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Abstract: Detecting changes in land cover is a critical task in remote sensing image interpretation, with
particular significance placed on accurately determining the boundaries of lakes. Lake boundaries
are closely tied to land resources, and any alterations can have substantial implications for the
surrounding environment and ecosystem. This paper introduces an innovative end-to-end model
that combines U-Net and spatial transformation network (STN) to predict changes in lake boundaries
and investigate the evolution of the Lake Urmia boundary. The proposed approach involves pre-
processing annual panoramic remote sensing images of Lake Urmia, obtained from 1996 to 2014
through Google Earth Pro Version 7.3 software, using image segmentation and grayscale filling
techniques. The results of the experiments demonstrate the model’s ability to accurately forecast
the evolution of lake boundaries in remote sensing images. Additionally, the model exhibits a high
degree of adaptability, effectively learning and adjusting to changing patterns over time. The study
also evaluates the influence of varying time series lengths on prediction accuracy and reveals that
longer time series provide a larger number of samples, resulting in more precise predictions. The
maximum achieved accuracy reaches 89.3%. The findings and methodologies presented in this study
offer valuable insights into the utilization of deep learning techniques for investigating and managing
lake boundary changes, thereby contributing to the effective management and conservation of this
significant ecosystem.

Keywords: U-Net; deep learning; land use/land cover change; remote sensing; Lake Urmia;
CNN; STN

1. Introduction

Changes in the Earth’s surface cover and its man-made development have caused
various impacts on ecosystems and environmental processes on a local, regional, and global
scale [1–3]. The detection of lake boundaries is extremely important for predicting future
lake boundary changes and supporting future lake protection policy decisions [4]. By
studying changes in the lake boundary, it is possible to monitor the impact of various
factors on the lake. This information helps assess the ecological integrity of the lake and
identify any potential threats and is critical for the effective management and conservation
of freshwater resources [5–7]. Remote sensing has become the main source of lake spatial
information [8,9], and remote sensing images intuitively show the spatial distribution and
dynamic change process of natural lakes. Remote sensing data reduce the manual work of
collecting data on-site and reduce the cost of obtaining geographic information [10,11]. With
the development of remote sensing technology and digital image processing technology,
computer-based remote sensing image processing has recently become popular [12,13].
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People began to study the characteristics of lake boundary changes extracted from remote
sensing images in different periods and, based on this, predict the future changes in
lake boundaries.

Traditional methods of lake boundary feature extraction from remote sensing images
mainly include digital terrain models (DTM) [14], semantic segmentation [15,16], and
object-oriented methods [17]. In 2003, Jiang L. et al. [18] proposed a shape-based time-series
remote sensing image lake change detection method. They use supervised classification,
object recognition, parametric contour tracking, and a proposed piecewise linear polygon
approximation technique to represent feature shapes in remote sensing images. In 2020,
Julzarika [19] tested the effectiveness of DTM in Lake Oduli on the island of Rote. Julzarika
used both digital elevation models (DEM), DTM, and digital surface models (DSM). Among
them, DEM includes both Sentinel and Planet images. The DSM is an integration of the
DEM. However, DTM is obtained from the derivative result of DSM. However, the experi-
mental results show that the DTM has a 95% error rate in predicting the lake boundary of
Lake Oduli. This may be caused by the poor recognition of impurities in the lake by DTM.
The traditional method of lake boundary extraction using semantic segmentation often has
problems with over-segmentation and inaccurate segmentation. In order to solve these
problems, in 2020, Zhong et al. [15] designed an end-to-end semantic segmentation network,
the noise cancellation transformer network (NT-Net), by improving the semantic segmenta-
tion network using transform. To solve the problems of over-segmentation and inaccurate
segmentation, the interference attenuation module and the multi-stage transformer module
are introduced into NT-Net, respectively. The interference attenuation module can suppress
the feature representations of non-lake objects by analyzing the differences between the
feature representations of lakes and other ground objects to model the key features that
are distinguishable and suitable for lake water segmentation. The multi-stage transformer
module can capture the contextual association of boundary information and enhance the
feature representation of boundary information by using the self-attention mechanism.

Nowadays, with the development of artificial intelligence, more and more researchers
use deep learning [20–22] to complete the extraction of lake boundary features and predict
the lake boundary according to its changing characteristics. Compared with traditional
methods, deep learning models, with their ability to automatically extract features and
superior computing power, have great potential to become valuable tools for analyzing and
predicting lake boundary changes [23]. CNN has been widely used in image processing
fields such as object positioning, object recognition, target segmentation, key point detection,
and so on [24–26]. However, CNN and other deep learning models are not so effective
in remote sensing change detection for lake boundary change prediction. Some studies
first use CNN and other depth learning models for remote sensing image fusion [27,28],
image registration [29], and image semantic segmentation [30], and then detect the change
in the processed remote sensing image. Other research directly extracts change features
using a deep learning model, and then they produce a change difference map using the
retrieved change features [31,32]. This research terminates at change detection and can
only manually visually assess historical surface cover data to determine the general change
trend of the lake boundary.

