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Abstract: Anthropogenic land cover change is one of the primary sources of increasing carbon
emissions and affects the potential of terrestrial ecosystems to store carbon and act as carbon sinks. As
a necessary means to reduce land expansion, land-use intensification significantly impacts greenhouse
gas emission reduction and the low-carbon transition of the economy. This paper constructs a
framework for the relationship between intensive land use (ILU) and low carbon transition (LCT),
considering direct and spatially driven effects. First, this paper constructs a multidimensional
indicator to measure intensive land use and documents the spatial pattern of intensive land use
levels in China. Second, this paper assesses the spatial driving effect of intensive land use on
China’s economic low-carbon transition. Based on data from 283 Chinese cities from 2006–2019 and
using a spatial Durbin model, the study provides empirical evidence that intensive land use can
significantly promote low-carbon transition in neighboring and economically linked cities (especially
in eastern cities, large and medium-sized cities, and veteran economic circles). Tests introducing
exogenous policy shocks further confirm the robustness of the findings. In addition, industrial
structure transformation and technology spillovers are identified as the dual mechanism channels of
intensive land use for low-carbon transition in China, and the spatial driving effect on neighboring
cities attenuating with geographic distance is also confirmed.

Keywords: intensive land use; low carbon transformation; industrial structure transformation;
technology spillovers; national and regional policy; land space planning

1. Introduction

Global warming caused by greenhouse gas (GHG) emissions seriously threatens the
natural and social environments on which human beings depend for survival [1,2]. The
series of chain reactions across ecosystems triggered by greenhouse gases has become a
massive challenge for all humanity [3,4]. The International Energy Agency (IEA) estimates
that global energy-related carbon dioxide (CO2) emissions will grow by 0.9% in 2022, reach-
ing a record high of over 36.8 Gt [5]. Among them, carbon dioxide emissions from energy
combustion and industrial processes account for 89% of total energy-related greenhouse
gas emissions; methane from energy combustion, leakage, and venting accounts for 10%.
They are all mainly from onshore oil and gas field operations and the production of coal
for power. Compared to 1880, 2022 is also the fifth hottest year globally, fraught with
extreme weather events [6,7]. As the country with the most rapid economic development
in the 20th century, China has become the world’s largest emitter of carbon dioxide since
2007, with carbon emissions rising from 8.83 billion tons in 2011 to 9.90 billion tons in
2020 [8]. As the urbanization rate of the population rises (to 64.72% in 2021), large-scale
migration and the concentration of human activities will result in continued land expansion
and land carbon emissions. China is actively taking on the corresponding obligations to
mitigate global warming, noting that it should effectively promote carbon peaking and
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carbon-neutral actions. In this context, China urgently needs to find breakthrough solutions
to accelerate economic activities’ low-carbon transition to control the increasingly severe
climate problem [9].

Since the 19th century, land use has influenced terrestrial ecosystem carbon balance
through changes in land cover status and the human activities it hosts [10]. It has been
recognized as an essential factor influencing regional carbon source/sink patterns [11].
From 1750 to 2011, an estimated 180 Gt has been released globally due to deforestation
and other land use changes [12]; more than 66% of energy and 80% of carbon emissions
may be related to the scale and productivity of land use [13], and the loss of carbon
stocks in terrestrial ecosystems due to the occupation of forest resources worldwide is the
second largest source of carbon emissions [14]. The loss of ecosystem carbon stocks will be
exacerbated by unintentional land expansion, and the overconcentration of human activities
brought about by expansion will also generate high consumption and emissions [15]. As
the world’s largest carbon emitter, land use carbon emissions have become an essential
source of carbon emissions in China, reaching 3.2 × 109 t in 2015, an increase of about
2.45 times compared with 1999. As of 2020, China’s land-use carbon emissions will remain
high (see Figure 1). Assuming that the 1.5 ◦C global temperature control target of the
Paris Agreement is to be achieved, further attention needs to be paid to the critical role
of intensive land use in the low-carbon transition of the economy. China is implementing
policy elements of intensive land utilization to promote a low-carbon transition in economic
development. In particular, since the promulgation of the Regulations on the Economical
and Intensive Utilization of Land in 2014, land regulation for carbon emission reduction has
become an important means of promoting grassroots efforts to achieve carbon neutrality
targets. The regulation encourages small-scale centralized and intensive land use and
emphasizes green and livable land use [16]. Zhao (2021) assessed the carbon emission
reduction contribution of the Outline of China’s Overall Land Use Plan (2005–2020). Based
on 2005, optimizing the land use structure will contribute 27.6% to the achievement of
the target of carbon emission reduction of 40% to 45% per unit of GDP in 2020 [17]. In
the context of the country’s emphasis on coordinated “economic-ecological” development,
intensive land use is crucial for China to achieve the goal of “carbon neutrality” and
low-carbon transition.
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In China, fiscal revenue from land concessions has long been local governments’
primary income source. To solve the fiscal balance gap, some local governments have been
keen to attract industrial investment by taking advantage of their resource endowment
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and geographic location [18], dramatically expanding industrial scale while promoting
development. This process has not only resulted in massive waste of urban land and
rapid urbanization but also led to differences in the spatial pattern of land use carbon
emissions [19]. With China’s coordinated economic development strategy deepening,
the flow of technology, personnel, capital, and other factors between regions has further
accelerated. The spatial correlation of economic development, energy consumption, and
agricultural activities has broken through the limitations of geographic location. The spatial
correlation of land-use carbon emissions will also be further complicated. Under the spatial
differences in population distribution and economic resources, the differences in land
carbon emissions of each province in China are apparent; carbon emissions are high in the
eastern coastal areas (Figure 1). In this context, it is significant to carry out a study on the
spatial differences in carbon emissions from land use for the synergistic emission reduction
of regional land use.

As land is essential for population, industry, transportation, buildings, and energy
use, can improved intensive land use help promote China’s low-carbon transition? More-
over, in what ways does it achieve “economic-ecological” synergistic development? Given
China’s goal of achieving carbon neutrality by 2050, these questions’ conceptual and ap-
plied consequences are critical to assess. Existing studies have intensely discussed the
relationship between land use and carbon emissions. First, some scholars have expressed
the hidden concern that land expansion may lead to increased carbon emissions in earlier
studies [20,21], arguing that these crude features are an essential cause of higher envi-
ronmental costs and unsustainable problems [22,23]. Some scholars have also tested the
relationship between land use structure and carbon emissions [24]. It is pointed out that
the structural imbalance of ecological land, agricultural land, and urban land [25], as well
as the increase in the proportion of urban built-up areas [26,27], will lead to a more obvious
greenhouse effect. Then, some scholars explored the environmental benefits of optimizing
land use. For example, Xie et al. (2018) pointed out that improving industrial land use
efficiency at the national level contributes 37.52% to the total CO2 emission reduction, in
which R&D investment in intensive land use is the most effective way to promote emission
reduction [28]. Additionally, Goh et al. (2018) concluded that decarbonizing land use
can be an effective method of reducing carbon emissions [29]. These conclusions are also
recognized by scholars such as Peng et al. (2022) [30] and Zhang et al. (2023) [31]. However,
some scholars, such as Zhu et al. (2022), believe that China’s current land use optimiza-
tion has caused a greater degree of carbon emissions [32]. Scholars have only analyzed
the impact of optimized land use on the intensity and efficiency of carbon emissions in
isolation, and their views have not yet reached a consensus. Therefore, despite the intense
academic discussion and research on these issues so far, there still exists a vast research
space, such as the characteristics of spatial distribution, direct and spillover effects, and
impact mechanisms, which constitute the initial motivation of this study.

Based on the consideration of breaking through the limitations of the existing literature,
we decided to identify and assess the driving effect of land intensification on China’s low-
carbon transition from a spatial perspective and evaluate the mechanism of its action in
terms of both green upgrading of industries and clean technology spillovers (Figure 2). The
possible marginal contribution consists of the following three points. Firstly, we constructed
a framework for the relationship between land use intensification and low carbon transition
considering both direct and spatial driving effects and numericized land use intensification
and low carbon transition in the form of multiple composite indicators. Compared with
traditional studies, we provide a more comprehensive analysis from a spatiotemporal
perspective (i.e., spatial distribution, spatial autocorrelation, evolution, spillover effects,
spatial decay, and spatial heterogeneity). Secondly, compared with the traditional single
research method, we adopt the exogenous policy shock test to support the conclusion of
the driving effect and examine the dual channels of influence of land intensification and
low-carbon transition from the dual perspectives of green transformation of industrial
structure and clean technology spillovers, which expands the empirical research in related
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fields. Finally, we provide practical policy recommendations for policymakers regarding
the efficiency of low-carbon economies and the focus on green, livable, and efficient living
and production environments in emerging countries such as China.
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2. Mechanism and Research Hypothesis

ILU is a critical way to build an urban ecological civilization, focusing on conservation,
efficiency, and ecology. Economic green transformation is the primary way to realize the
goal of sustainable development, focusing on economic efficiency and carbon reduction [33].
Compared with traditional land use, ILU embodies the concept of scientific and clean
development. Whether it is to reduce emission sources or increase carbon sink absorption,
ILU plays an important role [34]. The mechanism between ILU and China’s low-carbon
transition can be analyzed in economic and ecological systems.

