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Abstract: Spatial evaluation of urban environment quality (UEQ) is a key prerequisite in urban
planning and development. The main goal of this study is to present a scenario-based spatial
multi-criteria decision-making system for evaluating UEQ. Therefore, stakeholder involvement was
conducted and eight environmental criteria and six spatial-functional criteria were identified for five
districts of Tehran. The weight of the effective criteria was calculated using the analytic hierarchy
process (AHP) model. Then, the ordered weighted averaging (OWA) model was used to prepare
UEQ maps in different scenarios, including very pessimistic, pessimistic, intermediate, optimistic,
and very optimistic. Finally, the spatial distribution of the district population in different classes
of UEQ was evaluated. Among the spatial-functional and environmental criteria, the sub-criteria
of population density and air pollution, respectively, had the greatest impact on UEQ. In very
pessimistic, intermediate, optimistic, and very optimistic scenarios, approximately 76.7, 51.8, 36.4,
23.7, and 9.8 km2 of the studied area had unsuitable UEQ conditions, respectively. In the very
pessimistic scenario, about 37,000 and 1,500,000 people lived in areas with suitable and unsuitable
UEQ conditions, respectively. In the very optimistic scenario, the population increased to over 917,000
in areas with suitable UEQ and decreased to 336,000 in those with unsuitable UEQ conditions in
terms of both environmental and spatial-functional criteria. The research results showed that a high
percentage of the population in the study area live under unsuitable UEQ conditions, which indicates
the need for attention to improving the current UEQ conditions. The proposed approach is timely
to gain a better understanding of the adverse impact of climate change on human well-being in
marginal societies and how climate-resilient urban planning can play a significant role.
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1. Introduction

In recent decades, population growth and rapid urbanization without proper plan-
ning in many developing countries have led to the formation of low-quality urban envi-
ronments [1–3]. At the same time, governments are under increasing pressure to meet
sustainable development goals. This pressure comes not just from the United Nations, but
from peer nations who see climate change, environmental degradation, resource depletion,
and social inequality as an existential threat that must be met through international collabo-
ration [1,4–8]. On top of that, society at large is increasingly aware of the need to become
more sustainable and expects government to deliver more sustainable communities [2,9].
The majority of nations have opted to sign on to the Paris Accord, willingly undertaking to
limit carbon emissions to agreed targets by certain fixed dates, and ultimately pledging to
become carbon neutral. This is a major challenge, however, and one that many nations are
finding hard to attain. While promises to achieve broad, ambitious, macro-level sustainabil-
ity outcomes might be applauded, they cannot be realized without shifts in how societies
are organized and managed. In this regard, urban planning—or the lack of it—has become
an existential issue that requires immediate and serious attention [10,11]. Addressing the
existential challenges posed by climate change and achieving sustainable development
goals requires collaborative efforts at multiple levels and across borders. Governments,
urban planners, architects, engineers, community stakeholders, and citizens need to work
together to create co-designed and sustainable urban environments that prioritize both
human well-being and the health of the planet.

The negative impacts of buildings and infrastructure on the urban environment are
well documented [12]. Cities consume up to 80% of global natural resources, produce
75% of greenhouse gas emissions, and generate 50% of all waste [13]. Moreover, where
once most people lived in the rural countryside, two-thirds of all people now live in cities.
There are now over 20 cities worldwide with over 20 million population, and by 2060, it is
anticipated that eight cities will reach 40 million [14]. The exacerbation of climate change is
intricately linked to these urban challenges. The excessive consumption of resources and the
high greenhouse gas emissions from cities contribute significantly to global warming and
environmental degradation. This issue has directly affected the quality of life of citizens [15].
Climate change leads to increased pressure on the urban environment quality (UEQ) and is
among the factors exacerbating poorly planned and unsustainable development in cities.
Under such circumstances and considering the importance of basic human needs and
motivations, the concept of UEQ has emerged in the literature of urban history, planning,
design, and urban engineering [16,17]. In recognition of this, the spatial evaluation of UEQ
has emerged as a key prerequisite in urban planning and development [18].

According to the annual report of the United Nations, the urban population of Iran
will rise to over 85% by 2050, while its rural population will decrease by 36%, reaching less
than 15% of the total population [19]. Considering the high and positive annual rate of
immigration to major cities of Iran [20,21], and given the natural growth of the population,
population growth is expected in the metropolises, especially in Tehran [22]. Forecasts
based on the current population trends estimate that by 2030, the Tehran metropolis will
experience the phenomenon of urban crowding for the first time in Iran [19]. The population
of Tehran has increased by 543 times since it emerged as the capital, and according to the
latest census, it has reached more than 8.5 million people, making it one of the largest
metropolises in the world [23]. Its area has grown by 139 times since then, reaching
730 km2 [24]. Previous evaluations of the quality of urban life show that the expansion
of urban health justice has not been proportional to the growth of the population and
area of this city. The existence of inequality within the 22 districts of Tehran has been a
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persistent phenomenon, thereby necessitating the need to highlight this inequality [25].
Highlighting these differences through UEQ assessments will foster increased awareness in
the organizations and present suitable perspectives on the allocation of financial resources
to reduce the UEQ-related class gap. This urban development planning and policy can
continue to affect the quality of life of citizens and the development of urban justice.
Successful planning requires more assessment and sufficient knowledge of the current state
of UEQ.

The purpose of this study is to provide a scenario-based spatial multi-criteria decision-
making system for evaluating UEQ. This model was implemented to evaluate the spatial
UEQ in five major districts of Tehran using a risk-based expert system based on GIS. To
do so, two research questions will be answered: (1) Which of the environmental and
infrastructure criteria have a higher impact on the spatial changes of UEQ? (2) How do
the area of the UEQ classes and the spatial distribution of the population within them
change with the change of the attitude of the decision makers from very pessimistic to very
optimistic in the form of different scenarios in the proposed system?

