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Abstract: Facing future complex climate changes and global economic fluctuations, land use and land
cover (LULC) simulation is recognized as an important initiative to support government decision-
making. In this study, a comprehensive LULC simulation modeling framework was proposed
based on the PLUS and InVEST models. The Kinki metropolis in Japan was chosen as a case to
simulate future LULC changes under four SSP–RCP (126, 245, 370, and 585) scenarios, and to calculate
carbon storage (CS) from 2040 to 2100. The results show that cultivated land will decrease while
forests will increase, except under scenario SSP585. The artificial surface will increase except under
SSP370. The CS changes are significantly correlated with forest area changes. Furthermore, this study
highlights the significance of analyzing and discussing future LULCs under wide-area planning.
Spatial pattern, morphological spatial pattern analysis (MSPA), and Pearson correlation analysis
were used to explore the characteristics of the LULC types. The results reveal that the prefectures
within the Kinki metropolitan area can be classified into three groups based on the spatial pattern
indices change of the artificial surface. Most cultivated land is concentrated in important patches and
corridors (area larger than 40,000 m2), accounting for over 90% of the total area, while the number is
less than 25%. Forests will become more aggregated, and different MSPA classes will have varying
impacts on CS changes. This study comprehensively analyzed and validated the feasibility of the
simulation results from different LULC perspectives, comparing the similarities and differences in
the development of prefectures. Additionally, this research provides a comprehensive framework for
integrating simulated LULC types with policy discussions to better guide LULC planning and policy
formulation in metropolitan Kinki.

Keywords: land use and land cover simulation; carbon storage; SSP–RCP scenarios; spatial pattern;
wide-area planning; the Kinki metropolis

1. Introduction

The report by the Intergovernmental Panel on Climate Change (IPCC) indicates that
human activities, primarily greenhouse gas (GHG) emissions, have led to global climate
warming [1]. This warming has significantly altered the structure, function, and processes
of ecosystem services, resulting in unpredictable impacts on both global ecology and hu-
man beings [2]. Terrestrial ecosystems are now widely acknowledged to play a critical role
in global carbon cycle regulation and climate change mitigation, with green spaces being a
main factor in terrestrial carbon storage (CS) regulation [3,4]. Changes in land structure
resulting from alterations in land use/land cover (LULC) types directly impact vegeta-
tion CS and soil carbon levels [5]. The primary cause of LULC changes is urbanization,
and worldwide urban expansion creates incentives to convert green spaces into artificial
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surfaces [6,7]. Consequently, studies on LULC changes contribute to a better knowledge
of urban development processes, ecosystem services, and provides a foundation for land
development and management [8–10].

Future LULC simulations are considered an important initiative that provide a scien-
tific basis for supporting governmental decision-making. Moreover, they have the potential
to promote environmentally sustainable development and protection [11]. In scenario
selection, scenarios that describe the possible future development of anthropogenic drivers
of climate change, aligned with socioeconomic development, are critical [12]. The Coupled
Model Inter-comparison Project Phase 6 (CMIP6), launched in 2013 by the World Climate
Research Program (WCRP) and its core project, the Working Group on Coupled Modeling
(WGCM), served as an essential scientific resource for the IPCC to assess and synthesize the
latest climate science and inform global climate policy discussions [13]. The CMIP6 links
shared socioeconomic pathways (SSP) to representative concentration pathways (RCP) used
in the CMIP5, generating a range of future climate scenarios, namely the SSP–RCP [14,15].
Notably, researchers have widely applied SSP–RCP scenarios in LULC simulation studies
to explore the characteristics of LULC change [16–19]. In addition, several methodologies
have been commonly used in LUCC simulations, including the Land Change Modeler,
the Conversion of Land Use and its Effects model, the Meta-cellular Automata, the Fu-
ture Land Use Simulation model, and the Patch Generation Land Use Simulation (PLUS)
model [5,11,20–22]. In this study, the PLUS model was used, which was combined with
the cellular automata (CA) model based on multiclass random patch seeding, to better
simulate changes in the level of multiclass LULC patches [22]. It improves the accuracy of
simulating changes in LULC distribution. In addition, this model can compare and identify
the influence of various driving factors on LULC changes [23].

Over the past five years, there has been a significant increase in study focusing on
predicting future LULC changes [24]. However, the majority of studies focus on cities in
developing countries; fewer studies have explored the patterns of LULC change and simu-
lation prediction in cities in developed countries [2,22]. Urban development in developed
countries provides valuable insights into the dynamics of LULC patterns, the effectiveness
of LULC policies, and the complex interplay among urbanization, socioeconomic factors,
and environmental considerations. The experiences learned from developed countries
can provide valuable guidance for adjusting LULC policies and informing future LULC
planning in both developed and developing countries. Furthermore, there is often a lack of
institutional fit-related analyses. Most studies have focused on future ecosystem services
evaluation and landscape patterns change, overlooking the specific planning requirements
and legal framework of the studied areas [4,25]. Particularly for some developed countries
like Japan and the United Kingdom, artificial surface development and management are
subject to strict legal regulations and planning constraints [26].

The Basic Act for Land, the National Spatial Planning Act, and the National Land
Use Planning Act create a comprehensive set of territorial planning legislation in Japan
(Figure S1). This study focuses on conducting extensive LULC simulations and discus-
sions in the Kinki metropolis of Japan. As the limitations stemming from the long-term
concentration of development in the Tokyo metropolitan area become more evident, being
the second-largest economy in Japan, the Kinki metropolis is presented with amplified
opportunities for urban growth and the reinvigoration of social capital (Kansai Greater Re-
gional Plans). Nevertheless, in comparison to other metropolitan regions across Japan [27],
research addressing LULC changes and their management remains inadequate in the Kinki
metropolis. Within the context of territorial planning legislation, the Kinki metropolitan
development plans, as well as national park and green space preservation plans, provide
essential guidance for future wide-area LULC development and management. Additionally,
in response to the challenges of an aging population and other emerging issues [28,29], the
agricultural land conversion permit system is implemented to restrict the conversion of
agriculturally productive land with high output or large areas into other LULC types, in
order to address the decline in cultivated land availability. Land management through
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morphological characteristics is still the most common method, although the spatial divi-
sion considered various factors, such as the regional economy and population structure. In
addition, the formulation and implementation of laws have certain foresight, so the analysis
of land use simulation and simulation results has reference value for the formulation and
implementation of regional policies to a certain extent.

Morphological spatial pattern analysis (MSPA) has been extensively incorporated into
the principles of geographically based landscape ecology [30], and it is more commonly
conducted in the field of ecological function assessments, network construction, and the
connectivity of green infrastructure [31,32]. MSPA is an image processing method based on
mathematical morphology [33], which can divide LULC types according to morphological
characteristics. Furthermore, the utilization of MSPA complements the quantitative analysis
of spatial patterns based on the landscape pattern index [34]. It can provide information on
the spatial patterns, ecological functions, and areas in LULC changes.

Based on the background, this study focuses on the Kinki metropolitan area, and aims
to conduct LULC simulations under four future SSP–RCP scenarios from the CMIP6. These
scenarios considered variations in the population, economy, climate characteristics, and
LULC demands. Furthermore, this study places particular emphasis on exploring and dis-
cussing the spatial patterns under the basis of wide-area planning. The primary objectives
of this study are as follows: (1) to simulate LULC from 2020 to 2100; (2) to analyze changes
in the distribution of terrestrial CS under four scenarios and explore their correlation with
the MSPA classes of forest; and (3) to analyze and discuss the spatial pattern changes of
LULC types guided by wide-area planning. This study will contribute to a comprehensive
understanding of the future dynamic changes in the LULC in the Kinki metropolis, empha-
sizing the significance of formulating localized land management strategies and providing
valuable references for policymakers, landowners, and land managers.