All these methods mentioned above use remote sensing images to extract the char-
acteristics of a lake boundary change, analyze the trend of lake boundary change based
on these characteristics, and then make predictions. In fact, these methods include two
parts: change trend analysis and change prediction, and the operation steps are more
cumbersome. To effectively solve the above problems, this paper proposes a novel end-to-
end prediction network based on the dynamic evolution of the lake boundary in remote
sensing images. The network combined the U-Net model improved from CNN and the
spatial transformation network (STN) [33], which retained the spatial structure and context
information of each pixel in the image, making it possible to complete feature extraction
and change prediction in one network at the same time. Firstly, U-Net processes a pair of
consecutive images in the time series image, extracts the changes between the before and



Land 2023, 12, 1602 3 of 23

after images, and fits the corresponding evolution field. STN then predicts the change in
surface coverage based on the resulting evolution field. Taking Lake Urmia as a case, this
study performs image segmentation and image grayscale filling pre-processing operations
on small sensing images in some areas of panoramic remote sensing images of Lake Urmia
and then inputs them into the model designed in this paper for prediction.

2. Dataset and Pre-Processing
2.1. Study Area

Lake Urmia is the largest lake in Iran, located in the basin between the provinces of
East Azerbaijan and West Azerbaijan in the northwest of Iran, and is the second largest
saltwater lake on earth, as shown in Figure 1. The lake once covered an area of 5200 square
kilometers and was 16 m deep. Environmental changes have caused a 70% reduction
in the surface area of Lake Urmia between 2002 and 2016. The ecological environment
has undergone tremendous changes, the salinity of the lake water has increased, and the
number of migratory birds and organisms in the lake has decreased.
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Figure 1. Remote sensing panoramic images of Lake Urmia 2022 (from Google Earth Pro).

2.2. Dataset

According to the research objectives, this paper selects two datasets for experiments.
The data used are satellite image data obtained from Google Earth Pro software. The first
dataset is the panoramic remote sensing image of Lake Urmia to verify the effectiveness
of this model in predicting the overall evolution trend of cover; the second dataset is the
remote sensing images of some areas of Lake Urmia to test the ability of this model to
capture regional details.

2.2.1. Dataset 1: Sequence of Panoramic Historical Images of Lake Urmia

In this study, the historical images of the Google Earth remote sensing satellite of Lake
Urmia from 1996 to 2014 are arranged in chronological order to form the first time series
dataset, with 19 scenes. Each scene is taken on 30 December of that year, and the image size
is 560 × 640. Latitudes are taken from 37◦00′ N to 38◦15′ N and longitudes from 46◦10′ E
to 44◦50′ E, as shown in Figure 2. This is abbreviated as dataset 1.
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Figure 2. Remote sensing panoramic historical images of Lake Urmia from 1996 to 2014 (image from
Google Earth Pro Software).

The data from 1996 to 2013 are mainly used as the data source for surface cover
prediction, and the training set and test set are selected from them, while the 2014 image
is not used for training, and is mainly used to test the predictive generalization ability of
the trained model. During training, the model uses N images of the next year to predict
its surface cover map in the next year, and the corresponding image of this year in the
dataset is used as the ground truth. For example, the CNN prediction model used 1999
and 2000 images as input for training, the model learned the law of cover evolution and
predicted its cover map in 2001, and the data in 2001 in the dataset are used as the ground
truth to calculate loss.

2.2.2. Dataset 2: Sequence of Partial Historical Images of Lake Urmia

This section selects the historical images of the Google Earth remote sensing satellite
in the north part of Lake Urmia from 2000 to 2014 to form the second time series dataset.
Latitudes are taken from 38◦05′ N to 38◦15′ N and longitudes from 45◦30′ E to 44◦20′ E.
The size of a single image is 1280× 560, taking the year as the cycle unit, there are 15 scenes
in total, and each scene is taken on 30 December of that year, as shown in Figure 3. This is
abbreviated as dataset 2.

Among them, the data from 2000–2013 are mainly used as the data source for surface
cover prediction, and the training set and test set are selected from them, while the 2014
image is not used for training and is mainly used to test the predictive generalization ability
of the trained model. For example, the U-Net prediction model used 2008 and 2009 images
as input, the model learned the law of cover evolution and predicted its cover map in 2010,
and the data in the dataset for 2010 are used as ground truth to calculate loss.
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Google Earth Pro Software).

2.3. Pre-Processing
2.3.1. Image Segmentation

Image segmentation and binarization are essential pre-processing steps for remote
sensing images [34,35]. In remote sensing, image segmentation is useful for separating
different land cover types. By segmenting the image, it is easier to extract information
from each segment, and it can also help reduce the computational cost of processing large
images. In remote sensing, binarization is often used to separate the land cover from the
background and to identify specific features of interest. This process can also help to reduce
the complexity of the image and make it easier to analyze.

First, 15 remote sensing images were separated to distinguish the lake area from other
areas. Image segmentation is conducive to the visualization of the evolution process of the
lake boundary and is of great help to the follow-up model to learn the evolution process of
the overburden layer. Figure 4 shows the results of remote sensing image segmentation
and binarization in 2000.
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Urmia in 2000.

2.3.2. Image Grayscale Gradient Fill

The gray gradient filling method mainly includes three steps:
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In the first step, the coating boundary in the image gradually shrinks smoothly to the
coating center through multiple continuous erosion operations, and the intermediate results
after each shrinkage are saved. Image boundary erosion processing involves removing
the edges of an image to reduce the impact of edge artifacts [36]. The erosion algorithm of
image A using erosion operator B can be expressed as Equation (1).

