. The low-altitude and low-topographic gradient areas of the Yuanmou Basin are
the main distribution zones of medium-to-high-risk areas, and also the key areas for adjust-
ing land policies. In this area, the speed at which farmland encroaches on grassland should
be slowed down, and land should be planned and utilized scientifically and reasonably
to suppress the spread of high-risk areas to high-altitude and high-topographic gradient
areas. In the high-altitude and high-topographic gradient areas of the Yuanmou Basin,
soil and water conservation work should be done well, and the construction of protective
forests and the orderly implementation of the “Returning Farmland to Forest and Grass”
project should be strengthened. These measures will reduce human interference in the
ecological environment, focus on the development of ecological benefits and suppress the
transformation of slightly low-risk areas into medium-risk areas.
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