2. Study Area and Materials
2.1. Study Area

Metropolitan Kinki, which comprises six prefectures (regional authorities comprising
municipalities) including Osaka, Kyoto, Hyogo, Nara, Shiga, and Wakayama, is the second-
largest economic region in Japan (National Spatial Strategy) (Figure 1). This metropolis
plays a crucial role in Japanese politics, economy, culture, and global communication
(Kansai Greater Regional Plans). Its total area is approximately 27,329.71 km2, with a
population of 20,554,346 people as of 2020, accounting for 16.28% of the total population
of Japan [35]. The Kinki metropolis is located in central and western Honshu, Japan, and
is surrounded by mountains, the Sea of Japan to the north, the Seto Inland Sea to the
west, and the Pacific Ocean to the south (Figure 1). Its geography is diverse, with rugged
terrain around the central lowland such as Osaka Plain, Kyoto Basin, Nara Basin, and Omi
Basin, and the largest lake of Japan, Lake Biwa, located in the northeastern area. There are
regional differences due to the amount of precipitation and its seasonal distribution due to
the relationship with the topography and the ocean, which includes Japan’s representative
climate types. The main climate zones are divided into the Sea of Japan climate in the
northern part and the Pacific coastal climate in the southern part. The Pacific coast-type
climate is further subdivided into the Nankai climate zone, the Tokai climate zone, and the
Setouchi climate zone.

In the 21st century, metropolitan Kinki, like other Japanese regions, is also facing
various challenges like a declining population, significant aging, economic stagnation,
and a reduction in regional status and urban vibrancy, which are of widespread concern.
As a consequence of these factors, the LULC change in this region has been slower from
2000 to 2020, with the LULC types with the larger areas and more significant changes
being cultivated land, forests, and artificial surfaces (Figures 1 and 2). Nevertheless, the
Kansai Greater Regional Plans has proposed to establish the Kinki metropolitan area as the
core of Japan’s future economic growth and enhance its vitality. This plan presents both
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opportunities and challenges for regional development, making the future LULC trajectory
worthy of attention under the complex economic development and climate change.
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2.2. Data Acquisition

The boundary shapefile of the Kinki metropolis was obtained from the Ministry
of Land, Infrastructure, Transport, and Tourism (https://nlftp.mlit.go.jp/ksj/, accessed
on 10 September 2022), and the land dataset was obtained from GLOBELAND30 (http:
//www.globallandcover.com/, accessed on 25 September 2022). Based on previous studies
and the consideration of a comprehensive selection of driving factors, we selected a total
of 25 driving factors (Table 1), including 3 topographic factors, 2 climatic factors, 9 soil
factors, 2 socioeconomic factors, and 9 spatial accessibility factors. After a series of data
preprocessing steps in ArcGIS 10.5 software, including projection transformation, Euclidean
distance, resampling, and clipping—all of the above data were converted to raster data
with the same projected coordinate system and a spatial resolution of 30 m (Figure S2).

https://nlftp.mlit.go.jp/ksj/
http://www.globallandcover.com/
http://www.globallandcover.com/
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In this study, data on population density, GDP density, temperature, and precipitation
were collected for four scenarios in 2040, 2060, 2080, and 2100, which were used as driving
factors for LULC simulation. The population density and GDP density data were obtained
from kilometer-scale grid data of future climate change scenarios from SSPs [3,36]. Future
temperature and precipitation data were obtained from WorldClim 2.1 based on the MRI-
ESM2-0 model (http://worldclim.org/, accessed on 22 January 2023).

Table 1. Data sources and processing.

Category Data Year(s) Original
Resolution Data Resource

Land dataset Land use/cover data 2000, 2010, 2020 30 m
GLOBELAND30
(http://www.globallandcover.com/, accessed
on 25 September 2022)

Topographic factors DEM
2022

30 m JAXA-DEM (https:
//www.eorc.jaxa.jp/ALOS/en/aw3d30/,
accessed on 13 October 2022)

Slope 30 m
Aspect 30 m

Climate factors Annual mean precipitation
2000–2018

30 arc-sec WorldClim 2.1 (https://www.worldclim.org/,
accessed on 16 November 2022)Annual mean temperature 30 arc-sec

Soil characteristics soil type 2011 30 m

National Agriculture and Food Research
Organization (https:
//soil-inventory.rad.naro.go.jp/offer.html,
accessed on 28 November 2022)

Soil water capacity

2017

250 m

ISRIC-World Soil Information
(https://data.isric.org/, accessed on
10 December 2022)

Depth to bedrock 250 m
Cumulative probability of
organic soil 250 m

Soil organic carbon stock 250 m
Soil PH 250 m
Texture class 250 m
Sand content 250 m
Clay content 250 m

Socioeconomic factors
GDP density 2015 5 km [37]
Population density 2020 100 m

WorldPop (https://hub.worldpop.org/,
accessed on 21 December 2022)
OpenStreetMap
(https://download.geofabrik.de/, accessed on
21 December 2022)

Spatial accessibility Proximity to town hall

2022

30 m
Proximity to residential 30 m
Proximity to transportation
node 30 m

Proximity to railway 30 m
Proximity to trunk/motorway 30 m
Proximity to primary road 30 m
Proximity to secondary road 30 m
Proximity to tertiary road 30 m
Proximity to open water 30 m

The driving factors collected were allowed to be inconsistent with the time period of the land use data, but the
time period was as close as possible to the time period of the LULC data [4].

3. Methodology

This study has three parts: (1) Future LULC simulations under four SSP–RCP sce-
narios, (2) carbon storage calculation by future LULC, (3) Spatial patterns analysis and
morphological spatial patterns from the perspective of LULC types (Figure 3).

http://worldclim.org/
http://www.globallandcover.com/
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/
https://www.worldclim.org/
https://soil-inventory.rad.naro.go.jp/offer.html
https://soil-inventory.rad.naro.go.jp/offer.html
https://data.isric.org/
https://hub.worldpop.org/
https://download.geofabrik.de/
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3.1. Future LULC Scenarios
3.1.1. LULC Demand from LUH2-Markov Chain

This study selected the basic scenarios for climate model projections in Tier 1 (SSP126,
SSP245, SSP370, and SSP585) of the Scenario Model Inter-comparison Project [15,38]. SSP126,
which combines SSP1 and RCP2.6, represents a scenario characterized by low GHG emissions
resulting from a sustainable development trajectory. SSP245, combining SSP2 and RCP4.5, em-
phasizes development that aligns closely with historical patterns without significant deviations.
SSP370, comprising SSP3 and RCP7.0, reflects a regional rivalry and barriers to international
trade scenario with high GHG emissions, and the economic development is slow, with inequali-
ties that persist or worsen over time. SSP585, involving SSP5 and RCP8.5, depicts a future where
global development is rapid, primarily fueled by fossil fuel-based, energy-intensive economies,
leading to substantial GHG emissions (Table S1) [14,39].