A 	 B = {z|(B)z ⊂ A}, (1)

The erosion operator B is a circular operator with a radius of 3.
For erosion operation 	, use erosion operator B to corrode binary image A once. The

flow of erosion once is shown in Algorithm 1.

Algorithm 1: Erosion Algorithm

Input: Binary image A, erosion operator B Output: Erosion results A	 B

1. Select the category, size, and center point z of the erosion operator B.
2. Select the area A′ to be corroded of the original image A, and the remaining area is denoted

as A− A′, and the pixels set of A′ is denoted as N(p).
3. Make the center point z of B coincide with an unselected point p in N(p), and then coincide

other pixels of B with the corresponding pixel of A′.
4. Select an unselected point m with a pixel value of 1 in B, and find the corresponding pixel

m′ in A′ that coincides with it. If the pixel value of m′ is 0, delete the point (p) in N(p), that
is, the pixel value of point p is 0. Otherwise, continue to select another point m with a pixel
value of 1 in B and repeat step 4 until all the pixels in B are traversed.

5. Repeat steps 3–4 until N(p) was traversed.
6. Combine the updated N(p) with A− A′, and get erosion results A	 B.

The erosion operator 	 is also called a structural element. Generally, cross, rectangle,
circle, and ellipse can be selected. This paper uses a circular operator with a radius of 3 to
sequentially corrode the 2000 images in the second dataset 50 times. Some of the results are
shown in Figure 5.
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Figure 5. Partial results of the 2000 binarization image of Lake Urmia after erosion. (a) The result of
the 10th erosion; (b) the result of the 30th erosion; (c) the result of the 50th erosion.

In the second step, the difference image of two adjacent shrinkage images is obtained
by subtracting in sequence according to the erosion order. The pixel value corresponding
to the i + 1 erosion result is subtracted from the i + 1 erosion result. The point set with a
difference of 255 is the pixel point set deleted during the i + 1 erosion, and the result is
displayed as the lake boundary. Figure 6 shows a partial difference image after the erosion
of the binarization image of Lake Urmia in 2000.

The third step is to sort the obtained difference image set in turn, fill the gray level
from front to back according to the linear change, and change the pixel value of the white
points in the difference image. Filling the lakes in the segmented binarized image with
grayscale gradients can add additional contextual information to the image [37].
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Figure 6. Partial difference image after erosion of binarization image of Lake Urmia in 2000. (a) The
image of the difference between the 9th erosion and the 10th erosion results; (b) the image of the
difference between the 29th and 30th erosion results; (c) the image of the difference between the 49th
and 50th erosion results.

The gray value of the pixel set in the first difference image is the highest, close to white,
and the gray value of the pixel set in the last difference image is the lowest, close to black.
The erosion times are 50, the gray value of the outermost boundary is the highest, which is
200, and the gray level series is 2. Therefore, the gray value of the innermost layer is the
lowest, which is 100. The erosion times, gray level series, and the highest gray value can be
selected according to the size of the remote sensing image. The algorithm flow is shown in
Algorithm 2.

Algorithm 2: Grayscale Gradient Fill Algorithm

Input: Binarized image A Output: Grayscale fill image A′

1. Let P = A, i = 1, α = Number of erosions, Gmax = The highest gray value, G = Gmax,
l = Grayscale progression, Gmax < 255 (Gmin = Gmax − l × α) > 0.

2. According to algorithm 1: the i-th erosion operation was performed to P, and the obtained
result is Q.

3. Let Ri = P−Q, that is, the corresponding pixel values are subtracted, and the difference
image is Ri, and the set of points with a difference of 255 is denoted as N(p).

4. Set all pixels belonging to N(p) in the image. Ri to have pixel values G.
5. Let P = Q, G = Gmax − l × i, i = i + 1. If i ≤ α, repeat steps 2–5. Otherwise, proceed to

step 6.
6. Let A′ = R1 + R2 + . . . + R49 + R50, that is, the corresponding pixel values of 50 differential

images Ri are added together to obtain a grayscale gradient-filled image A′.

2.3.3. Wave Filtering

After the image filled with a gray gradient is filtered, the gray change tends to be
smooth. It is beneficial to the subsequent gradient descent algorithm of the model to obtain
the optimal solution [38].

The filtering algorithm uses Gaussian filtering, and Equation (2) is a two-dimensional
Gaussian function for calculating the weights of neighboring pixels. The size of the Gaus-
sian kernel is 5 × 5.

G(x, y) =
1

2πσ2 e−(x2+y2)/2σ2
, (2)

3. Method

The dynamic evolution prediction algorithm flow of the remote sensing image lake
boundary designed in this study is shown in Figure 7. It can be roughly divided into
five steps: image pair pre-processing, evolution feature extraction, feature fusion, spatial
transformation, and coverage prediction.
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(1) Image pair pre-processing. Input two remote sensing images that were taken every
other year. The pre-processing methods are used for cover segmentation, image
binarization, erosion, difference, gray gradient filling, and filtering for subsequent
evolutionary feature extraction;

(2) Evolutionary feature extraction. Input the pre-processed image pair in step (1), in-
crease the dimension of the input image, and then splice the image pair along the
increased dimension. The input feature extraction module is composed of multiple
convolution layers with the same convolution kernel size to extract the multi-scale
features of the input image pair;

(3) Feature fusion. The features extracted in the previous step are decoded through
the multi-layer upper sampling layer, and the decoded features are fused with the
multi-scale features of the same size extracted in step (2), which are input into the
subsequent layer to learn and obtain the evolution field required for prediction;

(4) Spatial transformation. Using the evolution field learned in the previous module, the
corresponding spatial transformation operation is performed on the subsequent time
series image y of the input image pairy, and the image obtained after spatial transfor-
mation is the predicted land cover map z_pred of the next time series target area;

(5) Cover prediction. Enter ground truth, i.e., the next sequential image z of y, compare
the output z_pred of step (4), calculate to obtain the loss, and train the parameters of
the network with the backpropagation.