2. Literature Review

It is important to model the spatial changes in UEQ and to know the effective criteria
for providing solutions to improve the existing conditions [26]. UEQ is a multidimensional
concept encompassing environmental and spatial-functional dimensions among others [27].
On the other hand, it is a spatial phenomenon, and spatial and multi-criteria evaluations
are necessary to evaluate it [28]. Therefore, accurate modeling of UEQ requires accounting
for the impact of different spatial criteria related to environmental and spatial-functional
conditions. How the effective criteria affect and become affected by UEQ is complex. Hence,
it is vital to employ suitable models for the spatial analysis of UEQ [29,30].

In previous studies, various methods have been used to evaluate UEQ, including ques-
tionnaires and data analysis in statistical and spatial software [31–33]. Its disadvantages
include underestimating the importance of the location dimension [34], poor quality of the
collected data in some cases [35], improper data distribution at the regional level [36], limita-
tions in data collection [37], the complexity of the input parameters [38], misunderstanding
of questionnaire items [39], and small statistical population size [34]. Other methods that
have been widely used in recent years are tools based on geographic information systems
(GIS). The first step in monitoring UEQ is the selection of dimensions and indicators as
well as the investigation of the location component in places with dedicated programs
and policies [40,41]. GIS provides maps and multivariate statistical analysis to make it
possible to examine complex spatial relationships while presenting them to discussion
tables for collaborative decision-making [42,43]. Using GIS and spatial display of various
urban environment issues can expedite the decision-making process and demonstrate
spatial inequalities [44–46]. Also, multi-criteria decision-making (MCDM) approaches can
be considered due to their ability to make decisions in situations with multiple and some-
times contradictory criteria [47,48]. MCDM provides a set of techniques and algorithms
for structuring the decision problem, while also prioritizing and evaluating the decision
problem [49,50].

Many studies have combined MCDM and GIS to generate UEQ maps. Joseph et al. [29]
used an expert-based decision-making method combined with GIS to assess UEQ in Port-
au-Prince, Haiti. Sadler et al. [51] developed a model based on AHP and GIS to prepare
a UEQ map in the city of Flint, Michigan, using 29 environmental and infrastructural
indicators. Abd El Karim and Awawdeh [52] investigated UEQ in Buraidah, Saudi Arabia,
based on the integration of access and location-allocation models in the GIS environment
with a hierarchical decision-making model. Carpentieri et al. [53] investigated UEQ in
Naples, Italy, using accessibility and health indicators and a hybrid approach based on
GIS and network analysis. Roy et al. [26] presented an approach to assess UEQ using a
GIS-based spatial autocorrelation model in India. In this study, to evaluate the quality of
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the urban environment, they used 15 indicators in three environmental, human-made, and
socio-economic dimensions.

In previous studies, various models based on GIS-MCDA have been used to evaluate
UEQ conditions. The results of these models cannot be generalized for different conditions
and scenarios, considering that decision-making and planning in the urban environment
can be different according to time and budget and the attitude of managers and planners.
The OWA system has a high ability to analyze information and provide output for different
scenarios. The advantage of this system is flexibility in creating a wide range of different
scenarios (very optimistic to very pessimistic), whose results can benefit managers and
planners with different perspectives. OWA has been used in various modeling in the
fields of renewable energy [42,47], urban growth forecasting [54,55], land suitability [56,57],
vulnerability and resilience [44,58], crisis management [59,60], etc. To the best of our
knowledge, this study is the first to use this model to assess UEQ conditions.

3. Materials and Methods
3.1. Study Area

Tehran—the capital of Iran, the largest city in West Asia, and the 19th largest city in
the world—is located on the southern slopes of the Alborz mountain range in northern
Iran (Figure 1). The daily arrival of people, traveling in and out of Tehran, increases its
daily population to more than 20 million people. Tehran has 22 districts, of which Districts
2, 3, 6, 7, and 11 were investigated here. District 2 of Tehran, with a population of about
700,000 people, extends from the north of Tehran and the slopes of Alborz to Azadi Square.
The expansion of Tehran over the last three decades from the west has enclosed this area
in the north and center of Tehran. Its most notable structures are Milad Tower, Pardisan
Forest Park, and numerous hospitals. It also provides easy access to all parts of the city.
The vast green space inside this area can be a very important factor in creating leisure time.
The concentration of administrative, higher education, and research activities has attracted
stakeholders in the district. The existence of vast barren lands next to urban and regional
transportation lines is one of the other potentials of the district, they have a very effective
role in the establishment of commercial, administrative, and service activities. District 3
of Tehran has a population of about 330,000 people. Due to the lower average rate of
population increase in the region compared to the corresponding average rate for the whole
city of Tehran, the trend of population changes in District 3 is downward, unlike the city of
Tehran. It is somewhat dense and compact in terms of construction and street planning. The
existence of major commercial and economic centers, government institutions, and offices
brings a large number of people to this district every day, which causes heavy traffic [1,61].
District 6 has a pleasant climate and is located in the northern part of Tehran. According
to a 2016 census, its population is about 251,000. This district has old neighborhoods and
streets and is also the hub of commercial activities. The ease and variety of access to the
public transportation network have increased the relative advantage of the demand for
providing regional, urban, national, and even transnational uses in this district compared
to other regions of Tehran. District 7 is located in the eastern and central parts of the city,
hosting a population of around 312,000 people. In terms of the urban context, there is a
significant difference between the western and eastern parts of the district. Thirteen percent
of the area of this district has military use, most of which includes vast and uncovered
lands. Similar to District 6, the western part of District 7 has administrative and commercial
uses. According to the 2016 census, the population of District 11 is about 289,000 people.
This district has strategic importance due to its political and strategic centers as well as the
presence of important economic centers and specialized extra-regional and extra-urban
markets. Two million passengers travel through this district every day and often use the
roads of this area to reach other urban areas or to do their administrative work.
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Figure 1. Geographical location of the study area (source: authors).