2.1. Promoting Effect of Intensive Land Use on Low-Carbon Transition

First, we consider the economic growth effect. ILU is to increase the input of factors
such as capital, labor, and technology on the urban land stock and improve land use
efficiency through rational layout and optimization of land use structure to promote
sustainable development [35]. According to the law of increasing and decreasing land
remuneration, before reaching the highest point of remuneration, the more capital and
labor force invested in the land per unit area, the higher the economic output obtained,
that is, the higher the intensity of land use and development, the higher the contribution to
economic growth [36].

Second, we consider the carbon emission reduction effect. At the ecosystem level, ILU
corresponds to the impact of land use change on soil carbon stock and vegetation carbon
stock. According to the land use classification, construction land is the primary carbon
source, while ecological and agricultural land are essential sources of carbon sinks. ILU
effectively reduces the conversion of agricultural and ecological land, such as garden land,
forest land, and grassland, to construction land and increases carbon sink absorption within
the ecosystem [37]. In addition, at the economic system level, with the strengthening of land
use constraints, low energy-consuming technologies, enterprises, and industrial chains will
be “squeezed out”, thus reducing carbon emissions. Compact land space pattern facilitates
public transportation use and reduces infrastructure construction waste [38]. It helps to
improve the efficiency of centralized energy supply and utilization and reduces the growth
of carbon sources from land construction.

2.2. Spatial Spillover Mechanism

According to the theory of agglomeration effect, the increased density and spatial
proximity of economic activities on land contribute to the economies of scale in production
and transactions and resulting spillovers on a local scale [39]. Considering that carbon
emissions are mainly influenced by socioeconomic drivers such as the stage of economic
development, energy resource endowment, and consumption patterns. Land use mode,
scale, structure, and intensity are closely related to industrial development status and tech-
nological progress [40]. Therefore, intensive land use affects the low-carbon transformation
of neighboring cities mainly by influencing the socioeconomic constitutive factors reflected
in industrial development and technological progress [41,42].

The mediating role of industrial structure transformation. On the one hand, as the
land use pattern constrains the industrial layout, the crude land approach is challenging
to promote the automatic transformation of industry. The theoretical connotation of ILU
includes the principles of “structural optimization” and “market allocation.” Conversely,
ILU encourages the development of resource-saving and environment-friendly industries,
which helps cities establish a modernized industrial system characterized by low energy
consumption and emissions [40]. On the other hand, due to market competition and
the price mechanism, industrial agglomeration forces enterprises to improve production
technology and techniques and promotes upgrading the industrial chain layout [43]. As
a result, with the gradual withdrawal of resource-intensive enterprises, the utility of
energy utilization has been enhanced. The booming development of high-tech enterprises
and service industries is conducive to easing resource dependence and environmental
pressure. This transformation of industrial structure promotes the diversified division



Land 2023, 12, 1578 6 of 26

of labor among enterprises, which helps the low-carbon production links and industrial
clusters among cities to generate symbiosis, complement each other, and promote the
low-carbon transformation and development of neighboring cities [44].

The intermediary role of technology spillover. The agglomeration economy formed
by ILU makes cities accumulate innovative resources and also promotes technological
overflow from cities. The theory of ILU includes the principles of “conservation first”
and “reform and innovation,” which help accelerate the R&D, innovation, and application
of production, environmental protection, and energy-saving technologies and generate
technological factor overflows from the region to neighboring or related regions. The
overflow accelerates the learning and disseminating of green technologies and innovation
among cities. Neighboring cities at this time can realize imitation and secondary innovation
with the help of technological overflow, thus promoting green transformation.

Overall, spatial spillovers from economic systems and ecosystems diffuse the effects
of NTUs on local industrial restructuring and technological spillovers to neighboring
regions, which ultimately manifests itself in the diffusion of local ILUs’ driving effects
on neighboring regions’ LCT. The above spillover mechanisms accumulate layer by layer,
forming the total effect of ILU on the overall regional LCT.

Hypothesis (H1). Intensive land use drives low-carbon transition and can promote neighboring
cities to achieve low-carbon transition goals.

Hypothesis (H2). Intensive land use can promote low-carbon transition through industrial
structure transformation and technology spillover.

2.3. Spatial Decay Mechanism

Most studies recognize that spillover effects are characterized by spatial decay. It is
because the cost of logistics and information exchange will rise with increased geographical
distance and the restriction of administrative boundaries. As a result, the spatial spillover
effect of ILU may show a specific attenuation pattern and boundary effect as the possibility
of factor spillover decreases.

First, we consider the role of geographic distance. Studies have confirmed that infor-
mation dissemination shows the law of attenuation with increased geographical distance.
As the distance between neighboring cities and knowledge-center cities increases, the
efficiency of information dissemination decreases [45]. Furthermore, increased geographic
distance leads to interfirm transaction costs, transportation costs, and risk control. This
former is a function of the geographic distance between the cooperating parties [46,47],
and the latter is reflected in the increased risk of breach of contract and the reduced level
of trust, among others. These are not conducive to inter-city technology, exchange, and
cooperation, leading to spatial limitations in the spillover effects of ILU on low-carbon
transitions in neighboring cities.

Second, we consider the role of administrative boundaries. Local governments in
China can deeply participate in the urban economic growth model, which provides many
administrative and financial resources needed to promote urban development. However,
this model may cause local governments to ignore the big picture of policies and hinder
the joint promotion of inter-city policies. Specifically, local governments may impose
explicit or implicit administrative restrictions on factor mobility to protect local markets.
Without an effective inter-regional coordination mechanism, it is not easy to realize the
effective interconnection of cross-regional infrastructure. It will not be conducive to the
optimal allocation of resources and the dissemination of advanced technologies, hindering
interregional cooperation in production links and industrial synergistic development and
causing the spatial spillover of ILU to form a specific border effect.

Hypothesis (H3). Influenced by geographic distance and administrative boundaries, there is
spatial attenuation in the spillover effect of intensive land use on low-carbon transition.
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3. Materials and Methods
3.1. Data Sources

This paper takes Chinese prefecture-level cities as the research object. After deleting
the samples with missing severe data, we selected 283 prefecture-level cities in China
(except Tibet, Hong Kong, Macao, and Taiwan) from 2006 to 2019 as the research sample.
Variable data were obtained from China Urban Statistical Yearbook (2007–2020), China Sta-
tistical Yearbook (2007–2020), and statistics published by the National Bureau of Statistics.
Green patent authorizations were obtained from the China Research Data Service Platform
(CNRDS). In addition, we verified all data obtained to ensure accuracy, and some missing
values were supplemented by interpolation. Some key variables were logarithmized to
ensure consistent statistical caliber.

3.2. Research Method
3.2.1. Spatial Autocorrelation Test

We refer to the study of Elhorst (2014) [48] for the first step of testing the applicability
of the spatial measurement model to determine the spatial correlation of the variables. We
choose Moran’s I index, which is more common in the existing literature, to determine
whether the spatial autocorrelation of low-carbon transition exists in each city. In addition,
we also chose to use Geary’s C index to conduct the spatial autocorrelation test from a global
perspective. It is more sensitive than Moran’s I index in the localized test (a value less than
1 indicates a positive correlation).

Moran′s I =
n

∑
i=1

n

∑
j=1

Wij(Xi − X)(Xj − X)/S2
n

∑
i=1

n

∑
j=1

Wij (1)

Geary′s C = (n− 1)
n
∑

i=1

n
∑

j=1
Wij(Xi − Xj)

2/2

(
n
∑

i=1

n
∑

j=1
Wij

)[
∑n

i=1 (Xi − X)
2
]

S2 =
n
∑

i=1
(Xi − X)

2/n ; X = 1
n

n
∑

i=1
Xi

(2)

where Xi and Xj are the actual observed values of regions “i” and “j”, respectively. Wij is
the spatial weight matrix. n represents the total number of geography units that refers to
the sample cities.