Land-Use Harmonization2 (LUH2; http://luh.umd.edu/, accessed on 30 October
2022) is an important part of the CMIP6; it presents eight LULC scenarios at 0.25◦ × 0.25◦

resolution. To obtain the high-resolution simulation results, this study quantified and
calibrated each LULC scenario in LUH2 with the historical LULC in 2020, while retaining
the original fluctuation rates of LULC types in LUH2 [19,38]. Furthermore, using the
historical LULC data in 2020, the SSP–RCP scenarios of land use demand trajectories were
obtained. In addition, considering the substantial inaccuracy in grassland due to the low
resolution in LUH2 and the missing results of the water body [19,38], this study used a
Markov chain to rectify the LULC demand data, and determined the land use demand
trajectories in the Kinki metropolis (Figure 4).

http://luh.umd.edu/
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3.1.2. Spatiotemporal Dynamic Simulation Based on PLUS

The PLUS model contains two modules: (1) a rule-mining framework based on a
land expansion analysis strategy (LEAS); and (2) a CA based on multi-type random patch
seeds (CARS) [23]. Firstly, the LULC maps of two periods were overlaid to extract the cells
representing the change areas. Then, the LULC expansion map was used as a transition
analysis strategy in the LEAS. The random forest classifier (RFC) algorithm was applied to
identify the relationship between the changing area and every driving factor. This process
helped determine the contribution value of the driving factors to the change in each LULC
type during the two periods [36]. Finally, a growth mechanism based on CARS was utilized
to dynamically simulate various types of land patches.

3.1.3. Model Evaluation

This study used the LULC in 2000 and 2010 to simulate LULC in 2020, and then
compare the simulated 2020 results with the actual 2020 results to verify the accuracy of
the simulation results. Two evaluation metrics, the overall accuracy and Kappa coefficient,
were employed. The overall accuracy measures the ratio of correctly classified cells to
the total number of classes. On the other hand, the Kappa coefficient ranges from 0 to 1.
Generally, a Kappa coefficient greater than 0.6 indicates acceptable results, while a value
above 0.8 suggests a relatively accurate simulation outcome [40].

Kappa =
p0 − pc

pp − pc
(1)

where p0 and pc refer to the actual and predicted simulation accuracy in a random state,
respectively, and pp is the proportion of correct simulations in the ideal classification case
and is commonly assumed to be 1.

In this study, the calculated Kappa coefficient was found to be 0.92, indicating a high
level of agreement between the simulated and actual LULC data. Additionally, the overall
accuracy was determined to be 0.96, further confirming the reliability and accuracy of
the simulation method employed in this study (Table S2). These results demonstrate that
the method used in this study meets the operational requirements of the model, and can
effectively simulate LULC changes.

3.2. CS Estimation Based on the InVEST Model

The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model is
commonly employed to simulate and analyze the connections between nature and human
well-being, including ecosystem services or the contributions of nature to people [41,42].
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One of the most commonly used models in InVEST is the carbon storage and sequestration
model, which aggregates the amount of carbon stored in four pools based on LULC maps
and the statistics of previous studies (Table 2) [41,42].

C = ∑n
t=1 St × (Ct,a + Ct,b + Ct,c + Ct,d) (2)

where C is the total CS; St refers to the area of cropland, forest, grassland, waterbody,
artificial surface, and bare land (km2); Ct,a, Ct,b,Ct,b, and Ct,d are the carbon densities from
aboveground, belowground, soil organic, and dead organic matter, respectively, of the t
type of LULC (Mg/km2).

Table 2. Carbon densities of each land use/land cover type (Mg/km2).

Land Use
Types

Aboveground
Carbon
Density

Belowground
Carbon
Density

Soil organic
Carbon
Density

Dead
Organic
Matter

Density

Sources

Cultivated
land 21.00 2.52 73.20 2.52 [43–45]

Forest 84.60 20.30 90.00 7.01 [43,46–48]
Grassland 2.91 4.65 114.00 0.00 [43,49]
Bare land 0.20 0.00 40.10 0.00 [3,50]

3.3. Spatial Pattern Analysis from the Perspective of LULC Types
3.3.1. Spatial Pattern Analysis of Artificial Surface

Landscape pattern indices are crucial indicators for analyzing the fragmentation,
shape characteristics, aggregation, and shape diversity of LULC patches [51]. These indices
are commonly employed to quantitatively analyze ecological landscape patterns [52,53].
By considering the calculation principles through the spatial distribution of patches, we
utilized several landscape pattern indices, namely the Largest Patch Index (LPI), Landscape
Shape Index (LSI), Contagion (CONTAG), and Shannon’s diversity index (SHDI) to analyze
the fragmentation, shape, degree of aggregation, and shape diversity of future artificial
surface patches. We aimed to explore the spatial pattern under different scenarios. The
calculations of all the indices were conducted using Fragstats 4.2 software.

3.3.2. Changes in Morphological Patterns of Green Space

MSPA was employed to divide the LULC map into seven MSPA classes, based on the
Euclidean distance threshold between raster cells [54,55] (Table 3). It can provide insights
into the extraction of LULC patches using mathematical morphology [56]. This study took
one type of LULC as the foreground and the remaining categories as the background; then,
these data were converted into raster data in TIFF format. Eight-neighbor connectivity
and edge width values of 20 were used in this research, in order to obtain more detailed
information at the regional scale in different land use types as much as possible [34].
Additionally, considering the pixel size and the need for significant MSPA classes for each
LULC type in each period, the edge width was uniformly set at 4 m [34,56]. The following
equation was used to calculate the cover area of each MSPA class.

Sti = St × Pi(i = 1, 2, . . . , 7) (3)

where St refers to the area of cultivated land and forest (km2); Pi represents the proportion
of different MSPA classes under a specific LULC type (%); Sti refers to the area of core,
islet,. . ., branch under a specific LULC type (km2).
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Table 3. Definitions of MSPA classes.

MSPA Classes Definition

Core Large area patches that exceed the specified edge width
distance from the background

Islet Patches that are smaller than the core and exist in the
background as isolated and fragmented forms

Edge External perimeter of core area

Perforation
The internal perimeter of the core area refers to the boundary
within the core where one land use type is encroached upon
by other land use types, creating a similar hollow feature

Bridge The corridor connecting different cores
Loop Internal corridor connecting the same core

Branch Only one end is connected to the foreground, striped land
with low connectivity

3.3.3. Identification of Important Cultivated Land Patches and Corridors

In response to the decline in cultivated land, Japan has implemented a series of ini-
tiatives to protect and regulate its use. Notably, the Agricultural Promotion Regional
System and the Agricultural Land Conversion Permission System specifically address the
management of cultivated land exceeding 40,000 m2. Development activities on such land
require local approval following consultation with the Minister of Agriculture, Forestry, and
Fisheries. Although evaluating the functionality of cultivated land requires a comprehen-
sive analysis of various factors such as soil composition, crop yield, and market demand,
area-based management is considered one of the most direct and effective approaches. This
study focused on identifying important cultivated land larger than 40,000 m2, and explored
its morphology through patches and corridors classification. Within the MSPA framework,
the core, islet, edge, and perforation correspond to patches, while the bridge, loop, and
branch represent corridors [57]. ArcGIS was used to further count and extract the areas
and numbers of cultivated land patches and corridors above 40,000 m2.

3.3.4. The Correlation between MSPA Classes in Forest and CS Changes

This study utilized Pearson correlation analysis to explore the relationships between
CS changes and MSPA class changes of forest. In conducting this analysis, a crucial step
is to select variables for statistical analysis to determine the significance of the correlation
coefficient © and identify tradeoffs. In this study, it was determined that there is a strong
linear correlation when the absolute value of r exceeds 0.4, This threshold serves as a guide-
line for evaluating the strength and direction of the correlation between CS changes and
MSPA class changes, providing insights into the relationship between forest characteristics
and carbon storage dynamics.