The specific content is introduced in detail below.

3.1. Evolutionary Feature Extraction and Fusion Module

Different from the traditional change detection methods, the use of a change map can
only show the characteristics of the limited target area. This model uses a CNN model
similar to the U-Net [39] structure to fit the change mapping between two temporal remote
sensing images and retains the position spatial structure and context information of each
pixel in the image. U-Net is a CNN architecture designed for semantic segmentation tasks.
The U-Net architecture has skip connections connecting the encoder and decoder layers
at multiple resolutions. These connections enable the decoder to access low-level and
high-level features, which help preserve spatial details and improve segmentation accuracy.
The model structure is shown in Figure 8.
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One specific network structure is used in this experiment, but other network frame-
works and structures may also be applicable. The same number of network layers and
convolution kernel parameters are not our requirements. The change mapping modeling
between image pairs fitted by the U-Net model is expressed as Equation (3):

gθ(x, y) = ϕ, (3)

Among them, x, y are two temporal remote sensing images, ϕ is the evolution field
fitting the displacement of each pixel of x, y, and θ is the network parameter, which is the
core of the convolutional layer. In other words, for each pixel p ∈ Ω in x, ϕ(p) indicates
the displacement of point p between x, y. The displacement makes [x·ϕ](p) and y(p)
correspond to the same pixel position.

Figure 9 shows the network structure of the evolutionary feature extraction module,
which can be roughly divided into four structures: input, encoder, decoder, and evolution-
ary field.

Different initialization methods are applied to the convolution layer and evolution
field in the encoder and decoder, which are described in detail below.

(1) Input. The network receives a single input formed by connecting x, and y into a
two-channel 2D image;

(2) Encoder. It is composed of four convolution layers. In the continuous convolution
layer, we set the convolution kernel size to 3 × 3, and the number of channels is 16,
32, 32, and 32 in turn;

(3) Decoder. In the decoding stage, we alternately use up-sampling, convolution, and
activation functions to increase the dimensions of the features learned in the encoding
stage. The size of the convolution kernel is still 3 × 3, and the number of channels in
the convolution layer is 32, 32, 32, 32, 32;

(4) Evolution field. At the end of the network, we use the convolution layer with the
same size as (1) input to fit the field. Through the multi-scale features extracted in
steps (2) and (3), the network learns the displacement law of all pixels in the two-
dimensional direction of the two time series images and maps it into an evolving field
ϕ of 560 × 640 × 2, where the tensor with the size of 560 × 640 × 1 of the first channel
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corresponds to the left and right displacement of each pixel, and the tensor with the
same size of the second channel corresponds to the up and down displacement of
each pixel.
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3.2. Spatial Transformation Module

The STN aims to enable neural networks to learn spatial transformations and perform
geometric manipulations on input data, making the network more robust to variations
in scale, rotation, translation, and other transformations. The STN can be integrated into
various neural network architectures and tasks, allowing the network to learn to focus
on relevant regions, handle data augmentation, and adapt to different input variations.
The spatial change module receives the output of the evolution feature extraction module,
which is the predicted evolution field. After spatially transforming the second image y of
x, y, the predicted image z_pred is outputted. The flowchart is shown in Figure 10.

The model adjusts the network parameters by minimizing y·ϕ, that is, the difference
between z_pred and z. To use gradient descent-based methods to minimize the loss function
loss, we construct a differentiable operation based on the spatial transformation network
to calculate z_pred. For each pixel p in z_pred, we calculate that the sub-pixel position of
the pixel before the evolution field transformation is p′ = p + ϕ(p). As pixels are only
defined in integer positions, we use the values of eight neighboring pixels to perform linear
interpolation, as shown in Equation (4):

y·ϕ = ∑
qεZ(p′)

z(q) ∏
d∈{m,n}

(
1−

∣∣p′d − qd
∣∣), (4)

Among them, Z(p′) is the neighborhood pixel set of pixel p′, d is the dimension of the
image, including m, n dimensions, and · represents the spatial transformation operation.
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3.3. Loss Function

The model can be trained with any differentiable loss function. In this study, the loss
function proposed by us consists of the following Equations (5) and (6):

(1) Loss of similarity lsim

MSE
(

Pn,
∼
Pn

)
=

1
|ω| ∑

(u,v)∈ω

∥∥∥∥Pn(u, v)−
∼
Pn(u, v)

∥∥∥∥2
, (5)

(2) Penalty items lsmooth(∅)

lsmooth(∅) = ∑
(u,v)∈ω

‖∇u∅(u, v)‖2 + ‖∇v∅(u, v)‖2, (6)

Among them,
∼
Pn = Pn·∅ is the nth image predicted by the model, where · represents

the spatial transformation operation, and Pn is the real n-th image, ω is an image pixel set,
(u, v) is the pixel coordinate of any point. lsim is the mean square error of pixel values of
all pixels of the predicted image and the real image, lsmooth(∅) is used to smooth the cover
evolution field.