3.2. Data Used

Investigation of UEQ and the related indicators requires spatial data. The research
data included satellite-based data, location-based field data, and spatial layers collected
from related organizations. Satellite-based data included indices of vegetation, discomfort
index (DI), albedo, and impervious surfaces coverage (ISC), which were extracted from
Landsat 8 imagery for 2022. The spatial resolution of criteria maps obtained from Landsat
8 imagery was 30 m. These satellite images are available at https://earthexplorer.usgs.gov/
(accessed on 2 April 2023). Moreover, the data of the AW3D digital elevation model with a
spatial resolution of 30 m were used to prepare the elevation map. These data are avail-
able at https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm (accessed
on 5 April 2023). In addition, air pollution indicators were extracted from location-based
field data, including fine suspended particles (PM2.5 and PM10), nitrogen dioxide, sulfur
dioxide, ozone, and carbon monoxide (https://www.irimo.ir/far/index.php (accessed
on 3 April 2023)). Demographic spatial layers were sourced from Iran Statistics Center
(https://www.amar.org.ir/ (accessed on 10 April 2023)) and spatial layers of the location
of industrial centers, parks, medical centers, subway stations, road networks, river net-
works, and fault lines were prepared based on maps prepared by Tehran Municipality
(https://www.tehran.ir// (accessed on 9 April 2023)).

3.3. Methodology

The research process included five steps which are shown in Figure 2. In the first step,
previous research, expert opinions, and library sources were used to determine criteria
affecting UEQ, and a spatial database was created. Also, this step involved pre-processing
operations considering the different sources of the collected data. Then, according to the
type of criterion, a map of the criteria was prepared using spatial analysis in GIS. The
second step involved standardizing the criteria map. The third step involved calculating
criteria weights. In the fourth step, using the ordered weighted averaging (OWA) method,
the UEQ map was prepared in different decision-making scenarios for environmental and
spatial-functional dimensions. Furthermore, final UEQ maps were prepared by combining
these two dimensions. Finally, in the fifth step, an evaluation of population distribution in
UEQ classes was conducted.

https://earthexplorer.usgs.gov/
https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm
https://www.irimo.ir/far/index.php
https://www.amar.org.ir/
https://www.tehran.ir//
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Figure 2. The research flowchart (source: authors).

3.3.1. Determination of Criteria

Assessing UEQ is an MCDM process that requires careful consideration of a set of
criteria. Here these criteria were determined based on previous studies, library sources,
expert opinions, and the research conditions. The evaluation criteria were divided into two
classes, namely environmental and spatial-functional. The criteria extraction specifications
and method are shown in Table 1.
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Table 1. Descriptions of the criteria used and how to prepare them.

Criteria Sub-Criteria Description Source

Environmental

DI

DI is an experimental and direct indicator that operates based on the direct measurement
of environmental variables [61,62]. This index describes the relationship between the
living environment and human thermal sensation [63]. As the value of DI increases, UEQ
decreases. In this study, information on bands and spectral indices obtained from Landsat
8 was used to prepare the DI map. The details of the DI calculation method are presented
in Mijani et al. [62].

Landsat 8 and
weather station

Air pollution

Air pollution is a major criterion affecting UEQ. Areas with lower air pollution have better
conditions in terms of UEQ [64]. This study used data from 15 air pollution measurement
stations in Tehran. Also, the inverse distance weighting (IDW) method was used to
prepare the air pollution criteria map.

Tehran air
quality

measurement
stations

Vegetation

Vegetation can be effective in modulating the conditions of the urban environment due to
its direct effect on air quality, air temperature, relative humidity, pleasant landscape, and
creating shade [65]. Areas with a higher degree of vegetation have a higher UEQ. In this
study, Normalized Difference Vegetation Index (NDVI) was used to extract vegetation [66].

Landsat 8

ISC
ISC can affect UEQ due to its impact on the quality of water resources, thermal pattern
control, and landscape. Areas with higher ISC have lower UEQ. Automated built-up
extraction index (ABEI) was used to extract ISC [67].

Landsat 8

Albedo

The feedback of changes in urban albedo affects the amount of increase or decrease in the
outgoing radiation at the earth’s surface, leading to climate change [68]. The increase in
surface albedo due to changes in urban structure materials has been proposed as a method
to adjust urban heat islands or improve energy conservation. In general, light-colored
surfaces, such as roof waterproofing surfaces, have a higher albedo than dark surfaces
such as asphalt [69]. Vegetation also has a low albedo [70]. WLC method based on Landsat
8 reflective bands has been used to calculate albedo.

Landsat 8

D.F fault lines
and

river networks

Proximity to fault lines and river networks can cause serious damage to urban
infrastructure in the event of an accident [58]. It can also have financial and deadly
consequences for the residents [71]. The Euclidean Distance tool was used to prepare the
map of the fault lines and river network.

National
Cartographic

Center

Elevation

The elevation criterion was used to determine the comfort level of the living environment.
This criterion also affects accessibility [72]. Areas located at a higher altitude have rougher
topographical conditions and higher slopes, so the access level in these areas is lower. As a
result, the quality of the urban environment decreases with the increase in height [73,74].

Extracted from
DEM

Spatial-functional

D.F medical
centers

People’s access to medical facilities (e.g., health centers and hospitals) plays a key role in
providing services [75]. Therefore, less distance from medical centers translates into higher
UEQ. The Euclidean Distance tool was used to prepare the map of distance from
medical centers.

National
Cartographic

Center

D.F parks

Parks in the urban environment are not only a good place to spend leisure time and have
fun. They create a beautiful landscape for residents [76]. Therefore, proximity to parks
creates a better UEQ. The Euclidean Distance tool was used to prepare the map of distance
from parks.

National
Cartographic

Center

D.F industrial
centers

Industrial centers can increase the amount of urban environmental pollution (e.g.,
unpleasant odors, smoke, air pollution, and particles), create noise, and increase health
risks [77]. Therefore, UEQ increases with distance from these centers. The Euclidean
Distance tool was used to prepare the map of distance from industrial centers.

National
Cartographic

Center

D.F road
networks

Adequate road infrastructure in an area can reduce accessibility problems. Proximity to
road networks provides residents with easier and faster access to medical centers and
other public and service centers [78]. The Euclidean Distance tool was used to prepare the
map of distance from road networks.

National
Cartographic

Center

D.F subway
stations

Easy access to public transport stations allows residents to reach their destination faster
during traffic jams and road closures [75]. Areas located at a shorter distance from subway
stations have a higher UEQ. The Euclidean Distance tool was used to prepare the map of
distance from subway stations.