3.2.2. Spatial Econometric Models

First, we construct neighborhood spatial weights (Wadj), inverse distance spatial weight
matrix (Wdis), economic spatial weight matrix (Wecon), and economic distance spatial weight
matrix (Wecondis) from two perspectives: geographic distance and economic distance, re-
spectively. For the geographic distance spatial weight matrix, the closer the distance, the
greater the influence of the neighborhood. For the economic distance spatial weight matrix,
cities with higher economic levels significantly influence the neighborhood more than cities
with lower economies.

wadj =

{
0 (urban area i, j are not adjacent)
1 (urban area i, j are adjacent)

(3)

wdis =

{
0 (i 6= j)
1

dij
( i = j),

dij is the distance between two urban centers (4)

wecon =

{
0 (i 6= j)
1

|Xi−Xj| ( i = j), X is the economic aggregate, measured using GDP (5)

wecondis = aWdis + bWecon, a = b = 0.5 (6)
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Spatial econometric model was used to identify and verify the spatial spillover effects
of ILU on low-carbon transition. The spatial econometric model is constructed as follows:

LCTit = α + ρ
N
∑

j=1,j 6=i
ωijLCTjt + βXit + θ

N
∑

j=1
ωijXijt + ϕi + νt + εit

εit = ψ
N
∑

j=1,j 6=i
ωijε jt + µit; µit ∼ N(0, σ2 I)

(7)

where LCT denotes the urban low-carbon transition variable; X is each explanatory variable,
including ILU; w is the spatial weight matrix; ρ is the coefficient of the effect of the local
explanatory variable on the explanatory variables in other urban areas. When ρ > 0, it
indicates the spatial spillover effect between adjacent regions; when ρ < 0, it indicates
the spatial negative effect between adjacent regions. β, θ are the parameter estimates of
X explanatory variables; ϕ and ν denote the area effect and time effect, respectively; ψ
denotes the spatial correlation between residuals; ε is the random error term; i, t are the
area individual and time dimensions.

In Equation (7), if ρ = 0, θ = 0, ψ = 0, then Equation (7) is the spatial lag model (SLM),
if ρ = 0, θ = 0, ψ 6= 0, then it is the spatial error model (SEM), if ρ 6= 0, θ 6= 0, ψ = 0, then it is
the spatial Durbin model (SDM). In this paper, the Wald test and LR test are used to screen
SLM, SEM, and SDM. If the tests both reject the original hypothesis of setting H0: θ = 0 and
H0: θ + ρβ = 0, SDM is selected, and one of the original hypotheses is accepted, then the
choice is made between SLM and SEM.

When the spatial Durbin model (SDM) was selected for the model, the direct, indirect,
and total effects proposed by LeSage & Pace (2010) were used to further examine the spatial
effects of the impact of ILU on urban low-carbon transition [49]. Using Yt to represent the
LCT vector, the SDM model is rewritten into the following vector form.

Yt = (1− ρW)−1(βXt + θWXt) + (1− ρW)−1µt (8)

In Equation (8), we derive the partial differential matrix by taking the k explanatory
variable as the independent variable. The mean of the diagonal elements represents the
average effect of the change in the explanatory variables on the explanatory variables of
local areas, which is the direct effect. The mean of the non-diagonal elements represents the
average effect of the change in the explanatory variables on the variables of the explanatory
variables in other urban areas, which is the indirect effect.

[
∂Y

∂X1k
. . .

∂Y
∂XNk

]
t
= (1− ρW)−1


βk ω12νk . . . ω1Nνk

ω21νk βk . . . ω2Nνk
...

...
. . .

...
ωN1νk ωN2νk . . . βk

 (9)

3.2.3. Spatial Difference-in-Differences Model

According to the guideline of the Ministry of Land and Resources of China, the
economic and intensive use of land is a strategic choice for new urbanization. Land-
use intensification is an important policy tool in promoting the implementation of new
urbanization. Therefore, this paper considers the new urbanization contention policy a
proxy variable for ILU. In this study, we combine the difference-in-differences model (DID)
with the spatial econometric model and relax the original assumption that the experimental
group will not affect individuals in the control group. As a result, we construct the spatial
difference-in-differences model (SDID) as follows:

CEEit = γ0 + ρ1

N

∑
j=1,j 6=i

ωijCEEjt + γ1 policyit + θ1

N

∑
j=1

ωij policyijt + γ2Controlit + θ2

N

∑
j=1

ωijControlijt + ϕi + νt + εit (10)
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where policy denotes the exogenous policy shock of “new urbanization”; γ1 denotes the im-
pact coefficient of policy on local low-carbon economic transition; θ1 denotes the estimated
coefficient of policy on low-carbon economic transition in neighboring areas; the rest of
variables are explained in the same way as Equation (7).

3.3. Research Method
3.3.1. Explained Variable

Low-carbon transition (LCT) is the target explanatory variable. Considering the low-
carbon transition (LCT) should balance carbon dioxide emission reduction and economic
development [50], which can obtain the maximum economic output with the least fac-
tor input and the lowest carbon emission. Therefore, this paper uses the efficiency tool
to represent the urban low-carbon transition. Stochastic frontier analysis utilizing the
“input-output” paradigm can effectively deal with efficiency issues. In this study, specific
indicators are selected with reference to existing studies [51]. Among them, input indicators
include energy, labor, and capital, using the urban electricity consumption to measure the
electricity input, the total urban employment to measure the labor input [52], and the urban
capital stock based on the perpetual inventory method to measure the capital input [53].
Output indicators include desired output and non-desired output, and the urban GDP is
used to measure the desired output of the city. The indicator system is shown in Table 1.

Table 1. Indicator system of low-carbon transition.

Indicator Variable Description

Input

Electricity Urban total social electricity consumption
(Unit: 10,000 kw-h)

Labor Total employment in the city (Unit:
10,000 persons)

Capital Urban capital deposit (Unit: 10,000 yuan)

Desired output Economic efficiency output Urban GDP (Unit: 10,000 yuan)

Non-desired
output Carbon dioxide emissions Urban CO2 emissions (Unit: 10,000 tons)

We also refer to the IPCC 2006 methodology to measure the undesired urban output
using the carbon emissions generated during the consumption of natural gas, liquefied
petroleum gas, electricity, and thermal energy for the whole city community [54]. Combined
with the methodology of Tone and Tsutsui (2010) [55], we measure CCE using an excess
efficiency model (EBM).

r∗ = min

(
θ − ε−∑m

i=1

ω−i s−i
xi0

)
/

[
ϕ + ε+

(
∑s

r=1
ω+

r s+r
yr0

+ ∑q
p=1

ωu−
p su−

p

up0

)]
(11)

s.t.


∑n

j=1 xijλj + s−i = θxi0 (i = 1, 2 . . . , m)

∑n
j=1 yrjλj − s+r = θyr0 (r = 1, 2 . . . , s)

∑n
j=1 upjλj + s−p = θup0 (p = 1, 2 . . . , q)

λj ≥ 0; s−i , s+r , s−p ≥ 0

(12)

In Equation (11), r* represents the optimal efficiency value of the LCT measured by the
super total factor productivity model. There are m + 1 parameters in this model. x, y and u
represent the inputs, expected outputs, and unexpected outputs of DMU0, respectively, θ
is the radial efficiency value; s represents the input slack vector. ε is a core parameter that
determines the importance of the non-radial part of the computation of the efficiency value
of r*, and it takes the value in the range of [0, 1]. When ε = 0, it is equivalent to the radial
model, and when taking the value of 1, it is equivalent to the SBM model. In Equation (12),
λ denotes the weight coefficient.
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3.3.2. Core Explanatory Variables

According to the different construction bases and standards of the evaluation index
system, the evaluation index system mainly includes the “input-output”, the “economic-
social-ecological”, and the “intensive-efficient-coordinated” index system. In selecting
indicators, many scholars believe that the number of indicators is lower than possible
but should be reasonably screened. Evaluation methods mainly include multiple single-
indicator methods, factor synthesis evaluation methods, fuzzy synthesis evaluation meth-
ods, ideal value correction models, etc. Considering that intensive land use is a dynamic
process, the degree of intensification can be effectively enhanced by improving the land
use intensity and optimizing the land output efficiency and land use structure within a
certain period. Based on the principle of dominant factors and local conditions, this paper
selects indicators according to the evaluation system of “economy-society-ecology.” Specific
indicators and their measurement methods are shown in Table 2.

Table 2. Indicator system of intensive land use.