The final loss function is shown in Equation (7):

loss = lsim + αlsmooth(∅), (7)

Among them, α is the regularization parameter.

4. Experiment and Results
4.1. Experiment Setting

This section divides a total of 19 images in dataset 1 into a group of 3 in chronological
order, and splits them into 17 samples, as the experiment 1 and experiment 3 datasets
Col1, which are {P1, P2/P3}, {P2, P3/P4} . . . . . . {P17, P18/P19}. The first two images in each
sample are input data, and the last image is ground truth. The first 16 samples are used as
the training set, and the last group is used as the test set to evaluate their performance.

Dataset 2 has 15 images, which are similarly split into 14 samples, as the dataset of
experiment 2 and experiment 4 Col2. The first 13 samples are training data, and the last
sample is used to test the model’s ability to predict the coverage and preserve detail.

To verify whether the model built in this paper is effective in the task of predicting
the evolution of the cover, experiments 1 and experiment 3 are set up. To analyze the
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impact of the length of the input image sequence on the prediction results, experiment 2
and experiment 4 are set up.

Experiment 1 compared the prediction effect of using the time series images of the first
2 years, 5 years, 10 years, and 15 years in Col1. Experiment 2 compared the prediction effect
of using the time series images of the first 2 years, 5 years, 6 years, and 7 years in Col2.

Experiment 3 compared the first 4 years, 5 years. . .16, and 17 years of Col1 to predict
the effect of coverage in 2014. Experiment 4 used years 5, 6, 7, and 8 of time series images
in Col2 to predict the effect of the 2014 cover.

In addition, experiment 5 in the paper also gives a comparison of the prediction
effect before and after data pre-processing to verify the effectiveness of the proposed pre-
processing method. There is a pre-experiment that gives the comparative experimental
results of the influence of the value of the regularization parameter α of the evolution field
on the prediction results.

Experimental environment: CPU: Intel® Core™ i9-10900K; RAM: 32G; GPU: GeForce
RTX 2080*2; operating system: Ubuntu18.04LTS; development language: Python 3.6; frame-
work: Pytorch 1.5.0.

As for training details, the network is trained by the batch gradient descent method
(BGD). The learning rate is set to 1 × 10−4, and the training cycle is 10,000 epochs to ensure
network convergence.

4.2. Evaluating Indicators

This article uses ACC, MSE, MAE, and DICE as the experimental evaluation indicators.
We use the difference image between the predicted result and the true value image to
visually show the gap in the predicted result. See Equation (7) for MSE, Equation (8) for
ACC, and Equation (9) for MAE:

ACC =
Ncorrect

Ntotal
, (8)

MAE
(

Pn,
∼
Pn

)
=

√√√√ 1
|ω| ∑

(u,v)∈ω

∥∥∥∥Pn(u, v)−
∼
Pn(u, v)

∥∥∥∥2
, (9)

where Ncorrect is the number of pixels in the predicted image with the same pixel value at
the corresponding position of the real image, and Ntotal is the total number of pixels.

Use DICE as an accuracy metric for evaluating image segmentation, as shown in
Equation (10).

DICE(T, P) =
|T1 ∩ P1|

(|P1|+ |T2|)/2
=

2NTP
NFP + 2NTP + 2NFN

, (10)

DICE is a similarity metric commonly employed to quantify the resemblance between
two samples. It is frequently utilized for assessing the similarity of two samples. The
DICE metric is computed as depicted in Figure 11, where the red region corresponds to
the actual lake-covered area denoted as T1. The remaining red portions represent the non-
covered areas, designated as T0. The blue region corresponds to the predicted lake area,
denoted as P1, while the remaining blue portions encompass the predicted non-covered
areas designated as P0. We assume the lake region to be the positive sample and the areas
outside the coverage to be the negative sample.

(1) TP: true positive, the predicted sample is positive, and the real sample is also positive;
(2) TN: true negative, predicted as a negative sample, and true as a negative sample;
(3) FP: false negative, predicted as a positive sample, true as a negative sample;
(4) FN: false negative. It is predicted to be a negative sample.

where NTP is the number of pixels in the TP set, NTN is the number of pixels in the TN set,
NFP is the number of pixels in the FP set, and NFN is the number of pixels in the FN set.
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4.3. Parameter Debugging

This paper conducts a comparative experiment on the selection of parameters to
achieve a better prediction effect. Figure 12 shows the effect of the evolution field regular-
ization parameter α in the test loss function on the prediction task.
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By comparison, it can be seen that the effect is better when α is 0.01. Through reason-
able settings, parameters can make the evolution field extract the displacement value of the
corresponding pixel and fit the real data.