4. Results
4.1. Future LULC under Different Scenarios

The future LULC results indicate that except for SSP370, which exhibited significant
grassland changes, the primary types of LULC change were cultivated land, forests, and
artificial surfaces (Table 4). In terms of cultivated land, it showed a trend of growth
followed by stabilization in the SSP585, but the other three scenarios exhibited a decline
from 2020 to 2100. SSP370 experienced the most substantial decline, with only two-thirds
of the cultivated land area in 2020. In contrast, the SSP585 remained stable after initially
increasing to 541.99 km2 in 2040. Overall, the forest areas in SSP126, SSP245, and SSP370
increased from 2020 to 2100, with the growth areas exceeding 800 km2, except for a decline
in SSP585. Artificial surface areas increased in all of the scenarios by 2100, except for SSP370,
which experienced a decrease of roughly 660 km2. Under SSP126, the artificial surface area
reached 3569.00 km2 in 2060, and then began to decrease to 3427.89 km2 in 2100. Both
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SSP245 and SSP585 showed an increase in artificial surface area from 2020 to 2100, with
SSP585 growing by about 670 km2.

Table 4. Statistics in LULC under four scenarios.

Time Scenario Cultivated
Land/km2 Forest/km2 Grassland/km2 Waterbody/km2 Artificial

Surface/km2
Bare

Land/km2

2040

SSP126 3091.84 19,369.78 325.54 850.61 3558.43 133.49
SSP245 3512.60 19,069.68 361.53 850.61 3404.31 130.96
SSP370 3522.68 19,322.06 445.96 850.61 3056.18 132.20
SSP585 4071.22 18,515.44 359.67 850.61 3405.86 126.89

2060

SSP126 2993.92 19,484.09 303.38 845.28 3569.00 134.01
SSP245 3514.56 19,048.89 346.53 841.33 3448.95 129.45
SSP370 3410.46 19,572.82 523.55 841.17 2862.40 119.29
SSP585 4076.42 18,417.96 362.18 842.51 3504.59 126.04

2080

SSP126 2746.04 19,760.55 282.73 839.77 3567.81 132.80
SSP245 3249.17 19,141.93 332.31 832.17 3645.21 128.91
SSP370 3103.17 19,968.86 599.40 831.83 2723.55 102.89
SSP585 4076.42 18,412.77 338.44 834.61 3541.65 125.81

2100

SSP126 2595.63 20,078.15 263.49 834.28 3427.89 130.25
SSP245 2888.57 19,452.38 318.67 823.11 3716.64 130.33
SSP370 2439.17 20,769.84 674.59 822.59 2535.69 87.82
SSP585 4076.42 18,119.78 316.38 826.89 3864.29 125.93

The LULC expansion maps show that despite varying types of LULC changes, there
were similarities in the change areas and severity (Figure 5). For instance, along Lake
Biwa in Shiga Prefecture, the southeast area’s LULC changes were apparent in all four
scenarios. Except for SSP370, which increased forest area, the rest showed mainly artificial
surface expansion. In the north of Wakayama, artificial surface expansion occurred under
all four scenarios. This study further extracted and calculated LULC changes from 2020
to 2100 under six prefectures by administrative division (Figure 6). The results revealed
varied LULC changes among the prefectures. For example, cultivated land decreased in all
prefectures except Osaka under the SSP126 scenario, with the largest decrease observed
in Shiga. The artificial surface area increased only in Hyogo and Shiga, with a significant
increase in Shiga. The main types of LULC changes differed by prefecture. Under SSP370,
Hyogo, Kyoto, and Shiga are characterized predominantly by cultivated land and artificial
surface conversion to forest. Nara’s only grassland area increased under this scenario, with
all other LULC types converting to grassland.
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Figure 5. Land use expansion map from 2020 to 2100 under four scenarios ((a) SSP126; (b) SSP245;
(c) SSP370; (d) SSP585).
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4.2. CS for LULC under CMIP6 Scenarios

The CS results indicate a significant variation in CS levels under different scenarios
(Table 5, Figure 7). CS continues to decrease under SSP585, primarily due to forest decline
and the expansion of artificial surfaces. Conversely, the total CS increases in SSP126 and
SSP370, mainly due to forest increase, with SSP370 having the highest annual growth rate
of 0.29 Tg (106 Mg) associated with the rapid shrinkage of artificial surfaces. The SSP245
scenario results show a steady decrease in CS from 2040 to 2080, followed by a recovery
period after 2080, with fluctuations in CS compatible with forest changes. Furthermore, this
study calculated the CS in each prefecture under the four scenarios (Figure 8). In the SSP126
scenario, although CS increased in all of the prefectures, the magnitude of the increase
varied considerably. Hyogo exhibited the highest increase of 3.12 Tg, while Osaka had
a modest increase of only 0.37 Tg. Under the SSP245 scenario, the overall CS in Osaka
and Shiga decreased, while Kyoto, Nara, and Wakayama experienced slight increases in
total CS by 2100, although the changes between 2040 and 2100 were inconsistent. Notably,
Hyogo demonstrated the highest growth of 1.88 Tg. In the SSP370 scenario, all of the cities
observed an increase in CS, with Hyogo experiencing the most significant rise of 8.64 Tg,
and Nara showing a modest increase of 0.70 Tg. In contrast, under the SSP585 scenario,
all cities exhibited low CS levels, which decreased between 2040 and 2100. Wakayama
experienced the most notable decrease of 2.83 Tg.

Table 5. CS dynamic change from 2020 to 2100.

Scenario
Total CS (Tg) CS Change (Tg)

2040 2060 2080 2100 2020–2040 2040–2060 2060–2080 2080–2100 2020–2100

SSP126 426.30 427.37 430.24 434.92 −2.36 1.07 2.87 4.68 6.26
SSP245 424.85 424.26 423.33 425.86 −3.81 −0.59 −0.93 2.53 −2.80
SSP370 431.08 435.92 441.72 452.16 2.41 4.84 5.80 10.44 23.50
SSP585 419.16 417.27 416.88 410.69 −9.50 −1.89 −0.39 −6.18 −17.97
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4.3. The Spatial Patterns of Artificial Surface Changes

In the different simulated periods, the four scenarios exhibited disparities in their
changes in spatial pattern indices for artificial surface patches (Figure 9). For instance, under
the SSP126 scenario, the LPI and CONTAG indices in Wakayama decreased during the
2000–2040 period, remained stable in 2040–2080, and increased in 2080–2100. These results
indicate that the artificial surface area in Wakayama becomes increasingly fragmented
during 2000–2040, but shows aggregated development by 2080–2100.

Furthermore, the artificial surface patch distributions in the six prefectures are different
by 2100. In Hyogo, Shiga, and Wakayama, the change in spatial pattern indices remained
largely consistent, with the trend from 2000 to 2020 under the SSP126, SSP245, and SSP585
scenarios. The LPI and CONTAG show a decreasing trend in all of the scenarios except
for SSP370, while the value of the LSI and SHDI increased. These findings indicate that
the fragmentation of artificial surface patches increases in the SSP126, SSP245, and SSP585
scenarios, and the shapes of the patches become more complex and less aggregated.

In Kyoto and Nara, there are similarities in terms of changes in the spatial pattern
indices. The LPI and CONTAG decreased in the SSP245 and SSP585 scenarios, while the
SHDI increased. The results show increased fragmentation of artificial surface patches and
decreased aggregation by 2100, while the situation is the opposite for SSP126 and SSP370.