Primary Indicators Description (Unit) Indicator Attributes

Land use density

Built-up area/total urban area (%) Negative
Capital stock/built-up area (yuan/KM2) Positive

Road area/built-up area (m2/KM2) Positive
House area/built-up area (m2/KM2) Positive

Urban population/built-up area
(10,000 people/KM2) Positive

Employment/built-up area (person/KM2) Positive

Economic and social
efficiency

GDP/built-up area (yuan/KM2) Positive
Non-agricultural industry output value/built-up

area (yuan/KM2) Positive

General income of fiscal budget/built-up area
(yuan/KM2) Positive

Disposable income of urban residents/built-up
area (yuan/KM2) Positive

Built-up area/urban resident population
(m2/person) Negative

Ecological
benefits

Per capita green area (m2/person) Positive
Green coverage rate of urban built-up areas (%) Positive

Industrial sewage discharge per capita
(ton/person) Negative

In this paper, the TOPSIS model is chosen to measure the ILU composite indicators.
TOPSIS model is an effective method in multi-objective decision analysis. It is a ranking
method close to the ideal solution, which ranks the indicators by detecting the distance
between the evaluation object and the optimal solution and the worst solution. In the calcu-
lation process, it is necessary to normalize the positive and negative indicators separately.

Ci =

√√√√ m

∑
j=1

(Zminj − Zij)
2/(

√√√√ m

∑
j=1

(Zmaxj − Zij)
2 +

√√√√ m

∑
j=1

(Zminj − Zij)
2) (13)

Zij = Xij/

√
n
∑

i=1
X2

ij or Zij =
1

Xij
/

√
n
∑

i=1

(
1

Xij

)2

Z+ = (Zmax1Zmax2Zmax3 . . . Zmaxm)
Z− = (Zmin1Zmin2Zmin3 . . . Zminm)

(14)

where n is the number of cities participating in the evaluation; m is the number of evaluation
indicators. Ci denotes the proximity of evaluation object i to the optimal solution, and
finally, the comprehensive evaluation results of ILU in Chinese cities are obtained by sorting
them according to the size of Ci.
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3.3.3. Control Variables

In this study, other factors that may affect the low-carbon urban transition are included
in the empirical model in order to mitigate omitted variable bias as much as possible. The
main ones include. For environmental regulation (ER), we choose three indicators: sulfur
dioxide removal rate (industrial sulfur dioxide removal/industrial sulfur dioxide genera-
tion), industrial soot removal rate (industrial soot removal/industrial soot generation), and
comprehensive industrial solid waste utilization rate (comprehensive industrial solid waste
utilization/(comprehensive industrial solid waste generation + comprehensive utilization
of previous years’ storage)), and use the entropy value method to calculate the intensity
of environmental regulation. For the annual average temperature (TEM), we used the
cumulative daily temperature average to represent this variable. Openness to foreign
investment (OPEN), we use the annual real foreign investment (converted to RMB based
on the average RMB exchange rate) as a share of GDP. Government intervention (GOV), we
use the share of fiscal expenditure net of science and education in total fiscal expenditure.
In industrial agglomeration (AGG), we use the Location Quotient method to calculate
the manufacturing agglomeration status of each city. Marketization (MARK), which we
measure using the share of self-employment and private employment in total employment.
Financial development (FIAN), which we measure using the year-end loan balance as a
share of GDP.

3.3.4. Other Variables

1. Instrumental variable

In this study, we will further examine the implementation effect of the new urbaniza-
tion pilot policy (Policy) in the robustness test. In 2013, China established a new “people-
oriented” urbanization policy. In 2015 and 2016, China’s National Development and Reform
Commission (NDRC) announced three batches of comprehensive national pilot projects
for new urbanization. Since then, Chinese government departments have continued to
improve the program and expand the pilot project scope into developing replicable and
replicable experiences. This study assigns a value of 1 to the approved pilot cities (ex-
perimental group) and 0 to the unapproved non-pilot cities (control group), denoted as
Treatedi. Among the pilot cities, this study assigns a value of 1 to the year in which the pilot
cities are approved and subsequent years and 0 to the remaining years. All year’s corre-
sponding to the non-pilot cities are assigned a value of 0 and denoted as Timet. In this case,
Policyit = Treatedi ∗ Timet.

2. Channel variables

Based on the theoretical analysis in the previous subsections, the two key mechanism
variables for channel analysis are industrial structure transformation (IS) and technology
spillover (TS).

Industrial structure transformation (IS). The upgrading of industrial structures to-
wards cleanliness is the key to realizing the goal of green development. The current
indicators for industrial structure upgrading mainly use internal structure change, energy
consumption per unit GDP of industry, and product sales of pollution-intensive industries.
We utilize the entropy value method to determine the degree of cleaner transformation of
industrial structure. In this paper, we refer to Zhang et al. (2023) to construct the indicator
system from two aspects of clean energy consumption and clean production [31]. Clean
energy consumption is measured by the ratio of total industrial energy consumption to
industrial added value; clean production is expressed by the ratio of regional industrial
added value to carbon emissions. Through the dimensionless quantization of the indicators,
the entropy value method is then used to identify the degree of cleaner transformation of
the industrial structure.

Technology spillover (TS). Generally speaking, due to China’s imperfect patent guar-
antee mechanism and relatively backward R&D capability, it is difficult for enterprises
to convert R&D inputs into green innovation outputs. In contrast, the number of green
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patents can reflect the actual innovation outputs more objectively. We use the number of
green patent acquisitions obtained in one year as a proxy variable for technology spillovers.

The results of descriptive statistics for each variable are shown in Table 3.

Table 3. Descriptive statistics of variables.

Variable Mean N SD Min p25 p50 p75 Max

LCT 0.500 3962 0.150 0.130 0.400 0.480 0.580 1.160
ILU 0.0800 3962 0.0700 0.0100 0.0500 0.0600 0.100 0.630
ER 0.610 3962 0.200 0.0600 0.460 0.660 0.760 0.990

TEM 14.60 3962 5.100 −1.090 10.91 15.54 17.90 25.68
OPEN 1.900 3962 1.980 0 0.460 1.280 2.690 15.32
GOV 0.800 3962 0.0400 0.610 0.780 0.800 0.830 0.980
AGG 0.860 3962 0.480 0.0200 0.520 0.770 1.140 3.050
MAK 0.480 3962 0.140 0 0.380 0.480 0.580 0.940
FIAN 0.880 3962 0.560 0.0800 0.540 0.710 1.010 9.620

4. Results
4.1. Baseline Regression Analysis
4.1.1. Spatial Autocorrelation Test and Spatio-Temporal Distribution

We calculated the spatial correlation of LTC in China using ArcGis 10.2 software. As
shown in Appendix A Table A2, the spatial correlation indices were significant for all years.
Among them, the global Moran’s I value are all greater than zero, and the Geary’s C values
are all within the interval [0, 1]. It indicates a significant positive spatial correlation of LCT
at the four-city level in China. In the time dimension, the global Moran’s I index increases
yearly, revealing that the spatial correlation of low carbon transition among cities has been
strengthened year by year in recent years.

4.1.2. Baseline Result

We first performed the Wald and LR tests, and the results showed that both passed
the 1% significance test. This result rejects the original hypothesis of using the SLM or SEM
model, indicating that the spatial error and lag terms exist simultaneously. Therefore, we
use the spatial Durbin model for the empirical analysis. The Hausman test results pass the
1% significance test, indicating that the selection of the fixed-effects model is consistent
with the model set. Table 4 reports the regression results of the spatial Durbin model for the
four spatial weight matrices (regression results of Equation (7)). First, the coefficient of the
effect of ILU on urban low-carbon transition is significantly positive under all four weights.
It indicates a significant positive relationship between ILU and urban low-carbon efficiency.

Second, the results from the decomposition coefficients are shown. The results in
column (2) of Table 4 show that the estimated coefficient of the indirect effect of ILU is
1.995 under the neighboring weights, which is significantly positive at the 1% statistical
level. It indicates that ILU contributes to the local low-carbon transition and has a significant
positive spatial spillover effect on the low-carbon transition of cities adjacent to the local
one. The results from column (5) show that the indirect effect of ILU under geographical
weight is 8.195 and passes the significance level test at the 1% level. The results in columns
(8) and (11) show that the indirect effect of ILU under the economic weight is 3.710, and
the indirect effect of ILU under the economic distance weight is 8.224. Both coefficients are
significant at the 1% level. Specifically, ILU has a significant positive spillover effect on
urban low-carbon transition regardless of the spatial weights used.

Finally, in terms of coefficient magnitude, the indirect effect of ILU on urban low-
carbon transition shows a consistent feature across all four spatial weights, i.e., the indirect
effect coefficient is higher than the direct effect coefficient. It indicates that we need to test
the relationship between ILU and urban low-carbon transition based on the perspective of
spatial spillover. This facilitative spillover effect has a stronger explanatory power in the
total effect.
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Table 4. Results of spatial spillover effects.

Panel A: Results of Adjacent Space Weights and Distance Spatial Weights.