4.4. Mobility Analysis and Effectiveness Evaluation
4.4.1. Experiment 1

Experiment 1 compares the prediction effects of the time series images using the
previous 2 years, 5 years, 10 years, and 15 years in Col1Figure 13 presents a comparison
of prediction results between learning only for 1 year (input data of two time steps) and
learning for 4 years (input data of five time steps) for land cover change patterns. The
training dataset used consists of five time steps, corresponding to the full scene images of
the years 1995, 1996, 1997, 1998, and 1999 from the collection “Col1”. The first two time
steps are images from 1998 and 1999. The prediction is performed using image pairs from
1999–2000, and the ground truth is the full scene image of Lake Urmia from the year 2001.
This comparison is shown in the first row. The second row displays a comparison between
learning only for 1 year and learning for 9 years (input data of 10 time steps) for predicting
land cover change patterns. The training dataset used consists of 10 time steps, spanning
the years 1995 to 2004 from collection “Col1”. The first two time steps are images from 2003
and 2004. The prediction is performed using image pairs from 2004–2005, and the ground
truth is the full scene image of Lake Urmia from the year 2006. The third row illustrates
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a comparison between learning only for 1 year and learning for 14 years (input data of
15 time steps) for predicting land cover change patterns. The training dataset used consists
of 15 time steps, covering the years 1995 to 2009 from collection “Col1”. The first two time
steps are images from 2008 and 2009. The prediction is performed using image pairs from
2009–2010, and the ground truth is the full scene image of Lake Urmia from the year 2011.
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Figure 13. Comparison of prediction result of Experiment 1. (a) Difference image between (b,c);
(b) prediction results using data from the first 2 years; (c) ground truth image for the year 2001;
(d) prediction results using data from the first 5 years; (e) difference image between (d,c); (f) difference
image between (g,h); (g) prediction results using data from the first 2 years; (h) ground truth image
for the year 2006; (i) prediction results using data from the first 12 years; (j) difference image between
(i,h); (k) difference image between (l,m); (l) prediction results using data from the first 2 years;
(m) ground truth image for the year 2011; (n) prediction results using data from the first 15 years;
(o) difference image between (n,m).

In each case, the comparison demonstrates the predictive performance of the model
based on different learning durations and input data lengths for capturing land cover
change patterns. The ground truth images from subsequent years are used for evaluating
the accuracy of the predictions. The evaluation indicators of the prediction results are
shown in Table 1.

4.4.2. Experiment 2

Similarly, experiment 2 compared the predictive performance using time series images
from the first 2 years, 5 years, 6 years, and 7 years of collection 2 (Col2). Figure 14 in the first
row illustrate the contrast between predicting land cover changes based on learning patterns
from only one year (using two time steps) and learning from four years (using five time
steps). The training dataset for this comparison consists of five time steps corresponding to
the panoramic images of years 2005, 2006, 2007, 2008, and 2009 in collection 2. The first
two time steps are images from the years 2007 and 2008. The prediction is made using
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images from 2008 to 2009, with the ground truth being the panoramic image of Lake Urmia
from 2010. The second row presents the results of predicting land cover changes based on
learning patterns from only one year and learning from five years (using six time steps).
The training dataset for this case includes 10 time steps, encompassing panoramic images
from 2005 to 2010 in collection 2. The initial two time steps represent images from the
years 2008 and 2009. The prediction is made using images from 2009 to 2010, and the
ground truth is the panoramic image of Lake Urmia from 2011. Moving to the third row,
the comparison showcases the outcome of predicting land cover changes using learning
patterns from one year and six years (using seven time steps). The training dataset for
this scenario consists of seven time steps, covering panoramic images from 2005 to 2011
in collection 2. The first two time steps represent images from the years 2009 and 2010.
The prediction is performed using images from 2010 to 2011, and the ground truth is the
panoramic image of Lake Urmia from 2012.

Table 1. Prediction and evaluation indexes of time series images in Col1.

Predict 2001 ACC MSE DICE

2 years image 0.8132 440.95 0.9786
5 years image 0.8147 451.90 0.9787

Predict 2006 ACC MSE DICE

2 years image 0.8462 585.26 0.9643
10 years image 0.8486 453.93 0.9714

Predict 2011 ACC MSE DICE

2 years image 0.8770 507.35 0.9603
15 years image 0.8772 451.56 0.9622
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Figure 14. Experiment 2 predictive results comparative diagram. (a) Difference image for (b,c);
(b) predicted results using data from the first 2 years; (c) ground truth image for the year 2010;
(d) predicted results using data from the first 5 years; (e) difference image between (d,c); (f) difference
image between (g,h); (g) predicted results using data from the first 2 years; (h) ground truth image for
the year 2011; (i) predicted results using data from the first 6 years; (j) difference image between (i,h);
(k) difference image between (l,m); (l) predicted results using data from the first 2 years; (m) ground
truth image for the year 2012; (n) predicted results using data from the first 7 years; (o) difference
image between (n,m).
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Table 2 is the evaluation index table of the prediction results of the above three
comparative experiments.

Table 2. Prediction and evaluation indexes of time series images in Col2.

Predict 2010 ACC MAE DICE

2 years image 0.74 10.65 0.9592
5 years image 0.75 8.81 0.9758

Forecast 2011 ACC MAE DICE

2 years image 0.75 14.01 0.9550
6 years image 0.76 12.62 0.9682

Predict 2012 ACC MAE DICE

2 years image 0.80 10.47 0.9447
7 years image 0.82 4.87 0.9673

Compared with directly predicting the land cover map of the next year according to
the change law of the previous year, the model built in this paper is more mobile after
learning the change law for many years. When predicting the overall and detailed coverage
changes, the change rules learned from the training set can be adaptively changed and can
be transferred to the new target image without any additional learning process to achieve
better prediction results.