National
Cartographic

Center

Population
density

The high population density in urban areas is a major criterion in evaluating UEQ because
it causes pressure on urban resources and creates social conflicts [79]. UEQ decreases with
an increase in population density.

National
Cartographic

Center

3.3.2. Standardization of Criteria

Considering the heterogeneous nature and measurement unit of the research criteria,
data standardization is necessary before preparing UEQ maps [80]. By using the stan-
dardization method, these heterogeneous values can be converted into 0 and 1. In this
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study, “homogenization” and “non-dimensionalization” methods were used to eliminate
the dimensions of the criteria. Meanwhile, different criteria affect UEQ differently. For
example, distance from industrial centers, distance from river networks, and distance from
fault lines have a direct relationship with UEQ. However, DI, air pollution, population
density, distance from medical centers, and elevation show an inverse relationship with
UEQ. In this study, Equation (1) was used to standardize the criteria having a direct rela-
tionship with UEQ, and Equation (2) was used to standardize the criteria having a negative
relationship with UEQ.

yij =
Yij − Ymin

j

Ymax
j − Ymin

j
(1)

yij =
Ymax

j − Yij

Ymax
j − Ymin

j
(2)

where yij represents the normalized criterion values, Yij is the value of the ith position for
the jth criterion, and Ymin

j and Ymax
j are the lowest and highest values of the jth criterion,

respectively [81,82].

3.3.3. Criteria Weight Calculation

AHP is a popular multi-objective decision-making technique invented by Saaty [83].
This method can be used when the decision-making process is faced with several competing
options and decision criteria [54,84]. The final goal of this method is to calculate the weight
of criteria and sub-criteria used in a spatial multi-criteria decision-making system. There
are four basic steps for using AHP. The first step is to compile the hierarchical structure.
A decision hierarchy is a tree that has several levels in relation to the problem under
investigation. Its first level expresses the purpose of the decision and its last level expresses
the options that are compared with each other and compete for selection. The middle level
of this tree is made up of factors that are the criteria for comparing options. The second
step involves forming the matrix of pairwise comparisons. In this step, the elements of each
level are compared to other related elements at a higher level in a pairwise manner, and
matrices of pairwise comparisons are formed. A range of 1 to 9 [83] was used to determine
the importance and preference in pairwise comparisons. The third step includes calculating
the weight of criteria and sub-criteria. At this stage, arithmetic and geometric averaging
methods are used to calculate the weight based on the matrix of pairwise comparisons. The
fourth step is to calculate the consistency rate (CR). The compatibility rate is a mechanism
that shows the level of trust in the obtained priorities. So that if the CR is less than 0.1,
the compatibility of the comparisons can be accepted, otherwise the comparisons must be
performed again [85].

3.3.4. OWA Method

Multi-criteria evaluation methods in GIS usually include a set of spatial evaluation
criteria in the form of maps and layers. But the problem that usually arises in spatial
decision-making is how to combine criteria maps with a set of weights and also account
for the priorities of decision makers. Yager [86] introduced the OWA operator, which can
calculate risk aversion and risk acceptance in individuals and apply it to the final option.
So far, various methods have been presented for the MCDM process, including the method
of zero and one operators (Boolean) with non-compensatory combination rules [87] and
the weighted linear combination (WLC) method with compensatory combination rules [88].
OWA is more general than these methods. This operator, like all decision operators,
assumes an n-dimensional space on a one-dimensional space [89]. For example, assuming
an MCDM problem concerning the integration of factor maps, the ordinal weights of the
pixel values in each map are normalized and ordered, then, the criterion score of each map
is the relative importance weight of the criteria. Therefore, the formula for the obtained
pixel values is in the form of Equation (3):
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OWA =
n

∑
j=1

(
ujvj

∑n
j=1 ujvj

)
zij (3)

where vj is the reordered j-th attribute weight according to the reordered attribute value zij,
uj is the weight of j-th criterion for all locations to indicate the relative importance of the
attribute according to the decision maker’s preferences, and zij is the value of the ith cell
according to the jth criterion [90].

The OWA operator includes two important indicators that express its behavior and
position: (i) the degree of ORness and (ii) the amount of tradeoff [91]. The degree of
ORness shows the position of the OWA operator between AND and OR relationships and
expresses the decision maker’s risk aversion and risk-taking behavior [92]. Meanwhile, the
tradeoff shows the level of compensability of a measure [93]. This means that one poor
criterion weight is compensated for by a high criterion weight on other factors. In the
OWA method, the decision strategy space is defined based on two indicators, Tradeoff
and ORness (Figure 3). In this space, the horizontal axis represents the amount of risk that
extends from a space without risk (AND) to a space with high risk (OR). The vertical axis
also represents the compensation between the criteria and extends from the space without
compensation to one with high compensation.

Figure 3. Decision-making strategy space in the OWA method [94].

3.3.5. Population Distribution in UEQ Classes

In this study, based on the OWA method, UEQ maps are prepared for the study area
in different scenarios, including very optimistic, optimistic, intermediate, pessimistic, and
very pessimistic. The UEQ value varies from 0 (low UEQ) to 1 (high UEQ). Also, UEQ
maps are classified into five classes based on the UEQ grade: very low (0–0.2), low (0.2–0.4),
medium (0.4–0.6), high (0.6–0.8), and very high (0.8–1). Then the area of each class is
calculated in different scenarios. Finally, the state of population distribution in different
UEQ classes is evaluated.

4. Results
4.1. Criteria Weight

The weight obtained for each of the effective criteria based on the opinion of experts
is shown in Figure 4. The weight of each criterion indicates its degree of importance in
the final decision. By changing the weight of a criterion, the degree of importance of that
criterion changes in decision-making. In other words, by increasing the weight of each
criterion, its importance increases, and conversely, by decreasing its weight, its importance
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decreases for UEQ modeling. The weight of the criteria varies between 0 and 1. In this
study, in the environmental dimension of the criteria, air pollution, discomfort index,
and vegetation had the highest weight, and elevation, distance from river networks, and
distance from fault lines had the lowest weight. In terms of infrastructure, the criteria
of population density and distance from the road networks had the highest weight, and
distance from industrial areas and distance from medical centers had the least weight.
The compatibility rate of the determined weights for spatial-functional and environmental
criteria was 0.003 and 0.002, respectively, which shows the consistency of the opinions of
different experts in determining the weight of these criteria. The weight of spatial-functional
and environmental criteria was 0.46 and 0.54, respectively.