Variable

Wadj (Model 1) Wdis (Model 2)

(1) (2) (3) (4) (5) (6)

LR_Direct LR_Indirect LR_Total LR_Direct LR_Indirect LR_Total

ILU 0.6155 *** 1.9447 *** 2.5602 *** 0.5692 *** 8.1948 *** 8.7640 ***
(−4.54) (−8.983) (−11.114) (−4.192) (−4.726) (−5.102)

ER −0.0363 ** 0.0779 ** 0.0416 −0.0395 ** 0.7691 *** 0.7296 ***
(−2.226) (−2.439) (−1.215) (−2.438) (−2.833) (−2.683)

TEM −0.0108 −0.0155 −0.0263 *** −0.0086 −0.0402 −0.0489
(−0.971) (−1.311) (−4.250) (−0.923) (−1.110) (−1.627)

OPEN −0.0032 * −0.0016 −0.0048* −0.0043 ** 0.0317 * 0.0274 *
(−1.726) (−0.526) (−1.753) (−2.449) (−1.932) (−1.718)

GOV −0.4000 *** 0.3100 ** −0.09 −0.3665 *** −0.011 −0.3775
(−4.669) (−2.311) (−0.668) (−4.290) (−0.013) (−0.461)

AGG −0.0260 *** 0.0162 −0.0098 −0.0326 *** 0.1029 0.0703
(−3.490) (−1.215) (−0.741) (−4.406) (−1.28) (−0.887)

MAK 0.0301 0.0093 0.0394 0.0159 0.3887 0.4046
(−1.206) (−0.201) (−0.79) (−0.64) (−1.061) (−1.102)

FIAN −0.0383 *** −0.0549 *** −0.0932 *** −0.0324 *** −0.4038 *** −0.4362 ***
(−5.824) (−4.227) (−7.246) (−4.928) (−4.248) (−4.628)

City FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES

Observations 3962 3962 3962 3962 3962 3962
R-squared 0.542 0.572 0.572 0.445 0.673 0.491

Panel B: Results of Economic Spatial Weights and Economic Distance Spatial Weights.

Variable

Wecon (Model 3) Wecondis (Model 4)

(7) (8) (9) (10) (11) (12)

LR_Direct LR_Indirect LR_Total LR_Direct LR_Indirect LR_Total

ILU 0.4631 *** 3.7100 *** 4.1732 *** 0.5688 *** 8.2240 *** 8.7928 ***
(3.532) (8.331) (8.967) (4.189) (4.730) (5.105)

ER −0.0452 *** 0.1454 ** 0.1002 −0.0395 ** 0.7717 *** 0.7323 ***
(−2.791) (2.473) (1.562) (−2.435) (2.835) (2.686)

TEM −0.0246 *** 0.0446 ** 0.0200 −0.0087 −0.0399 −0.0485
(−4.495) (2.326) (0.946) (−0.931) (−1.096) (−1.612)

OPEN −0.0025 −0.0189 *** −0.0214 *** −0.0043 ** 0.0320 * 0.0277 *
(−1.538) (−3.008) (−3.189) (−2.445) (1.942) (1.728)

GOV −0.2572 *** −0.9358 *** −1.1930 *** −0.3656 *** −0.0158 −0.3814
(−3.249) (−3.884) (−4.579) (−4.280) (−0.019) (−0.465)

AGG −0.0230 *** 0.0713 *** 0.0483 * −0.0327 *** 0.1036 0.0709
(−3.244) (2.692) (1.750) (−4.411) (1.285) (0.893)

MAK 0.0255 −0.0119 0.0136 0.0159 0.3878 0.4037
(1.031) (−0.150) (0.155) (0.639) (1.057) (1.098)

FIAN −0.0493 *** 0.0067 −0.0426 ** −0.0324 *** −0.4051 *** −0.4376 ***
(−7.795) (0.341) (−2.043) (−4.928) (−4.247) (−4.625)

City FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES

Observations 3962 3962 3962 3962 3962 3962
R-squared 0.470 0.309 0.498 0.527 0.559 0.558

Note: The numbers in parentheses are robust t-statistics. ***, ** and * represent significance levels of 1%, 5% and
10%, respectively.

Regarding the effects of other control variables: Environmental regulation (ER) shows
consistent characteristics across the four spatial weights. Its direct effect coefficient (effect
on local low-carbon transition) is significantly negative yet. However, the indirect effect
coefficient (effect on the low-carbon transition of neighboring and associated cities) is
significantly positive. The possible reason for this is that environmental regulation policies
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emphasize the role of regulation, which reduces the total local pollution index while
also impacting the development of local industries, thus showing a negative effect on
low carbon efficiency. Further, under a more stringent environmental regulation policy,
polluting industries in cities are at risk of closing down. It can force the development of
local clean technologies. With the spillover of knowledge and technology, neighboring
or associated cities can promote low-carbon transition development through secondary
innovation and technology imitation. The indirect effect of government intervention
(GOV) is significantly positive (0.310) with the neighboring weights and significantly
negative (0.936) with the economic weights. The possible reason is that geographical
proximity increases the “demonstration effect” of urban areas. The prosperity of local
economic development can lead to technological progress and knowledge accumulation
in neighboring cities, thus promoting the low-carbon transition of neighboring cities.
Regarding economic distance, the development of local cities tends to eliminate pollution-
intensive industries and make them move to cities with higher economic connectivity.
It causes an increase in carbon emissions in the receiving region, which harms its green
transformation. Financial development (FIAN) shows a significant indirect effect under the
neighborhood, geographic, and economic geography weight. Moreover, it has a negative
sign of the coefficient. Further deepening of financial development may have a siphoning
effect on the neighboring areas’ financial resources and human capital. This effect is not
conducive to the expansion of production of the plot industries in the neighboring and
associated cities nor to the updating and R&D of clean technologies. It will eventually lead
to the inhibition of their low-carbon transition.

4.2. Robustness Tests

We first conduct a parallel trend test to analyze whether policy evaluation can be
conducted using the double difference approach. After the results showed that this im-
portant test was passed, we proceeded to model estimation. Table 5 reports the regression
results of the spatial difference-in-differences model for the four spatial weight matrices
(regression results of Equation (10)). As we can see from Table 5, the indirect effects of the
ILU (“New Urbanization” pilot policy dummy variables) are significant at different spatial
weight matrices, and the coefficients of the variables are positive. It implies that the ILU
construction will significantly promote the low-carbon transformation of the surrounding
and associated cities. It also indicates a non-negligible spatial correlation in the error term
of the model, and if not taken into account, the regression results will produce biased
estimates. Using spatial econometric models in this paper is necessary.

In particular, there are some characteristics of Models 1–4 results based on spatial
weights of different geographical elements. As can be seen, the coefficient of distance spatial
weights (Wdis, 0.342) and the coefficient of e economic distance spatial weights (Wecondis,
0.343) are higher than the coefficient of an indirect effect of economic, spatial weights
(Wecon, 0.112) and higher than the coefficient of neighboring spatial weights (Wadj, 0.051).
It may be because the pilot cities have made more efforts to promote low-carbon, green,
inclusive, and intelligent cities. The demonstration effect and the economic correlation
effect on the neighboring cities and associated cities exemplify the positive effect on the
low-carbon transition of the cities. Furthermore, the size of the coefficient indicates that
this role-modeling effect is more likely to be constrained by geographical distance.

4.3. Mechanism Verification
4.3.1. Channel Mechanism of Industrial Structure Transformation

Model 1 in Table 6 shows the impact of intensive land use on industrial structure
upgrading, and it can be seen that the impact is positive and significant, indicating that
ILU promotes China’s low-carbon transformation through the IS influence mechanism.
Specifically, ILU, as a long-term national policy, will constrain the disorderly expansion of
enterprise land use and promote the economization of enterprise production and operation
in the coming period. In addition, the objective constraints of ILU on urban space will
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limit the entry of highly polluting and low-value-added industries. Therefore, in cities
with intensive land utilization, industries can obtain green development and regulate
the industrial layout by regulating the proportion of clean industries, thus promoting
low-carbon development.

Table 5. Robustness test results of exogenous shock.

Panel A: Results of Adjacent Space Weights and Distance Spatial Weights.