In the SSP126, SSP370, and SSP585 scenarios, the LPI, CONTAG, and SHDI indices fall
in Osaka, while the LSI index rises. This indicates that by 2100, artificial surface patches
will be fragmented, more complex and diversified in shape, and less aggregated. Under
the SSP245 scenarios, the LPI and LSI rise while the other indices fall. These scenarios
show large patches of artificial surface expansion, and also an increase in fragmented
artificial surfaces.
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4.4. Important Cultivated Land Patches and Corridors Identification

The spatial patterns of cultivated land in each prefecture are characterized by core
areas, edges, perforations, and a small portion of linear patterns (such as loops, bridges, and
branches) that account for less than 30% (Figure S3). By 2100, in the SSP126 scenario, Shiga,
Kyoto, and Hyogo experience significant reductions in cultivated land area (Figure 10).
Specifically, in Shiga and the northern region of Kyoto, the core area decreases significantly,
the number of islets increases, and there is severe fragmentation of cultivated land patches.
In the SSP245 and SSP370 scenarios, the area of cultivated land decreases, and the cultivated
land distribution of MSPA classes was similar. In the SSP585 scenario, cultivated land
increases in all prefectures except Shiga. The core, edge, and perforation areas account for
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more than 65% of the total area, while islets make up less than 6%. This indicates a higher
level of integrity in cultivated land.
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Within the Kinki metropolitan area, the majority of cultivated land exists in the form
of important patches and corridors, accounting for over 90% of the total area of cultivated
land in most prefectures; meanwhile, the number is less than 25%. The number of patches
is generally smaller than that of corridors, while the area of patches is larger than corridors
(Figure 11). Hyogo stands out with the largest area and the numbers of important patches
and corridors, while Osaka has the lowest. When comparing the numbers and areas from
2000 to 2020, Hyogo, Osaka, and Wakayama exhibited relatively stable fluctuations, with
an increase in area under the SSP126 scenario from 2020 to 2060. Conversely, the number
gradually decreased in the remaining prefectures, year by year. Under the SSP245 scenario,
both the numbers and areas of important patches and corridors in all of the prefectures
showed relatively minor fluctuations from 2020 to 2060. By 2100, the areas decreased in all
of the prefectures, while the numbers increased significantly in Shiga and Wakayama. In
the SSP370 scenario, the Hyogo and Kyoto prefectures experienced the most rapid decline
in area, while the other prefectures showed smaller changes from 2040 to 2080, until 2100,
when they begin to decline more significantly. Under the SSP585 scenario, both the areas
and the amounts increased in all of the prefectures except for Shiga.
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4.5. Forest MSPA Classes Change and the Influence on CS Changes

The core is the largest area among all of the forest MSPA classes (Figure S4). The Kinki
metropolitan area has good forest integrity. The forest area increased in all of the scenarios
except for SSP585. Among the prefectures, the core and edge areas increased more, while
the areas of MSPA linear classes fluctuated less. However, there were some exceptions, such
as the MSPA class changes in Nara under SSP370. While the areas of its core, edge, and islet
decreased, the increase in bridges led to an increase in forest area. Furthermore, while the
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forest area of SSP585 decreased, the forest core remained stable in most prefectures, such as
Hyogo, Kyoto, and Shiga, where the woodland acreage decreased while the core area rose.

Among different land types, forests, grasslands, and croplands exhibit high carbon
density, with forests having the highest. In this study, 24 CS changes and forest MSPA
changes were extracted from six prefectures under the four scenarios to explore the relation-
ship between forest morphological characteristics and CS changes. The correlation analysis
revealed that not all MSPA classes had a significant impact on CS changes (Figure 12). For
instance, only the branch area had a significant influence on CS changes under the SSP126
scenario. Additionally, not all MSPA classes necessarily contributed to the CS density in-
crease. In all of the cases, the forest branch area was negatively associated with CS change;
this result means that in most cases, the increase in branch area is related to changes in
other MSPA classes in forests. The changes in CS can reflect the conversion patterns of
forest morphology. For instance, in three scenarios, the CS change exhibited a positive
correlation with core areas, indicating that the prefectures of metropolitan Kinki focused
on maintaining and constructing core areas in forest development, thereby integrating or
modifying the fragmented MSPA classes.
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5. Discussion
5.1. The Driving Factors Influencing LULC Change

This study simulated and analyzed the LULC changes in the Kinki metropolitan area
under various climates and socioeconomic situations (Figure 13). Under the scenarios
of population decrease, economic change, and global warming, cultivated land, forests,
and artificial surfaces are the main types of LULC changes in 2040, 2060, 2080, and 2100
(Table 4). In addition, the overlap probability of 25 driving factors with growth areas
over 2020–2100 shows that the growth areas of the three LULC types are all strongly
related to climate factors and socioeconomic factors. Economic development paths and
global climate change will affect future LULC [12,19,39]. In addition to climatic and
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socioeconomic factors, soil factors such as sand content and soil content also have a great
effect on cultivated land growth under the SSP126, SSP245, and SSP370 scenarios. This
result shows that favorable soil conditions are necessary for cultivated land development
in regions where cultivated land continues to decline [58,59]. In the SSP585 scenario, the
spatial accessibility factors overlap significantly with the cultivated land growth. This
result shows that cultivated land growth is in fact directly tied to human cropland needs
and activities [4,12]. The driving factors influencing forest growth in the four scenarios
are highly consistent, with GDP, climate, and soil factors dominating and human activity-
related factors playing a minor role. It reflects that superior geographic conditions and an
economic base play a role in the restoration and creation of forests in the Kinki metropolitan
area. Furthermore, as urban construction and road planning improve while the forest
ecosystem is in a superior state, the impact of human activity on forest ecosystems becomes
less significant. The distribution of artificial surface growth areas is highly consistent with
the GDP and population. Metropolitan areas with high population densities and high
economic development levels require more land for production, living, and working [60].
Furthermore, there is consistency between artificial surface growth and climatic factors
such as precipitation. The urban expansion will lead to more GHG emissions and CS
reduction, which means climate change and human activities are closely intertwined [61].
This study also discovered that the growth in artificial surface areas is related to roadways,
open water, and topography. Previous studies explored the main factors driving urban
expansion by determining the distances between metropolitan areas and roads, open water,
and so on [62,63]. It indicates that good infrastructure services are the foundation of urban
construction.
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Figure 13. The contribution of each variable to the growth of three LULC types (the top 15 factors were
chosen). (a) Cultivated land growth, (b) forest growth, (c) artificial surface growth. DTBR: depth to
bedrock, CPOS: cumulative probability of organic soil, SOCS: soil organic carbon stock. PTTH: proxim-
ity to town hall, PTTN: proximity to transportation node, PTRW: proximity to railway, PTT: proximity
trunk/motorway, PTPR: proximity to primary road, PTTR: proximity to tertiary road, PTOW: prox-
imity to open water.
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5.2. The Application of Future LULC in Wide-Area Planning

The future LULC results for most scenarios in the Kinki metropolitan area are in line
with the current development trends, such as the gradual decrease in cultivated land and
the increase in forested areas (Table 4) [59,64]. These findings are consistent with the results
of previous LULC simulations conducted in Japan [27,65]. Additionally, the higher carbon
densities observed in forests, attributed to differences in plant growth and underground
soil characteristics [42,66], indicate a strong potential for the carbon density to increase in
the future of the Kinki metropolitan area. In this context, the emphasis of future climate
regulation within the Kinki metropolis will be on enhancing climate regulation within
densely developed urban areas. The expansion of the artificial surfaces, coupled with the
establishment of urban forests, holds the potential to ameliorate the thermal climate within
the city. Furthermore, a noticeable surge in the volume of studies concentrating on LULC
simulations has been evident in recent years. As researchers delve into this field, it becomes
crucial to not only analyze the outcomes of these studies, but also to discuss their practical
implications.