Figure 4. The weight of the criteria used; (a) environmental criteria and (b) spatial-functional criteria
(source: authors).

4.2. Maps of Environmental and Spatial-Functional Criteria

The spatial distribution of the values of environmental criteria affecting UEQ is shown
in Figure 5. Areas with criteria values of 1 (red) had the best UEQ conditions, whereas
those with criteria values of 0 (blue) had the worst UEQ conditions. In general, according
to the AQI index, air pollution was high in the study area. In terms of spatial changes,
air pollution showed a north–south trend, with the highest air pollution in the southern
districts and the lowest in the northern districts. In terms of air pollution criteria, the
northern and northeastern districts had the best UEQ conditions, while the southern and
southwestern districts had the worst UEQ conditions. In terms of discomfort index criteria,
barren lands and densely built lands had unsuitable UEQ. These lands are located in
District 2. Moreover, parks and green areas had the best thermal comfort conditions, and so
the highest UEQ. In terms of spatial variations of vegetation, the northern and central parts



Land 2023, 12, 1659 11 of 24

of the study area had better UEQ conditions than the southern parts. This is due to the
presence of larger parks and tree-lined streets in the northern and central parts. The spatial
variations of the ISC criterion were close to the spatial variations of the vegetation criterion.
According to the spatial changes of albedo, the central and northwestern districts had better
UEQ conditions than other districts. The southern areas had a lower elevation than the
northern areas, which indicates better UEQ conditions in the former. A fault passes through
the northwestern part, creating unsuitable UEQ conditions in terms of distance from faults.
In terms of distance from river networks, District 11 had a better UEQ condition than the
other 4 districts.

Figure 5. Maps of environmental criteria; (a) air pollution, (b) albedo, (c) DI, (d) elevation, (e) D.F fault
lines, (f) ISC, (g) D.F river networks, and (h) vegetation (source: authors).
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The spatial distribution of the values of spatial-functional criteria affecting UEQ is
shown in Figure 6. Eastern and northwestern regions had a more suitable distance from
industrial centers. Therefore, Districts 11 and 6 have more unfavorable UEQ conditions in
terms of distance from industrial centers, but better UEQ conditions in terms of distance
from medical centers. In terms of distance from medical centers, the northeastern and
eastern sectors had the worst condition. Most of the medical centers are located in the
southern and central regions. The main reason is the high population density in these
areas. In general, the distribution of parks at the district level is relatively suitable and
increases from the south to the north. The reason is the existence of more open spaces
and fewer residential areas towards the northern regions of the study area. The density
of parks was higher in Districts 2 and 6. Districts 3 and 11 had poorer UEQ conditions
than other districts in terms of distance from parks. District 11 had the highest population
density, while District 3 included more undeveloped lands and parks, which have the
lowest population density. Therefore, in terms of population density, Districts 3 and 11 had
the best and worst UEQ conditions, respectively. The density of the road network in the
southern regions of the study area was higher than in the northern regions. In terms of
distance from subway stations, the southern regions had better UEQ conditions than the
northern regions.

Figure 6. Maps of spatial-functional criteria; (a) D.F industrial centers, (b) D.F medical cen-
ters, (c) D.F parks, (d) population density, (e) D.F road networks, and (f) D.F subway stations
(source: authors).
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4.3. UEQ Based on Environmental Criteria

The classified maps of UEQ based on environmental criteria for different degrees of
ORness are shown in Figure 7. The UEQ value varies from 0 (low UEQ) to 1 (high UEQ).
These maps are classified into five classes based on the UEQ grade: very low (0–0.2), low
(0.2–0.4), medium (0.4–0.6), high (0.6–0.8), and very high (0.8–1). The visual evaluation of
the maps shows that the eastern half of the study area has a more favorable UEQ situation
than the western half. This is due to the adjustment of the urban microclimate in accordance
with the increase in vegetation, reduction in air pollution, and improvement of DI towards
the eastern parts (mountain range), which directly affects other environmental indicators.
Districts 1, 6, and 7 had better UEQ conditions than Districts 2 and 11.

Figure 7. UEQ maps based on environmental criteria in different ORness; (a) Orness = 0,
(b) Orness = 0.25, (c) Orness = 0.5, (d) Orness = 0.75, and (e) Orness = 1 (source: authors).

The coverage percentage of different UEQ classes based on environmental criteria for
different degrees of ORness is shown in Figure 8. The coverage percentages of the very high
UEQ class in terms of environmental criteria for very pessimistic, pessimistic, intermediate,
optimistic, and very optimistic scenarios were 9, 16, 30, 43, and 57 percent, respectively.
These values for the very low class were 14, 8, 3, 2, and 1 percent, respectively. These
results show that by increasing the ORness value or increasing the degree of optimism,
the area of the very high UEQ class has significantly increased, while the area of the very
low UEQ class has decreased. In terms of environmental criteria, in the very pessimistic
scenario, 3.5, 17.6, 10.9, 9.16, 1.0, and—percent of Districts 1, 2, 3, 6, 7, and 11 had very
high UEQ conditions, respectively. In the case of a very optimistic scenario, these values
for these districts increased to 24.4, 80.3, 90.2, 97.5, and 23.2. In the intermediate scenario,
respectively, 10.5, 47.3, 43.3, 53.7, and 4.4 percent of Districts 1, 2, 3, 6, 7, and 11 had very
high UEQ conditions in terms of environmental criteria.
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Figure 8. Area percentage of different UEQ classes for each ORness in the environmental dimension
(source: authors).