Variable

Wadj (Model 1) Wdis (Model 2)

(1) (2) (3) (4) (5) (6)

LR_Direct LR_Indirect LR_Total LR_Direct LR_Indirect LR_Total

ILU 0.0051 0.0510 *** 0.0561 *** −0.0073 0.3422 *** 0.3349 ***
(0.507) (3.500) (4.082) (−0.731) (3.702) (3.723)

ER −0.0500 *** 0.0425 −0.0075 −0.0427 *** 0.6401 ** 0.5975 *
(−3.046) (1.263) (−0.206) (−2.614) (2.062) (1.919)

TEM −0.0117 −0.0120 −0.0237 *** −0.0098 −0.0382 −0.0481
(−1.048) (−0.999) (−3.663) (−1.048) (−0.938) (−1.389)

OPEN −0.0030 −0.0083 *** −0.0113 *** −0.0053 *** −0.0002 −0.0055
(−1.628) (−2.637) (−4.000) (−2.975) (−0.013) (−0.321)

GOV −0.4750 *** 0.0111 −0.4639 *** −0.4279 *** −0.7720 −1.1999
(−5.595) (0.083) (−3.450) (−5.117) (−0.828) (−1.310)

AGG −0.0255 *** 0.0113 −0.0141 −0.0309 *** 0.1323 0.1014
(−3.389) (0.820) (−1.015) (−4.162) (1.416) (1.095)

MAK 0.0294 −0.0105 0.0190 0.0100 0.0321 0.0420
(1.165) (−0.218) (0.362) (0.399) (0.076) (0.099)

FIAN −0.0388 *** −0.0567 *** −0.0955 *** −0.0311 *** −0.4983 *** −0.5294 ***
(−5.884) (−4.224) (−7.054) (−4.715) (−4.233) (−4.516)

City FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES

Observations 3962 3962 3962 3962 3962 3962
R-squared 0.475 0.440 0.433 0.587 0.502 0.588

Panel B: Results of Economic Spatial Weights and Economic Distance Spatial Weights.

Variable

Wecon (Model 3) Wecondis (Model 4)

(7) (8) (9) (10) (11) (12)

LR_Direct LR_Indirect LR_Total LR_Direct LR_Indirect LR_Total

ILU 0.0179 ** 0.1121 *** 0.1300 *** −0.0073 0.3438 *** 0.3365 ***
(2.008) (3.555) (3.826) (−0.735) (3.707) (3.727)

ER −0.0534 *** 0.1415 ** 0.0881 −0.0426 *** 0.6422 ** 0.5996 *
(−3.257) (2.267) (1.292) (−2.613) (2.063) (1.920)

TEM −0.0207 *** 0.0664 *** 0.0457 ** −0.0099 −0.0377 −0.0476
(−3.747) (3.300) (2.059) (−1.058) (−0.922) (−1.371)

OPEN −0.0045 *** −0.0317 *** −0.0362 *** −0.0052 *** −0.0001 −0.0054
(−2.804) (−4.866) (−5.227) (−2.970) (−0.006) (−0.313)

GOV −0.3906 *** −1.5333 *** −1.9239 *** −0.4269 *** −0.7834 −1.2102
(−5.038) (−6.378) (−7.540) (−5.105) (−0.838) (−1.319)

AGG −0.0226 *** 0.0578 ** 0.0352 −0.0310 *** 0.1334 0.1024
(−3.145) (2.068) (1.203) (−4.167) (1.423) (1.103)

MAK 0.0101 −0.0701 −0.0601 0.0099 0.0286 0.0386
(0.404) (−0.839) (−0.654) (0.397) (0.067) (0.090)

FIAN −0.0458 *** 0.0243 −0.0215 −0.0311 *** −0.4998 *** −0.5309 ***
(−7.197) (1.168) (−0.974) (−4.715) (−4.227) (−4.508)

City FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES

Observations 3962 3962 3962 3962 3962 3962
R-squared 0.533 0.552 0.522 0.455 0.662 0.431

Note: The numbers in parentheses are robust t-statistics. ***, ** and * represent significance levels of 1%, 5% and
10%, respectively.
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Table 6. Channel mechanism verification.

Variable
IS TS

Model 1 Model 2

ILU (Main) 0.022 **
(2.11)

0.071 ***
(5.18)

ILU·W 0.156 ***
(4.94)

4.966 ***
(2.99)

Control YES YES
City FE YES YES
Year FE YES YES

Observations 3962 3962
Note: The numbers in parentheses are robust t-statistics. *** and ** represent significance levels of 1% and
5%, respectively.

4.3.2. Channel Mechanism of Technology Spillover

As shown in Model 2 in Table 6, the effect of intensive land use on technology spillovers
is significant, indicating that ILU promotes China’s low-carbon transition through the
influence mechanism of TS. Specifically, ILU’s land use restrictions on enterprises can first
force enterprises to increase investment and research in green products and new materials.
Second, compared with the standardized and large-scale production of the secondary
industry, the knowledge, and technology-intensive tertiary sector tends to have higher
value-added, lower energy consumption, and is more in line with the need for intensive
land use. It means cities with intensive land utilization have built a good platform for
technology R&D and dissemination. Third, the positive psychological effect of ILU on
the low-carbon development of industries should not be ignored. Positive public opinion
encourages regional industrial enterprises and regional enterprises to imitate each other
and technological innovation, thus promoting the low-carbon transformation of the region.

4.4. Test of Spatial Attenuation Boundary

In order to examine the regional boundaries of ILU on urban low-carbon transition,
this section uses threshold inverse distance spatial weights for multiple spatial Durbin
model estimation analysis, and the weights are specifically set as follows:

wij =

{
0 (i = j or dµ > dij or dij > dl
1

dij
(i 6= j and dµ < dij < dl)

(15)

In Equation (15), dij represents the distance between city i and city j regions, dµ is
the lower limit of spatial threshold distance, and dl is the upper limit of spatial threshold
distance, whose values are set autonomously. When the distance between two cities
is within the spatial threshold range, the spatial relationship between the two cities is
considered to exist, and the weight value is the inverse of the distance between the two.
Below or above this range, it is considered that there is no spatial relationship between the
two cities, and its weight value is 0. Thus, we derive the spatial weight matrix of distances
in different distance ranges and re-estimate the spatial Durbin model to measure the spatial
spillover effects of ILU affecting urban low-carbon transition in different distance ranges
(as shown in Table 7 and Figure 3).

The relationship between the local effect, spillover effect, and the corresponding
distance threshold of ILU on urban low-carbon transition is shown in Figure 3. The effect of
ILU on local low-carbon transition is relatively stable. However, the spillover effect exhibits
an inverted “U” shape concerning the increase of distance threshold. It indicates that
although ILU can promote the low-carbon transformation of neighboring and associated
cities across space with their demonstration effects, their spillover effects have geographical
peaks and decay boundaries due to the limitations of industrial development, infrastructure
coverage, and administrative division. Moreover, the coefficient of the spillover effect peaks
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at 250 km and then decays, while the indirect effect at 450 km is not significant. It implies
that the ILU has the highest facilitation effect at 250 km. This radiation range is close to
the radius of the regional scope of Chinese provinces, indicating that strengthening the
ILU cooperation among regional urban clusters will help promote regional low-carbon
transition.

Table 7. Spatial attenuation coefficients.

Distance (KM) LR_Direct LR_Indirect LR_Total

50
0.7916 *** 0.1158 ** 0.9073 ***

(6.033) (2.239) (6.583)

100
0.6747 *** 0.4863 *** 1.1611 ***

(5.066) (4.274) (7.150)

150
0.5934 *** 1.3236 *** 1.9170 ***

(4.439) (7.235) (9.276)

200
0.6166 *** 1.7716 *** 2.3882 ***

(4.633) (7.057) (8.862)

250
0.6151 *** 2.0986 *** 2.7137 ***

(4.622) (7.318) (8.965)

300
0.6511 *** 0.7324 *** 1.3835 ***

(4.671) (3.002) (5.638)

350
0.6601 *** 0.7008 *** 1.3609 ***

(4.740) (2.784) (5.417)

400
0.6847 *** 0.6299 ** 1.3146 ***

(4.927) (2.427) (5.060)

450
0.7149 *** 0.5342 ** 1.2491 ***

(5.155) (1.970) (4.588)

500
0.7441 *** 0.3775 1.1216 ***

(5.351) (1.355) (4.054)

550
0.7544 *** 0.3050 1.0594 ***

(5.426) (1.059) (3.704)

600
0.7519 *** 0.3038 1.0557 ***

(5.412) (1.044) (3.656)

650
0.7449 *** 0.3561 1.1010 ***

(5.370) (1.178) (3.658)

700
0.7509 *** 0.3165 1.0674 ***

(5.415) (1.044) (3.538)

750
0.7632 *** 0.2695 1.0327 ***

(5.510) (0.888) (3.423)
Note: The numbers in parentheses are robust t-statistics. *** and ** represent significance levels of 1% and 5%,
respectively.
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4.5. Heterogeneity Tests
4.5.1. Heterogeneity at the ILU Dimension

In the previous section, we designed a comprehensive indicator to represent ILU
based on the connotation of “intensive land use”. The indicator contains three dimensions:
density of land use, economic and social efficiency, and ecology benefits. In order to
further analyze the influence mechanism of ILU on neighboring and associated towns, we
conducted empirical tests on each of the three dimensions of ILU. The regression results
are shown in Table 8.

Table 8. Heterogeneity test results of the ILU dimension.