For forested land, since 1968, urban development in Japan has been strictly regu-
lated [26,66], and the LULC has been carefully planned and governed by legislation [67].
In terms of forests, until 2100, the future LULC changes under the four scenarios have
less disruptive impacts on the conservation areas established in the Regional Green Space
Planning; forested areas within artificial surface areas are not significantly encroached upon
(Figure 14). We also found that with the exception of the SSP585 scenario, the rise in forests
is paralleled by a decline in cultivated land in most scenarios. This trend could be attributed
to the ongoing decrease in Japan’s population, leading to farmland abandonment. Concur-
rently, the demand for land for construction has reached a saturation point. Consequently,
the abandoned farmland is translated into forest. Based on this background, it is important
to note that while the Regional Green Space Planning of each prefecture has well-defined
boundaries for conservation areas, there is a lack of clarity when it comes to delineating
future conservation areas and optimizing existing conservation area boundaries. To ad-
dress this challenge, the characteristics of forest development in prefectures under the four
scenarios serve as valuable references for optimizing and delineating conservation areas. In
addition, within the Kinki metropolitan area, there are interconversions between different
MSPA classes of forests, and linear forests are identified as a relatively unstable category.
By analyzing the dynamic changes of linear forests, we can ensure the connectivity between
large forest patches by defining the boundaries of forest corridor protection.

For artificial surfaces, under all four of the scenarios, urban expansion tends to be
concentrated in the central region of the Kinki metropolitan area, the north of Wakayama,
and the southeast of Lake Biwa in Shiga (Figures 5 and 15); these results are consistent
with the development areas identified in the Kinki Area Adjustment plan (Figure 9). In
the future, the expansion of artificial surface area in the Kinki metropolitan is projected
to continue under all of the scenarios except for SSP370. While Japan’s population is
experiencing a decline, and the immediate demand for artificial surfaces is not pressing, it
is plausible that adjustments in the development of artificial surfaces are taking place in
accordance with policy shifts. Such changes in land use functions could be contributing to
the abandonment of certain artificial surfaces. Additionally, the significant economic costs
associated with demolishing existing structures or concrete surfaces have likely contributed
to these areas persisting as artificial surfaces.

In addition, there are notable variations in the development characteristics among
different prefectures within the region. This study identifies three categories of cities
based on the fluctuating indices related to the spatial distribution change of artificial
surfaces, including (1) Hyogo, Shiga, and Wakayama; (2) Kyoto and Nara; and (3) Osaka.
These differences reflect the functional characteristics and regional positioning of different
prefectures. It emphasizes the importance of synergistic planning among cities to ensure
coordinated and sustainable regional development.
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For cultivated land, Japan is a heavily depopulated country in rural areas suffering
from serious abandonment and reduced cultivated land [68]. In addition, food shortages
are expected to become more serious due to extreme weather caused by global warming.
Along with progress in the development of new crops and approaches to address food
problems, it is also important to discuss conservation policies for cultivated land within the
Agricultural Promotion Regional System and the Agricultural Land Conversion Permission
System [69]. In recent years, there has been an increase in studies on how to use abandoned
cultivated land, improve agriculture production, and protect cultivated land [70,71]. Shiga,
Hyogo, and Kyoto are at risk of seriously decreasing cultivated land by 2100 under several
scenarios. This study identified important cultivated land in two different forms, patches
and corridors, and clarified the locations of important patches and their changes between
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2000 and 2100. We provide basic data for dynamic monitoring of cultivated land patches
based on our research results.

6. Conclusions

The CMIP6 has been widely adopted and used in LULC simulations in response to
complex climate, social, and economic changes. This study focuses on the Kinki metropolis
of Japan, which is characterized by significant aging and slow urbanization. This study
simulated and analyzed LULC and CS changes for the years 2040, 2060, 2080, and 2100 using
the PLUS–InVEST model. The results reveal that, except under the SSP585 scenario, the
cultivated land area in the Kinki metropolis will decrease, while the forest area will increase.
The artificial surface area decreases only in the SSP370 scenario. There are consistent change
characteristics between the CS change and forest area change. Based on wide-area planning
and the LULC management policies in metropolitan Kinki, this study further analyzed and
discussed the spatial patterns of artificial surfaces, the identification of important patches
and corridors of cultivated land, and the dynamic changes in quantity and area, as well as
the transformation patterns of forest MSPA classes. The above analysis provides a reference
for LULC management and planning policy formulation in the Kinki metropolitan area in
the face of different future climate changes and socioeconomic scenarios.

The LULC simulation results of this study serve as fundamental information for col-
laborative urban planning, the planning and adjustment of nature reserve areas, and the
dynamic regulation and protection of cultivated land. This study contributes to a compre-
hensive understanding of the future dynamic changes in the LULC area in metropolitan
Kinki under different climate change and economic development scenarios, emphasiz-
ing the significance of formulating localized land management strategies and providing
valuable references for policymakers and land managers.
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Terrestrial Ecosystem Services: A Review. Sci. Total Environ. 2021, 781, 146716. [CrossRef] [PubMed]

25. Hou, Y.; Chen, Y.; Li, Z.; Li, Y.; Sun, F.; Zhang, S.; Wang, C.; Feng, M. Land Use Dynamic Changes in an Arid Inland River Basin
Based on Multi-Scenario Simulation. Remote Sens. 2022, 14, 2797. [CrossRef]

26. Millward, H. Urban Containment Strategies: A Case-Study Appraisal of Plans and Policies in Japanese, British, and Canadian
Cities. Land Use Policy 2006, 23, 473–485. [CrossRef]

27. Chen, Z.; Huang, M.; Zhu, D.; Altan, O. Integrating Remote Sensing and a Markov-FLUS Model to Simulate Future Land Use
Changes in Hokkaido, Japan. Remote Sens. 2021, 13, 2621. [CrossRef]

28. Ito, J.; Nishikori, M.; Toyoshi, M.; Feuer, H.N. The Contribution of Land Exchange Institutions and Markets in Countering
Farmland Abandonment in Japan. Land Use Policy 2016, 57, 582–593. [CrossRef]

29. Tsuchiya, S. Facts and Considerations on the “Urbanization Rate” in Japan from the Perspective of Regional Economy; Bank of Japan
Working Paper Series; Bank of Japan: Tokyo, Japan, 2009; J-4; p. 37.