4.4. UEQ Based on Spatial-Functional Criteria

UEQ classification maps based on spatial-functional criteria for different ORness
degrees are shown in Figure 9. The visual evaluation of the maps shows that in terms of
criteria related to the spatial-functional dimension, the districts with high and very high
UEQ conditions are almost evenly distributed throughout the region. The reason for this
is the heterogeneity in the quality of access and distribution of urban services in these
districts. In general, the central parts have a more favorable UEQ status than other parts.
The infrastructure of the road networks, subway stations, medical centers, and parks is
more concentrated in these areas. In terms of spatial-functional criteria, the areas located
in the northern parts had the worst UEQ conditions. District 2 did not have suitable UEQ
conditions in terms of environmental criteria, while the central parts of this region showed
suitable UEQ conditions in terms of spatial-functional criteria.

The coverage percentage of different UEQ classes based on spatial-functional criteria
for different degrees of ORness is shown in Figure 10. The coverage percentage of very
low UEQ class in terms of spatial-functional criteria for very pessimistic, pessimistic,
intermediate, optimistic, and very optimistic scenarios was 15, 7, 4, 3, and 2 percent,
respectively. These values for the very high class were 6, 14, 25, 39, and 56 percent,
respectively. These results show that the area of the very high UEQ class has significantly
decreased and the area of the very low UEQ class has increased with the increase in the
ORness value or the increase in pessimism. In terms of spatial-functional criteria, in the
very optimistic scenario, 44.2, 54.8, 82.2, 68.3, and 43.4 percent of Districts 2, 3, 6, 7, and 11
had very high UEQ conditions, respectively. In the case of a very pessimistic scenario, these
values were reduced to 1.5, 9.0, 11.5, 10.3, and 2.8. In the intermediate scenario, respectively,
15.2, 27.6, 41.9, 35.5, and 15.9 percent of Districts 2, 3, 6, 7, and 11 had very high UEQ
conditions in terms of spatial-functional criteria.
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Figure 9. UEQ maps based on spatial-functional criteria in different ORness values; (a) Orness = 0,
(b) Orness = 0.25, (c) Orness = 0.5, (d) Orness = 0.75, and (e) Orness = 1 (source: authors).

Figure 10. Area percentage of different UEQ classes for each ORness in the spatial-functional
dimension (source: authors).
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4.5. UEQ Based on Environmental and Spatial-Functional Criteria

The UEQ maps were prepared by combining the UEQ maps based on environmental
and spatial-functional criteria using the WLC model (Figure 11). A visual inspection of these
maps shows that the central and eastern regions have better UEQ conditions than other
regions. Districts 2 and 11 had worse UEQ conditions than other districts. By increasing
the value of ORness, the area of the high and very high UEQ classes increased and the area
of the low and very low UEQ classes decreased.

Figure 11. The final UEQ maps (combined environmental and spatial-functional dimensions);
(a) ORness = 0, (b) ORness = 0.25, (c) ORness = 0.5, (d) ORness = 0.75, and (e) ORness = 1
(source: authors).

The area of UEQ classes for different degrees of ORness is shown in Figure 12. The
area of very low, low, medium, high, and very high UEQ classes in the very pessimistic
scenario was 2.17, 33.5, 38.8, 25.4, and 11.2 km2, respectively. These values were 11.2, 24.4,
32.3, 41.0, and 54.3 km2 in the very optimistic scenario. The total area of regions with
high and very high UEQ in very pessimistic, pessimistic, intermediate, optimistic, and
very optimistic scenarios was approximately 36, 50, 58, 71, and 91 km2, respectively. The
total area of regions with low and very low UEQ in these scenarios was 50, 43, 35, 27, and
14 km2, respectively.

In another analysis, by overlapping the UEQ class maps based on environmental
and spatial-functional criteria, the state of the study area was evaluated in terms of the
agreement between these two groups of criteria in different ORness values (Figure 13). In
ORness = 0 (a very pessimistic scenario), most of the study area showed unfavorable UEQ
conditions in terms of both groups of environmental and spatial-functional criteria. In all
scenarios, the northeastern parts had good UEQ conditions only in terms of environmental
criteria. Parts of the western and northwestern regions had suitable UEQ conditions only
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in terms of spatial-functional criteria. The areas with suitable UEQ conditions in terms of
both environmental and human criteria were located in the central and eastern parts of the
study area.

Figure 12. The area of different UEQ classes for each ORness in the final UEQ maps (km2)
(source: authors).

Figure 13. Maps of areas with suitable UEQ spatial agreement based on both environmental
and spatial-functional criteria in different scenarios including a) ORness = 0, (b) ORness = 0.25,
(c) ORness = 0.5, (d) ORness = 0.75, and (e) ORness = 1 (source: authors).
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The area of UEQ classes based on the spatial overlap of suitable UEQ classes obtained
from the environmental and spatial-functional criteria groups is shown in Table 2. In
the very pessimistic, pessimistic, intermediate, optimistic, and very optimistic scenarios,
approximately 11.9, 25.9, 38.8, 51.9, and 74.1 km2 had suitable UEQ conditions in terms of
both groups of environmental and spatial-functional criteria. Moreover, in these scenarios,
respectively, 17.8, 20.0, 19.1, 16.7, and 14.6 km2 had suitable UEQ conditions only in terms
of environmental criteria. These values for the spatial-functional criteria group were 19.8,
28.5, 31.8, 33.8, and 27.8 km2, respectively. In addition, in very pessimistic, pessimistic,
intermediate, optimistic, and very optimistic scenarios, approximately 76.76, 51.8, 4.36, 23.7,
and 9.8, respectively, had unsuitable UEQ conditions in terms of both criteria groups.

Table 2. The area of classes with suitable UEQ spatial agreement based on both environmental and
spatial-functional criteria in different scenarios (source: authors).