Variable

UCR UCR UCR

(1) (2) (3)

LR_Direct LR_Indirect LR_Total

density of land use 0.3838 23.2338 *** 23.6175 ***
(1.096) (4.245) (4.299)

economic and social
efficiency 0.8405 *** 20.7071 *** 21.5477 ***

(2.894) (3.656) (3.797)
ecology benefits 4.1700 *** 75.0155 *** 73.8306 ***

(10.986) (3.301) (3.208)
Control YES YES YES
City FE YES YES YES
Year FE YES YES YES

Observations 3962 3962 3962
Note: The numbers in parentheses are robust t-statistics. *** represent significance levels of 1%, respectively.

The density of land use provides a good impetus to the low-carbon transition of
cities (direct effect of 0.384 and indirect effect of 23.234). However, the direct effect is not
significant. This suggests that the density of land has a better demonstration effect on
neighboring and associated cities, but attention needs to be paid to the local low-carbon
transition. ILU in the land, social and ecological dimensions have significant positive spatial
spillover. It shows that the rational and efficient use of land, increased social inclusion,
and strengthened ecological constraints can form positive spillover to neighboring and
associated cities. Among them, the coefficient of ecological dimension is the highest,
at 75.016.

4.5.2. Spatial Heterogeneity

We further examine the spatial heterogeneity of the spillover effects of ILU on the
low-carbon transformation of cities. We specifically focus on three perspectives: geographic
location, city level, and city circle (economic location). Since this part of the test mainly
considers the effect of spatial heterogeneity, we use geographic weights for estimation.

Cities with different geographic locations. As for the natural location of the province,
different regions have distinct economic development goals, land use regulations, and
contaminant pressure. Accordingly, the impact of IER may be affected by the geographical
location, so we have divided the sample into three sample subgroups, including eastern,
western, and central regions. The results are shown in Panel A of Table 9. In the eastern
region, the spillover effect of ILU on urban low-carbon transition is 5.132, and this coefficient
is positive and significant. The spillover effect of ILU on low-carbon transition for cities in
the central region is also greater than 0 (coefficient of 3.824) but not significant. The results
are different in the western region, where the spillover effect coefficient is negative and
insignificant (−0.961). This result indicates that the ILU affects urban low-carbon transition
differently depending on the geographical location. It plays an important driving role only
in the eastern region.
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Table 9. Results of spatial heterogeneity test.

Panel A: Geographic Location.

Variable
UCR UCR UCR

LR_Direct LR_Indirect LR_Total

East 0.3455 ** 5.1323 *** 5.4778 ***
(−1.962) (−7.386) (8.276)

Central 1.6698 *** 3.8238 5.4937
(−4.304) (−1.093) (1.534)

West 0.5520 ** −0.9605 −0.4085
(−2.066) (−0.435) (−0.191)

Panel B: City Level.

Variable
UCR UCR UCR

LR_Direct LR_Indirect LR_Total

Extra Large 2.4806 *** 7.9541 *** 7.9253 ***
(−3.913) (−3.021) (3.065)

Large 0.1135 5.8359 *** 5.9494 ***
(−0.634) (−4.801) (4.901)

Moderate 0.367 −0.8509 1.6297
(−1.240) (−0.657) (1.395)

Small −0.0288 −7.4345 ** −7.0676 **
(−0.078) (−2.167) (−2.026)

Panel C: City Circle.

Variable
UCR UCR UCR

LR_Direct LR_Indirect LR_Total

Yangtze River Delta 0.9410 * 0.2061 1.1471
(−1.753) (−0.108) (0.625)

Beijing–Tianjin–
Hebei City

Circle
5.3022 *** 2.8549 8.1571 ***

(−7.842) (−0.960) (2.619)
Middle Yangtze River

Economic Belt 2.8349 *** −2.1027 0.7322

(−3.767) (−0.754) (0.251)
Pearl River Delta −1.1533 *** 2.7095 1.5562

(−3.996) (−1.546) (0.825)
Chengdu–Chongqing

City Circle 8.1728 *** −4.4565 3.7163

(−5.553) (−0.533) (0.417)
Note: The numbers in parentheses are robust t-statistics. ***, ** and * represent significance levels of 1%, 5% and
10%, respectively.

The cities are of different sizes. We use the year-end population of the city district as
a proxy variable for city size. Given the frequent changes in the administrative divisions
of city districts in many cities, we use the city size division criteria published by China
in 2014 to select cities. Based on the total year-end population of city municipal districts,
the 283 city samples can be categorized into four groups: extra-large cities (more than
5 million people), large cities (1 million to 5 million people), moderate cities (half a million
to 1 million people), and small cities (less than half a million people). Among all the cities
in the sample, there are 13 extra-large cities, 127 large cities, 98 moderate cities, and 45 small
cities. As shown in Panel B of Table 9: The indirect effects for medium-sized and large
cities are 7.954 and 5.836, respectively, and are significant at the 1% level. It indicates that
the ILU of extra-large and large cities has a positive spillover effect on the low-carbon
transition of neighboring cities. The indirect effect coefficient of moderate and small cities is
negative, and small cities are significant at the 5% level. It implies that moderate and small
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cities in China have caused some degree of pollution to the development of neighboring
cities in promoting ILU. In addition, extra-large cities significantly promote local green
transformation, with a coefficient value of 2.486.

We also test the spillover effects of ILU in different economic circles on urban low-
carbon transformation separately according to the current policies of building urban circles
implemented in China. Panel C of Table 9 shows that the ILU of the Yangtze River Delta,
Beijing–Tianjin–Hebei urban circle, and Pearl River Delta cities form positive spillover
to the low-carbon transition of neighboring cities. The middle reaches of the Yangtze
River Economic Belt and Chengdu–Chongqing City Circle form a negative spillover. The
coefficients of the indirect effects of the above five urban areas do not pass the significance
test. It indicates that the ILU in China’s urban areas did not significantly affect the low-
carbon transition of neighboring cities in the promotion process. However, the ILU of the
five urban areas all play a significant role locally. Only the ILU in the Pearl River Delta
inhibits the local low-carbon transition, while the other four urban areas effectively promote
the local low-carbon transition.

5. Discussion

In order to comply with the global low-carbon development trend, the Chinese govern-
ment has proposed two significant goals of achieving “carbon peak” by 2030 and “carbon
neutrality” by 2060, as well as the goals of promoting pollution reduction and carbon
neutrality. Comprehensively promoting green and low-carbon transformation is an impor-
tant strategic direction for economic and social development in the coming period. The
baseline regression results in this paper verify that ILU has a significant positive spillover
effect on low-carbon transformation, providing ideas for promoting ILU development to
realize low-carbon urban transformation and carbon neutrality. This result is consistent
with the findings of Shang et al. (2022) [56], but we go a step further by considering the
influence of spatial factors and drawing conclusions about spillover effects and spatial
boundaries. In addition, our findings further confirm the greenness and sustainability of
China’s ILU policy and urban spatial optimization [57]. China has implemented and is im-
plementing integrated land use policies (e.g., Provisions on Saving and Intensive Land Use
(2014) [16].As the spatial mainstay of economic development, land use intensification, while
emphasizing the principles of “structural optimization” and “prioritizing conservation,”
has green, livable, and ecologically friendly connotations that contribute to the sustainable
development of China’s economy and the construction of an ecological civilization.

The existence of spatial boundaries provides some empirical evidence for local gov-
ernments in China to break down inter-provincial administrative barriers and promote
the articulation of urban spatial planning and ecological governance mechanisms between
provinces. According to the division of China’s administrative boundaries, 450 km is the
average distance between China’s provincial capital cities, and 250 km is the average radius
of China’s provinces. While the spillover effect of ILU on low-carbon city transformation
can reach as far as 450 km, the peak of the spillover effect’s coefficient is around 250 km.
The driving force of ILU can reach as far as across China’s provincial boundaries to affect
the low-carbon urban transition in other provinces. However, local governments also need
to be aware that the benefits are more significant in neighboring areas of the province.

The results on the heterogeneity of ILU dimensions and different spatial weights reflect
the parts of the ILU policy promotion process that need attention and improvement. One
of them is the need to pay attention to the goals of ILU policy promotion. According to
the results of the four spatial weights, it can be found that ILU creates a driving effect
on the low-carbon transition of neighboring and economically linked cities. It suggests
cities which committed to promoting ILU can exert targeting, demonstration, and economic
linkage effects. Considering that the driving effect of ILU is stronger in large cities, local
governments can use large cities as their hinterland to play a “point-surface” driving role
and thus promote the realization of the overall low-carbon transformation goals of Chinese
cities. Second, it is essential to emphasize the means of ILU policies. Compared to ecological
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carbon sink improvement and land use efficiency, the increase in land use density cannot
significantly promote the local low-carbon transition. This result is similar to that of Baur
et al. (2015) [58] based on data from European cities. Considering that land use density
is related to the city’s actual built-up area and the population’s carrying capacity. This
situation may arise because the current land intensification in China is still in the stage
of capital intensification [59]. The most important vehicle for urban development is the
construction land, and capital investment is concentrated in construction land. In this
case, an increase in land use density will increase infrastructure and energy investment.
Therefore, decisions about urban folding, spatial planning, and urbanization development
need to be implemented prudently.