30. Chang, Q.; Liu, X.; Wu, J.; He, P. MSPA-Based Urban Green Infrastructure Planning and Management Approach for Urban
Sustainability: Case Study of Longgang in China. J. Urban Plann. Dev. 2015, 141, A5014006. [CrossRef]

31. Kang, S.; Kim, J.-O. Morphological Analysis of Green Infrastructure in the Seoul Metropolitan Area, South Korea. Landsc. Ecol.
Eng. 2015, 11, 259–268. [CrossRef]

https://doi.org/10.1016/j.ecolind.2022.109205
https://doi.org/10.1016/j.landurbplan.2019.103590
https://doi.org/10.3390/rs13163337
https://doi.org/10.3390/rs14164041
https://doi.org/10.1088/1748-9326/9/6/064015
https://doi.org/10.1088/1748-9326/ab6669
https://doi.org/10.1007/s11625-021-01011-z
https://doi.org/10.1016/j.gloenvcha.2016.10.002
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/esd-12-253-2021
https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.1016/j.ancene.2023.100368
https://doi.org/10.5194/gmd-13-5425-2020
https://doi.org/10.1007/s11356-023-26960-z
https://www.ncbi.nlm.nih.gov/pubmed/37127743
https://doi.org/10.1016/j.scib.2020.07.014
https://www.ncbi.nlm.nih.gov/pubmed/36738059
https://doi.org/10.3390/land11050598
https://doi.org/10.1016/j.scs.2021.103296
https://doi.org/10.3390/rs14153653
https://doi.org/10.1016/j.compenvurbsys.2020.101569
https://doi.org/10.1016/j.scitotenv.2021.146716
https://www.ncbi.nlm.nih.gov/pubmed/33798896
https://doi.org/10.3390/rs14122797
https://doi.org/10.1016/j.landusepol.2005.02.004
https://doi.org/10.3390/rs13132621
https://doi.org/10.1016/j.landusepol.2016.06.020
https://doi.org/10.1061/(ASCE)UP.1943-5444.0000247
https://doi.org/10.1007/s11355-014-0268-5


Land 2023, 12, 1722 23 of 24

32. Wang, K.; Li, Z.; Zhang, J.; Wu, X.; Jia, M.; Wu, L. Built-up Land Expansion and Its Impacts on Optimizing Green Infrastructure
Networks in a Resource-Dependent City. Sustain. Cities Soc. 2020, 55, 102026. [CrossRef]

33. Soille, P.; Vogt, P. Morphological Segmentation of Binary Patterns. Pattern Recognit. Lett. 2009, 30, 456–459. [CrossRef]
34. Chen, M.; Dai, F.; Yang, B.; Zhu, S. Effects of Urban Green Space Morphological Pattern on Variation of PM2.5 Concentration in

the Neighborhoods of Five Chinese Megacities. Build. Environ. 2019, 158, 1–15. [CrossRef]
35. Statistics Bureau of Japan 2020 Population Census. Available online: https://www.stat.go.jp/data/kokusei/2020/kekka/pdf/

outline.pdf (accessed on 16 November 2022).
36. Wang, T.; Sun, F. Global Gridded GDP Data Set Consistent with the Shared Socioeconomic Pathways. Sci. Data 2022, 9, 221.

[CrossRef] [PubMed]
37. Kummu, M.; Taka, M.; Guillaume, J.H.A. Gridded Global Datasets for Gross Domestic Product and Human Development Index

over 1990–2015. Sci. Data 2018, 5, 180004. [CrossRef] [PubMed]
38. Li, J.; Chen, X.; Kurban, A.; Van de Voorde, T.; De Maeyer, P.; Zhang, C. Coupled SSPs-RCPs Scenarios to Project the Future

Dynamic Variations of Water-Soil-Carbon-Biodiversity Services in Central Asia. Ecol. Indic. 2021, 129, 107936. [CrossRef]
39. Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al.

The Shared Socioeconomic Pathways and Their Energy, Land Use, and Greenhouse Gas Emissions Implications: An Overview.
Glob. Environ. Change 2017, 42, 153–168. [CrossRef]

40. Lin, Z.; Peng, S. Comparison of Multimodel Simulations of Land Use and Land Cover Change Considering Integrated Constraints—
A Case Study of the Fuxian Lake Basin. Ecol. Indic. 2022, 142, 109254. [CrossRef]

41. Sahle, M.; Saito, O.; Fürst, C.; Demissew, S.; Yeshitela, K. Future Land Use Management Effects on Ecosystem Services under
Different Scenarios in the Wabe River Catchment of Gurage Mountain Chain Landscape, Ethiopia. Sustain. Sci. 2019, 14, 175–190.
[CrossRef]

42. Li, K.; Cao, J.; Adamowski, J.F.; Biswas, A.; Zhou, J.; Liu, Y.; Zhang, Y.; Liu, C.; Dong, X.; Qin, Y. Assessing the Effects of Ecological
Engineering on Spatiotemporal Dynamics of Carbon Storage from 2000 to 2016 in the Loess Plateau Area Using the InVEST
Model: A Case Study in Huining County, China. Environ. Dev. 2021, 39, 100641. [CrossRef]

43. IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2006. Available online: https://www.ipcc-nggip.iges.or.
jp/public/2006gl/vol4.html (accessed on 5 April 2023).

44. Koga, N.; Smith, P.; Yeluripati, J.B.; Shirato, Y.; Kimura, S.D.; Nemoto, M. Estimating Net Primary Production and Annual Plant
Carbon Inputs, and Modelling Future Changes in Soil Carbon Stocks in Arable Farmlands of Northern Japan. Agric. Ecosyst.
Environ. 2011, 144, 51–60. [CrossRef]

45. Matsui, K.; Takata, Y.; Maejima, Y.; Kubotera, H.; Obara, H.; Shirato, Y. Soil Carbon and Nitrogen Stock of the Japanese Agricultural
Land Estimated by the National Soil Monitoring Database (2015–2018). Soil Sci. Plant Nutr. 2021, 67, 633–642. [CrossRef]

46. Morisada, K.; Ono, K.; Kanomata, H. Organic Carbon Stock in Forest Soils in Japan. Geoderma 2004, 119, 21–32. [CrossRef]
47. Noguchi, K.; Hirai, K.; Takahashi, M.; Aizawa, S.; Itoh, Y. Effects of thinning on abovegroundcarbon and nitrogen dynamics ata

sugi (Cryptomeriajaponica) plantation innorthern Kanto region, eastern Japan. Bull. FFPRI 2009, 8, 205–214.
48. Takahashi, M.; Ishizuka, S.; Ugawa, S.; Sakai, Y.; Sakai, H.; Ono, K.; Hashimoto, S.; Matsuura, Y.; Morisada, K. Carbon Stock in

Litter, Deadwood and Soil in Japan’s Forest Sector and Its Comparison with Carbon Stock in Agricultural Soils. Soil Sci. Plant
Nutr. 2010, 56, 19–30. [CrossRef]

49. Matsuura, S.; Sasaki, H.; Kohyama, K. Organic Carbon Stocks in Grassland Soils and Their Spatial Distribution in Japan: Carbon
Stocks in Japan’s Grassland Soils. Grassl. Sci. 2012, 58, 79–93. [CrossRef]

50. Takahashi, T.; Amano, Y.; Kuchimura, K.; Kobayashi, T. Carbon Content of Soil in Urban Parks in Tokyo, Japan. Landsc. Ecol. Eng.
2008, 4, 139–142. [CrossRef]

51. McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; U.S. Department of
Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995; p. PNW-GTR-351.

52. Jiao, M.; Hu, M.; Xia, B. Spatiotemporal Dynamic Simulation of Land-Use and Landscape-Pattern in the Pearl River Delta, China.
Sustain. Cities Soc. 2019, 49, 101581. [CrossRef]

53. Yin, J.; Wu, X.; Shen, M.; Zhang, X.; Zhu, C.; Xiang, H.; Shi, C.; Guo, Z.; Li, C. Impact of Urban Greenspace Spatial Pattern on
Land Surface Temperature: A Case Study in Beijing Metropolitan Area, China. Landsc. Ecol. 2019, 34, 2949–2961. [CrossRef]

54. Vogt, P.; Riitters, K.H.; Estreguil, C.; Kozak, J.; Wade, T.G.; Wickham, J.D. Mapping Spatial Patterns with Morphological Image
Processing. Landsc. Ecol. 2007, 22, 171–177. [CrossRef]

55. Riitters, K.; Vogt, P.; Soille, P.; Estreguil, C. Landscape Patterns from Mathematical Morphology on Maps with Contagion. Landsc.
Ecol. 2009, 24, 699–709. [CrossRef]

56. Xie, Y.; Wang, Q.; Xie, M.; Shibata, S. Construction Feasibility Evaluation for Potential Ecological Corridors under Different
Widths: A Case Study of Chengdu in China. Landsc. Ecol. Eng. 2023, 19, 381–399. [CrossRef]

57. Dytham, C.; Forman, R.T.T. Land Mosaics: The Ecology of Landscapes and Regions. J. Ecol. 1996, 84, 787. [CrossRef]
58. Oda, K.; Rupprecht, C.; Tsuchiya, K.; McGreevy, S. Urban Agriculture as a Sustainability Transition Strategy for Shrinking Cities?