Environmental
+ Spatial-
Functional

Suitable

Environmental
Suitable

Spatial-
Functional

Suitable

Environmental
+ Spatial-
Functional
Unsuitable

ORness = 0 11.92 17.81 19.83 76.74

ORness = 0.25 25.92 20.01 28.52 51.87

ORness = 0.5 38.83 19.15 31.86 36.47

ORness = 0.75 51.91 16.76 33.88 23.76

ORness = 1 74.10 14.60 27.81 9.80

4.6. Population in UEQ Classes

The population in different classes of spatial agreement under suitable UEQ conditions
for both criteria groups in different scenarios is shown in Table 3. In the pessimistic scenario,
only about 37,000 people live in areas with suitable UEQ conditions in terms of both
criteria groups, while over 1,500,000 people live in unsuitable UEQ conditions. In the very
optimistic scenario, the population distributed in areas with suitable UEQ conditions in
terms of both criteria groups increased to more than 917,000 and those in unsuitable UEQ
conditions decreased to 336,000 people. In the intermediate state, respectively, more than
349, 453, 212, and 947 thousand people are located in areas with suitable UEQ conditions in
terms of “Environmental + spatial-functional”, “Environmental” and “ spatial-functional”,
and areas with unsuitable UEQ conditions.

Table 3. The population in different classes of the spatial agreement of suitable UEQ conditions based
on both criteria groups in different scenarios (Source: authors).

Environmental
+ Spatial-
Functional

Suitable

Environmental
Suitable

Spatial-
Functional

Suitable

Environmental
+ Spatial-
Functional
Unsuitable

ORness = 0 37,798 263,519 89,626 1572,768

ORness = 0.25 170,331 420,879 166,614 1205,888

ORness = 0.5 349,870 453,225 212,734 947,882

ORness = 0.75 554,041 423,467 283,380 702,823

ORness = 1 917,534 401,282 308,791 336,104

5. Discussion

Determining the current status of UEQ directly represents the quality of life of peo-
ple in the urban environment [95]. The first and foremost step to provide a suitable
solution to improve UEQ is to evaluate the current situation of UEQ. In previous stud-
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ies, various models such as GIS-MCDM [26,75,96,97], machine learning [98–100], and
regression [100–102] have been used for the spatial evaluation of UEQ. Determining the
suitability degree of UEQ is a spatial issue and depends on various spatial factors, including
environmental and spatial-functional criteria. Therefore, in this study, a GIS-MCDM model
was used to produce the UEQ map.

Previous studies show that the accuracy of GIS-MCDM models depends on the com-
prehensiveness of the considered effective criteria, the accuracy and consistency of the
weights assigned to the criteria, the standardization method of effective criteria values, and
the efficiency of aggregation models. The considered effective criteria must enjoy certain
conditions, such as comprehensiveness and compatibility. The opinions of experts and the
results of previous studies can be used to determine the effective criteria. The accuracy of
the weight of the effective criteria has a direct effect on the accuracy of the final output of
the decision-making model. Various methods such as AHP [95,103], ANP [104,105], and
Best–Worst [106] have so far been used to calculate the weight of criteria. The present
study used the AHP method. This method has several advantages, including (i) the si-
multaneous use of quantitative and qualitative criteria [48], (ii) simple implementation
and flexibility [107], and (iii) the ability to check the consistency rate of the results [108].
The consistency rate is one of the outputs of the AHP model, which shows the degree
of compatibility among the opinions of different experts in the pairwise comparison of
different criteria and criteria weighting. The consistency rate calculated in this study shows
the high accuracy and consistency of the determined weights for different effective criteria.

In this study, for the first time, the OWA model was used for modeling and spatial
evaluation of UEQ. OWA can model UEQ in a wide range of very optimistic to very
pessimistic scenarios. The results of this model can benefit managers and planners with
different attitudes. Managers and planners with pessimistic attitudes are usually stricter
in setting priorities. Therefore, in this case, the places designated as areas with suitable
UEQ conditions are limited since they must have suitable conditions in terms of a large
number of effective criteria. As for optimistic managers and planners, if a place has
suitable conditions in terms of a small number of effective criteria, it can have suitable UEQ
conditions. Therefore, the area of suitable areas is larger in optimistic scenarios than in
pessimistic scenarios.

In this study, the criteria affecting UEQ were categorized into two groups: environment
and spatial-functional. The results showed that the criteria had different levels of effective-
ness concerning urban environmental quality. Due to the high correlation of most of the
considered indices with vegetation, it was the most influential index in UEQ. Therefore,
to improve other indicators and ultimately UEQ, it is suggested to expand green spaces.
However, green roofs are recommended in areas with high density and activities, such as
Districts 6 and 11, where there is inadequate space to increase green spaces and create local
and regional parks. It can also be suggested to increase tree-lined streets, which increase
humidity, create shade, reduce noise pollution, and reduce air pollution. Coniferous trees
are recommended as they are green year-round and can better absorb air pollution particles,
which is a major problem in urban areas. Still, broad-leaved trees should not be excluded
since, in addition to producing more oxygen, these types of trees have higher evaporation
and transpiration than conifers and increase the humidity, tranquility, and freshness of
the environment.

The dark color of urban surfaces causes strong absorption of solar energy and increases
the temperature, thus causing the formation of urban heat islands. Another way to reduce
heat, besides increased vegetation, is to replace materials with high reflection instead of
dark and impermeable urban surfaces such as sidewalks, streets, and roofs, which have
high absorption. By examining the spatial distribution of air pollution, urban heat islands,
and ground surface temperature, which have a high correlation, it can be seen that such
areas coincide with areas with high building height and building density. Therefore, it
is suggested to pay attention to the prevailing wind flow directions when constructing
high-rise buildings so as prevent heat retention and air pollution. Improving the status of
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infrastructure criteria such as access to parks and medical centers can also be effective in
improving the existing UEQ.

The accuracy of benchmark maps used in the OWA model directly affects the accuracy
of UEQ modeling; however, access to accurate maps has been one of the limitations of this
study. For example, the air pollution benchmark map is prepared based on the interpolation
of data recorded in a limited number of ground stations. Also, the height of buildings can
be considered an effective criterion in UEQ modeling, which was not used in this study
due to a lack of access to these data.