4.5. Timing Length Analysis and Comparison

To analyze the influence of the time series length on the prediction results, the training
set of this section uses the time series images of the previous N years, and the same image
pair [2012, 2013] is used to predict the coverage in 2014. The dataset of experiment 3 is
Col1, N = 4, 5, 6, . . ., 18. Figure 15 and Table 3 show some comparative experimental results
when N = 4, 7, 10, 14, and 18. The results using more data have better prediction accuracy.
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Figure 15. The time series image prediction results. (a) Prediction of 2014 using previous 4 years’ data;
(b) prediction of 2014 using previous 7 years’ data; (c) prediction of 2014 using previous 10 years’ data;
(d) prediction of 2014 using previous 14 years’ data; (e) prediction of 2014 using previous 18 years’
data; (f) the difference image between (a) and true 2014 image; (g) the difference image between (b)
and true 2014 image; (h) the difference image between (c) and true 2014 image; (i) the difference
image between (d) and true 2014 image; (j) the difference image between (e) and true 2014 image.

When N is relatively small, the coverage predicted by the model is roughly similar to
the coverage in 2013, and the ability to extract the existing time series features is not strong,
so the corresponding migration is also poor. With the increase in N, the prediction result of
the model is closer to the true value image, and there is less gap in the difference image.
The prediction result of the lake center is more accurate than that of the smaller N, and the
contour is more similar.
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Table 3. Prediction and evaluation indexes of time series images in the first 4, 7, 10, 14, and 18 years
of model use.

Predict 2014 ACC MSE DICE

4 years image 0.8888 376.59 0.9595
7 years image 0.8916 363.57 0.9602
10 years image 0.8901 409.29 0.9603
14 years image 0.8915 398.75 0.9616
18 years image 0.8943 234.79 0.9636

Figure 16 is a graph showing the changing trend of ACC and DICE as N increases. It
can be seen that as N increases, ACC and DICE generally maintain an upward trend, while
MSE generally maintains a downward trend, indicating that the prediction accuracy of the
model is gradually improving. Therefore, increasing the time sequence length is beneficial
for the model to extract the temporal and spatial characteristics of the coverage, and it has
stronger mobility when applied to new data so that it can better predict the future coverage
of remote sensing images.
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Figure 16. The relationship between ACC, DICE, MSE, and time step n.

The dataset of experiment 4 is Col2, N = 5, 6, 7, 8. Figure 17 and Table 4 show the
comparative experimental results. It can be seen from the experimental results that as the
length of the time series increases, the number of samples increases, and the predicted
results are more accurate, indicating that an appropriate increase in the historical data
during the experiment can help improve the accuracy of the prediction.
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Figure 17. The time series prediction results. (a) Prediction of 2014 using previous 5 years’ data;
(b) prediction of 2014 using previous 6 years’ data; (c) prediction of 2014 using previous 7 years’ data;
(d) prediction of 2014 using previous 8 years’ data; (e) the difference image between (a) and true 2014
image; (f) the difference image between (b) and true 2014 image; (g) the difference image between (c)
and true 2014 image; (h) the difference image between (d) and true 2014 image.
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Table 4. Prediction and evaluation indexes of 5, 6, 7, and 8 year time series images used in the model.

Predict 2014 ACC MSE DICE

5 years image 0.7914 1751.81 0.9329
6 years image 0.7930 1643.69 0.9347
7 years image 0.7950 1686.09 0.9361
8 years image 0.7983 1526.30 0.9407

4.6. Data Pre-Processing Effect Verification

Experiment 5 gives a comparison of the results before and after the dataset pre-
processing. Figure 18 and Table 5 show the results of prediction using the original image
and the pre-processed dataset Col1. It can be seen from the experimental results that the
pre-processed image experimental results are more intuitive and have clear boundaries.
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Figure 18. Comparison of experimental results using pre-processed images and original images:
(a) pre-processed ground truth image for the year 2014; (b) predicted results using pre-processed
images from 5 years; (c) difference image between (a,b); (d) predicted results using pre-processed
images from 9 years; (e) difference image between (a,d); (f) predicted results using pre-processed
images from 13 years; (g) difference image between (a,f); (h) original ground truth image for the
year 2014; (i) predicted results using original images from 5 years; (j) difference image between
(h,i); (k) predicted results using original images from 9 years; (l) difference image between (h,k);
(m) predicted results using original images from 13 years; (n) difference image between (h,m).

Table 5. Prediction and evaluation indexes of the original image and pre-processed image used in
the model.

Predict 2014 ACC MSE DICE

5 years of pre-processed images 0.8896 406.49 0.9605
5 years original image 0.4024 91.16 0.8894

9 years of pre-processing images 0.8896 391.18 0.9673
9 years original image 0.3725 71.77 0.8955

13 years of pre-processing images 0.8934 226.57 0.9714
13 years original image 0.3677 77.54 0.8827

Since the unprocessed original image has more noise, the accuracy of the prediction
decreases after increasing the length of the training set, while the prediction accuracy of the
pre-processed image increases with the increase in N. It can be seen from the experimental
results that the image experimental results after data pre-processing are more intuitive, and
the boundaries are clear.
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Using the pre-processed image to train the evolution field and applying it to the
original image for prediction and simulation is a good approach to fitting real coverage
situations. The experimental results of applying the deformation field obtained from
training the pre-processed images of the first 18 time steps of Col1 to simulate the original
image are shown in Figure 19 and Table 6.
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Figure 19. Comparison of the results of the prediction experiment using the pre-processed image
and the original image for training, and the original image. (a) The result of using the original image
training and original image prediction; (b) the real image; (c) the simulation result of using the
pre-processed image training and original image prediction.