Land Use Change Trajectory as an Obstacle in Kyoto City, Japan. Sustainability 2018, 10, 1048. [CrossRef]
59. Takata, Y.; Obara, H.; Nakai, M.; Kohyama, K. Process of the decline in the cultivated soil area with land use changes in Japan.

Jpn. Soc. Soil Sci. Plant Nutr. 2011, 82, 15–24.

https://doi.org/10.1016/j.scs.2020.102026
https://doi.org/10.1016/j.patrec.2008.10.015
https://doi.org/10.1016/j.buildenv.2019.04.058
https://www.stat.go.jp/data/kokusei/2020/kekka/pdf/outline.pdf
https://www.stat.go.jp/data/kokusei/2020/kekka/pdf/outline.pdf
https://doi.org/10.1038/s41597-022-01300-x
https://www.ncbi.nlm.nih.gov/pubmed/35589734
https://doi.org/10.1038/sdata.2018.4
https://www.ncbi.nlm.nih.gov/pubmed/29406518
https://doi.org/10.1016/j.ecolind.2021.107936
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.1016/j.ecolind.2022.109254
https://doi.org/10.1007/s11625-018-0585-y
https://doi.org/10.1016/j.envdev.2021.100641
https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html
https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html
https://doi.org/10.1016/j.agee.2011.07.019
https://doi.org/10.1080/00380768.2021.2000324
https://doi.org/10.1016/S0016-7061(03)00220-9
https://doi.org/10.1111/j.1747-0765.2009.00425.x
https://doi.org/10.1111/j.1744-697X.2012.00245.x
https://doi.org/10.1007/s11355-008-0043-6
https://doi.org/10.1016/j.scs.2019.101581
https://doi.org/10.1007/s10980-019-00932-6
https://doi.org/10.1007/s10980-006-9013-2
https://doi.org/10.1007/s10980-009-9344-x
https://doi.org/10.1007/s11355-023-00547-9
https://doi.org/10.2307/2261341
https://doi.org/10.3390/su10041048


Land 2023, 12, 1722 24 of 24

60. Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.; Wu, Q.; et al. Global Projections of Future Urban
Land Expansion under Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 537. [CrossRef]

61. Wang, R.; Murayama, Y. Geo-Simulation of Land Use/Cover Scenarios and Impacts on Land Surface Temperature in Sapporo,
Japan. Sustain. Cities Soc. 2020, 63, 102432. [CrossRef]

62. Fang, S.; Gertner, G.Z.; Sun, Z.; Anderson, A.A. The Impact of Interactions in Spatial Simulation of the Dynamics of Urban Sprawl.
Landsc. Urban Plan. 2005, 73, 294–306. [CrossRef]

63. Salem, M.; Tsurusaki, N.; Divigalpitiya, P. Analyzing the Driving Factors Causing Urban Expansion in the Peri-Urban Areas
Using Logistic Regression: A Case Study of the Greater Cairo Region. Infrastructures 2019, 4, 4. [CrossRef]

64. Kobayashi, Y.; Higa, M.; Higashiyama, K.; Nakamura, F. Drivers of Land-Use Changes in Societies with Decreasing Populations:
A Comparison of the Factors Affecting Farmland Abandonment in a Food Production Area in Japan. PLoS ONE 2020, 15, e0235846.
[CrossRef]

65. Shoyama, K.; Matsui, T.; Hashimoto, S.; Kabaya, K.; Oono, A.; Saito, O. Development of Land-Use Scenarios Using Vegetation
Inventories in Japan. Sustain. Sci. 2019, 14, 39–52. [CrossRef]

66. Takeshi, M.; Toshikazu, A.; Bunpei, N.; Toshiya, M.; Shu, H. Study on Problem of Improvement Method for Infrastructure to
Expanded Urban Area being secured only by District Plan. J. City Plan. Inst. Jpn. 2007, 42, 733–738. [CrossRef]

67. Seta, F. An Empirical Study on the Geographical Specification on National and Regional Plans in Japan: A Case Study of Kinki
Area Regional Plan in National Spatial Strategies. Toshi Keikaku Rombunshu 2010, 45, 47–53. [CrossRef]

68. Su, G.; Okahashi, H.; Chen, L. Spatial Pattern of Farmland Abandonment in Japan: Identification and Determinants. Sustainability
2018, 10, 3676. [CrossRef]

69. Van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A Meta-Analysis of Projected Global Food Demand and Population at Risk of
Hunger for the Period 2010–2050. Nat. Food 2021, 2, 494–501. [CrossRef]

70. Hanioka, M.; Yamaura, Y.; Senzaki, M.; Yamanaka, S.; Kawamura, K.; Nakamura, F. Assessing the Landscape-Dependent
Restoration Potential of Abandoned Farmland Using a Hierarchical Model of Bird Communities. Agric. Ecosyst. Environ. 2018,
265, 217–225. [CrossRef]

71. Nishihara, M. Real Option Valuation of Abandoned Farmland. Rev. Financ. Econ. 2012, 21, 188–192. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41467-020-14386-x
https://doi.org/10.1016/j.scs.2020.102432
https://doi.org/10.1016/j.landurbplan.2004.08.006
https://doi.org/10.3390/infrastructures4010004
https://doi.org/10.1371/journal.pone.0235846
https://doi.org/10.1007/s11625-018-0617-7
https://doi.org/10.11361/journalcpij.42.3.733
https://doi.org/10.11361/journalcpij.45.2.47
https://doi.org/10.3390/su10103676
https://doi.org/10.1038/s43016-021-00322-9
https://doi.org/10.1016/j.agee.2018.06.014
https://doi.org/10.1016/j.rfe.2012.07.002

	Introduction 
	Study Area and Materials 
	Study Area 
	Data Acquisition 

	Methodology 
	Future LULC Scenarios 
	LULC Demand from LUH2-Markov Chain 
	Spatiotemporal Dynamic Simulation Based on PLUS 
	Model Evaluation 

	CS Estimation Based on the InVEST Model 
	Spatial Pattern Analysis from the Perspective of LULC Types 
	Spatial Pattern Analysis of Artificial Surface 
	Changes in Morphological Patterns of Green Space 
	Identification of Important Cultivated Land Patches and Corridors 
	The Correlation between MSPA Classes in Forest and CS Changes 


	Results 
	Future LULC under Different Scenarios 
	CS for LULC under CMIP6 Scenarios 
	The Spatial Patterns of Artificial Surface Changes 
	Important Cultivated Land Patches and Corridors Identification 
	Forest MSPA Classes Change and the Influence on CS Changes 

	Discussion 
	The Driving Factors Influencing LULC Change 
	The Application of Future LULC in Wide-Area Planning 

	Conclusions 
	References