6. Conclusions

Today, UEQ is considered a fundamental concept in urban planning, which has at-
tracted the attention of urban planners and managers. This index can help to effectively
identify the existing situation, strengths, weaknesses, and possible defects in the urban
environment. This study aimed to provide a strategy based on a spatial multi-criteria
decision-making system to assess UEQ, that ultimately augments the greater goal of achiev-
ing sustainable cities. The results showed that from the environmental point of view, air
pollution and distance from faults had the highest and lowest impact in modeling the qual-
ity of the urban environment, respectively. Furthermore, in terms of the spatial-functional
criteria, population density had the highest, and distance from industrial centers had the
least impact in UEQ modeling. The central and eastern districts of the study area had better
UEQ conditions than other districts. Districts 2 and 11 had the worst UEQ conditions. By
increasing the value of ORness (the degree of optimism), the area of the high and very
high UEQ classes increased and the area of the low and very low UEQ classes decreased.
In very pessimistic, pessimistic, intermediate, optimistic, and very optimistic scenarios,
respectively, 36.64, 49.96, 58.65, 71.37, and 91.24 percent of the study area had suitable UEQ
conditions (high and very high class). In the intermediate scenario, respectively, more than
349, 453, 212, and 947 thousand people lived in areas with suitable UEQ conditions in terms
of “Environmental + Infrastructure”, “Environmental”, “Infrastructure”, and areas with
unfavorable UEQ conditions. The results of this study can be useful for managers and
planners to better implement their programs while improving the quality of the urban envi-
ronment. It is also possible to use the capability of the OWA model to produce UEQ maps
under different scenarios to determine the spatial priorities for managers and planners
with different conditions, including time and budget. However, determining the weight of
the criteria based on a limited number of experts can be associated with uncertainty, so it
is recommended to use large group decision-making (LGDM) methods to determine the
weight of the criteria in future studies.

Author Contributions: Conceptualization, B.M., S.R.T. and F.N.; methodology, B.M, F.N., F.F., A.E.,
S.A. and M.Z.A.; writing—original draft preparation, B.M., R.A., F.N., F.F., A.E., S.A. and M.Z.A.;
writing—review and editing, J.J.A., M.A. and I.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon reasonable request.

Acknowledgments: The authors thank anonymous reviewers for their constructive comments and
suggestions which helped to improve the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nadizadeh Shorabeh, S.; Hamzeh, S.; Zanganeh Shahraki, S.; Firozjaei, M.K.; Jokar Arsanjani, J. Modelling the intensity of surface

urban heat island and predicting the emerging patterns: Landsat multi-temporal images and Tehran as case study. Int. J. Remote
Sens. 2020, 41, 7400–7426. [CrossRef]

2. Martek, I.; Hosseini, M.R.; Shrestha, A.; Edwards, D.J.; Seaton, S.; Costin, G. End-user engagement: The missing link of
sustainability transition for Australian residential buildings. J. Clean. Prod. 2019, 224, 697–708. [CrossRef]

https://doi.org/10.1080/01431161.2020.1759841
https://doi.org/10.1016/j.jclepro.2019.03.277


Land 2023, 12, 1659 21 of 24

3. Weng, Q.; Firozjaei, M.K.; Sedighi, A.; Kiavarz, M.; Alavipanah, S.K. Statistical analysis of surface urban heat island intensity
variations: A case study of Babol city, Iran. GIScience Remote Sens. 2019, 56, 576–604. [CrossRef]

4. Novacek, O.; Baeza, J.L.; Barski, J.; Noenning, J.R. Defining Parameters for Urban-Environmental Quality Assessment. Int. J.
E-Plan. Res. 2021, 10, 152–164. [CrossRef]

5. Shorabeh, S.N.; Kakroodi, A.A.; Firozjaei, M.K.; Minaei, F.; Homaee, M. Impact Assessment Modeling of Climatic Conditions on
Spatial-temporal Changes in Surface Biophysical Properties Driven by Urban Physical Expansion Using Satellite Images. Sustain.
Cities Soc. 2022, 80, 103757. [CrossRef]

6. Kiavarz, M.; Hosseinbeigi, S.B.; Mijani, N.; Shahsavary, M.S.; Firozjaei, M.K. Predicting spatial and temporal changes in surface
urban heat islands using multi-temporal satellite imagery: A case study of Tehran metropolis. Urban Clim. 2022, 45, 101258.
[CrossRef]

7. Moghaddam, M.H.R.; Sedighi, A.; Fasihi, S.; Firozjaei, M.K. Effect of environmental policies in combating aeolian desertification
over Sejzy Plain of Iran. Aeolian Res. 2018, 35, 19–28. [CrossRef]

8. Firozjaei, M.K.; Sedighi, A.; Firozjaei, H.K.; Kiavarz, M.; Homaee, M.; Arsanjani, J.J.; Makki, M.; Naimi, B.; Alavipanah, S.K. A
historical and future impact assessment of mining activities on surface biophysical characteristics change: A remote sensing-based
approach. Ecol. Indic. 2021, 122, 107264. [CrossRef]

9. Chen, S.; Haase, D.; Qureshi, S.; Firozjaei, M.K. Integrated Land Use and Urban Function Impacts on Land Surface Temperature:
Implications on Urban Heat Mitigation in Berlin with Eight-Type Spaces. Sustain. Cities Soc. 2022, 83, 103944. [CrossRef]

10. Julie, C. Imagining Sustainability: Creative Urban Environmental Governance in Chicago and Melbourne; Routledge: London, UK, 2017.
11. Firozjaei, M.K.; Weng, Q.; Zhao, C.; Kiavarz, M.; Lu, L.; Alavipanah, S.K. Surface anthropogenic heat islands in six megacities: An

assessment based on a triple-source surface energy balance model. Remote Sens. Environ. 2020, 242, 111751. [CrossRef]
12. Mijani, N.; Firozjaei, M.K.; Mijani, M.; Khodabakhshi, A.; Qureshi, S.; Arsanjani, J.J.; Alavipanah, S.K. Exploring the effect of

COVID-19 pandemic lockdowns on urban cooling: A tale of three cities. Adv. Space Res. 2022, 71, 1017–1033. [CrossRef]
13. Martek, I.; Hosseini, M.R.; Shrestha, A.; Zavadskas, E.K.; Seaton, S. The sustainability narrative in contemporary architecture:

Falling short of building a sustainable future. Sustainability 2018, 10, 981. [CrossRef]
14. Khanna, P. Connectography: Mapping the Global Network Revolution; Hachette UK: London, UK, 2016.
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