Table 6. The model uses the original image and pre-processed image training prediction evalua-
tion index.

Predict 2014 ACC MSE DICE

18 years of pre-processed images 0.6144 67.53 0.8950
18 years original image 0.4658 139.60 0.8765

The left image shows the result of training on the original image of the first 18 time
steps and testing on the original image of the last time step. The middle image shows the
ground truth image of 2014, and the right image shows the experimental result of applying
the deformation field obtained from training the pre-processed images of the first 18 time
steps of Col1 to simulate the original image of the last time step.

Based on Figure 19, it can be observed that using pre-processed images for training
and then applying the obtained evolution field to the original image for simulating actual
predictions results in better performance compared to training on the original image. The
simulation results are also better compared to using pre-processed images for testing and
are more closely aligned with the real image.

5. Discussion

U-Net is a semantic segmentation network based on fully convolutional networks
(FCN), originally designed to address segmentation tasks in medical imaging [40]. In the
field of remote sensing imagery, the U-Net network has been widely utilized for tasks
such as object detection and instance segmentation [41–44]. While U-Net-based prediction
techniques have found extensive applications in medical disease prediction, they have been
less utilized in the context of geographic information. This is mainly due to the availability
of large-scale datasets for medical diseases, whereas specific natural phenomena such as
lake boundary changes lack sufficient datasets for training. Han et al. [45], in their study
on convective precipitation nowcasting, employed U-Net to build a prediction model. The
model took radar images as inputs and transformed the prediction problem into an image-
to-image translation task in deep learning. The aforementioned research demonstrated the
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capability of U-Net as a prediction model in geographic information studies and showcased
the research prospects when focusing on specific natural phenomena.

This study demonstrates the promise of the U-Net model in the task of lake boundary
prediction through the Urmia Lake case. Its ability to automatically extract features and
its architecture, which allows for the retention of spatial information, make it well-suited
for this type of application. However, there is still room for further improvement and
exploration in this area.

Although this study can complete the prediction task for lake boundaries, its limita-
tions are strong. U-Net is a powerful architecture for spatial tasks, but predicting temporal
dependencies between consecutive images may require more complex models or ensemble
recurrent or attention-based mechanisms. In this study, the interval between data samples
is relatively long, and some details may be missed in the change rule calculated on the
change scale with a time interval of one year. In the remote sensing image, the edge of
the lake is not strictly clear, and local cloud cover may also lead to inaccurate boundary
delineation. In the data pre-processing stage, we processed the images into binary images,
strictly distinguishing the lake surface from other areas, which resulted in the loss of a lot
of land cover information. The lake surface information was also processed into an average
grayscale distribution from the center to the edge without considering the depth of the
lake and other water body features. However, the above processing can more accurately
delineate the lake boundaries, and for our research purposes, this processing method can
indeed obtain more accurate prediction results.

One potential area for future research is the integration of U-Net with recurrent neural
networks (RNNs) or other deep learning algorithms. This could improve the model’s
ability to capture the temporal dynamics of lake boundary changes, which is an important
factor in predicting future trends. In follow-up research, we will consider combining the
predictions of various U-Net models with different architectures or training strategies to
improve the accuracy and robustness of the overall predictions. From the perspective of
data, in future research, we will try to increase the data size, reduce the time interval of
time series images, and find the highest efficiency ratio between calculation and accuracy.
At the same time, the research on the prediction of lake boundary change can not only
be limited to images, but more relevant factors can be combined in future research. By
combining U-Net’s strengths in spatial feature extraction with the strengths of other models
in capturing temporal patterns, a more comprehensive and accurate prediction model
could be developed.

6. Conclusions

In this study, we design a novel prediction model of lake boundary change by com-
bining U-Net with STN, taking Lake Umir as a case study. Different from the traditional
algorithms that detect first and then predict, the proposed method uses an end-to-end
prediction approach and can visually display the spatial location information of the pre-
dicted cover at the same time. The model includes two modules: the extraction and fusion
module for extracting the features of cover change from remote sensing images and the
spatial transformation module for fitting future cover. The original tasks that need to be
completed twice are fused into a model, which improves prediction efficiency and saves
resources. At the same time, the model can adaptively change the change rules learned
from the training set and be transferred to the new target image without any additional
learning process, which has good transferability and provides a basis for the application
of the model to other cases. The experimental results show the importance of time series
length for prediction and the effectiveness of data pre-processing methods. Compared with
traditional models such as Markov models and cellular automata, the proposed model can
dig deeper into the details and automatically fit the time series data trend. In addition,
unlike existing deep learning methods, the proposed model can simultaneously detect and
predict land cover change.
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In summary, the use of deep learning models such as U-Net has great potential in land
use/cover prediction areas such as lake boundaries. The method proposed in this study
for natural lakes can predict changes in the next year with 89% accuracy using continu-
ous images of about ten years. Its ability to automatically extract elements and capture
spatiotemporal information can improve the accuracy of prediction, which is conducive
to making better land-use policy decisions. In decision-making such as lake ecological
protection, the comparison between the results after the implementation of protection
measures and the results predicted by the model can be used as an evaluation index for the
effectiveness of the measures. Future research should explore ways to further improve these
models and integrate them with other algorithms to achieve more effective predictions.
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