To promote China’s low-carbon transition, paying attention to the spatial differences
and regional cooperation in the environmental benefits of ILU policies is essential. This
is consistent with the findings of current research in other countries [60,61]. First, it is
necessary to pay attention to geographic location differences. The results of the heterogene-
ity regression show that only the cities in the eastern region can implement ILU policies
while generating positive spillover effects on the low-carbon transition of neighboring
cities, and the results in the central and western regions are not significant. In fact, the
land carbon emissions of the eastern region, including Beijing, Tianjin, Shanghai, Jiangsu
Province, Zhejiang Province and other provinces, account for a high proportion of the
national emissions (see Figure 1); however, eco-efficiency and energy use efficiency are also
higher in the eastern coastal region than in the central and western regions [62,63]. Taken
together, although the eastern region faces more substantial pressure to reduce emissions,
it has developed a more inclusive green land use system over the years and has experience
in urban spatial planning and low-carbon environmental management, thus creating a
demonstration effect on neighboring cities. These achievements may be related to the
greater concentration of talent, technology, and innovation in the eastern region, which
could receive further attention. On the contrary, the central and western regions, such
as Sichuan, Hubei, Henan, and other provinces, are all in rapid economic development,
with large populations and high pressure on land use carbon emissions. Promoting ILU in
cities in the central and western regions is more challenging and requires more advanced
experience from the eastern regions. Secondly, it is necessary to pay attention to urban-level
differences. The positive spillover effect of ILU on urban low-carbon transition is not
evident in small and medium-sized cities and urban circles. These findings reflect two
aspects: small and medium-sized cities have weaker governance capacity and may face
more difficult ecological governance and spatial layout adjustment [57]. The second is that
administrative barriers within the city region have not yet been broken down [64], and
there is less willingness to cooperate between city clusters [65], which limits the direct and
spillover effects of ILU policies in the city region on the low-carbon transition. The above
conclusions provide ideas for future synergistic promotion of low-carbon transformation
in Chinese cities.

Although this study complements the shortcomings of the studies related to ILU and
urban low-carbon transition, it also provides a theoretical reference for the study of urban
low-carbon transition at the spatial level. However, there are still certain shortcomings
in this study that need to be improved. First, the low-carbon transition of cities mainly
includes two components of low-carbon and economic development. In the future, we
will continue exploring the low-carbon land use in the low-carbon transition of cities and
further enrich the urban environment-related research. Second, limited by data availability,
the measurement of ILU still needs to be improved. Meanwhile, the connotation of ILU is
constantly being improved and has likewise changed regarding green and blue infrastruc-
ture construction. We expect to expand on these two aspects in the subsequent study to
improve the measure of ILU. Third, the research questions and scope can be extended to
other developing countries.
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6. Conclusions and Policy Implications
6.1. Conclusions

This study incorporates China’s ILU policy and low-carbon transition into a unified
analytical framework from the perspective of spatial spillover. The spatial autocorrelation,
evolution, spillover effects, spatial decay, and spatial heterogeneity of the intensive land
use construction in China’s low-carbon transition are investigated based on theoretical and
empirical analyses. Many valuable conclusions are drawn as follows:

(1) intensive land use has significant spatial spillover effects on the low-carbon transi-
tion of cities. It not only plays a positive role for neighboring cities but also promotes the
low-carbon transformation of economically related cities. The exogenous shock test of the
pilot cities of new urbanization also verifies this result. Furthermore, the spillover effect of
new urbanization exists in the range of 0–450 km and peaks at about 250 km.

(2) The results of mechanism validation indicate that industry transfer and technology
spillover are dual mechanism channels for intensive land use for low-carbon transition
in China.

(3) intensive land use plays a catalytic role in the low-carbon transition of surrounding
cities through three dimensions: the density of land use, economic and social efficiency,
and ecology benefits, among which the ecological dimension has the most potent effect. In
contrast, land use density does not contribute to the local low-carbon transition.

(4) As an essentially urban development strategy, the intensive land use in the eastern
region and large-sized cities can significantly contribute to the low-carbon transition of
neighboring cities. However, intensive land use in urban economic zones cannot perform
the radiation effect to drive the low-carbon transformation of neighboring cities.

On average, the obtained results are broadly consistent with the existing literature.
At the same time, it provides more novel and convincing evidence on the effectiveness of
intensive land use and the importance of clean technology development and production
transformation for carbon neutrality in emerging countries such as China. It will help
promote Chinese government departments to promote and implement ILU policies and
action plans for dual carbon goals in a targeted manner and also help provide theoretical
and empirical references for developing countries to promote environmentally friendly
and coordinated development.

6.2. Policy Implications

We propose the following policy recommendations mainly from the perspective of
developing countries choosing governments as facilitators.

First, the government should increase ILU through specific measures to ensure that it
plays an active role in the low-carbon transition of the city. The government needs to focus
on formulating economic, social, and ecological policies. Quality improvement should
not be neglected in favor of economic growth, and excessive “accumulation” of factors of
production on land will ultimately lead to lower efficiency and higher emissions. At the
same time, the government should control the increase of land and explore the land stock,
coordinate the safeguarding of development and the protection of resources, optimize the
allocation of factors through industrial upgrading, strengthen the control of urban growth
boundaries, rationally allocate land resources, and enhance the intensive level of urban
land use.

Second, the government needs to use the technical means of regional integration to
optimize the intensive use of urban land in the city circle. Integrating national economic and
social development planning, land use master planning, land improvement planning, area
development planning, ecological environment planning, and enterprise access catalogs are
important designs worth trying by local governments. This top-level design can strengthen
the long-term mechanism of land use optimization under the control and integration
of multiple regulations and cultivate the concept of regional integration. As a result, it
will enhance the synergistic and consistent mechanism for optimizing the allocation of
land resources.
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Thirdly, the local government should use land-space constraints on economic activities
to promote a cleaner transformation of the industrial structure and the process of promot-
ing green technologies. Transforming the existing unreasonable and unclean industrial
structure is essential for developing an intensive and efficient economic growth mode.
On the one hand, local governments need to protect patented technologies and promote
enterprises’ green technology research and development process. On the other hand,
the government needs to promote the cleanliness of the energy structure and strengthen
the rational allocation of industrial development and energy structure. In addition, the
government should play an organizing and guiding role in promoting green and healthy
production methods such as recycling, high efficiency, and emission reduction and improve
the city’s scientific and technological innovation capacity and technology spillover effect.
In this way, a virtuous green circular economy can be formed within and among cities.

Finally, local governments should choose and implement ILU policy tools according
to local conditions. The government needs to form a differentiated idea of intensive land
use. Specifically, the government can build a differentiated control system for intensive
land use based on the zoning of land intensive use evaluation results, zoning of resource
and environmental carrying status, and zoning of dominant industries, and from the
perspective of economic development priority and resource and environmental utilization
and protection priority.
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Appendix A

Table A1. Summary table of acronyms.

Acronyms Description

LCT Low-carbon transition
ILU Intensive land use
ER Environmental regulation

TEM annual average temperature
OPEN Openness to foreign investment
GOV Government Intervention
AGG Industrial agglomeration
MAK Marketization
FIAN Financial development

IS Industrial structure transformation
TS Technology spillover
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Table A2. Results of spatial autocorrelation test.

Year Moran’s I Geary’s C

2006 0.076 *** (3.137) 0.919 *** (−2.697)
2007 0.082 *** (3.359) 0.912 *** (−2.942)
2008 0.117 *** (4.765) 0.880 *** (−4.013)
2009 0.124 *** (5.035) 0.879 *** (−4.074)
2010 0.125 *** (5.049) 0.874 *** (−4.241)
2011 0.138 *** (5.558) 0.855 *** (−4.890)
2012 0.127 *** (5.160) 0.860 *** (−4.661)
2013 0.133 *** (5.358) 0.863 *** (−4.674)
2014 0.099 *** (4.040) 0.904 *** (−3.258)
2015 0.134 *** (5.399) 0.863 *** (−4.696)
2016 0.164 *** (6.596) 0.843 *** (−5.500)
2017 0.061 ** (2.535) 0.962 (−1.353)
2018 0.158 *** (6.351) 0.850 *** (−5.250)
2019 0.202 *** (8.097) 0.816 *** (−6.303)

Notes: *** p < 0.01, ** p < 0.05. Z-values in parentheses.
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