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Abstract: To our knowledge, this is the first study in the world to incorporate risk into the contract-
farming participation decision process and to examine empirical evidence on the effect of contract
farming on fertilizer application, filling the research gaps in the relevant literature and providing
perspectives on both chemical fertilizer reduction and organic fertilizer application behavior. To
estimate the impact of contract farming on farmers’ application of chemical fertilizer and organic
fertilizer, we used data on tea farmers from the Fujian and Hubei provinces in China and the recursive
binary probit model. The 2SLS (two-stage least-squares) model was used to estimate the impact
of the contract-farming participation rate on farmers’ organic and chemical fertilizer application
intensity. The empirical results show that farmers’ risk-prevention ability had a significant negative
impact on farmers’ contract-farming participation decision and rates. Contract-farming participation
had a significant, positive impact on farmers’ organic and chemical fertilizer application intensity,
while contract-farming participation rates had a significant, negative impact on the intensity of
chemical fertilizer application by farmers. However, contract-farming participation rates did not have
a significant impact on organic and chemical fertilizer application intensity. To promote fertilizer
reduction and organic fertilizer incremental application, an effective strategy could be to promote
farmers’ participation in contract agriculture.

Keywords: contract farming; organic fertilizer; chemical fertilizer; risk

1. Introduction

In recent years, contract farming has come into sharp focus, particularly in developing
countries [1–3]. It offers a crucial mechanism for integrating smallholder farmers into modern
agriculture—a feature that is more prominent in developing countries than in developed
nations [4–7]. There are several benefits of contract farming, including economic development,
a rise in farmers’ welfare, a reduction in food insecurity, and an increase in agricultural
productivity [8–11]. Furthermore, it offers superb opportunities for the stewardship of the
environment and sustainable farming practices [12]. These aspects significantly contribute
to achieving multiple global sustainable development goals (SDGs), primarily those related
to no poverty, zero hunger, clean water and sanitation, and good health and well-being [13].
One such opportunity lies in the potential of contract farming to influence the application of
chemical fertilizers—an area of increasing importance given the environmental and health
implications associated with excessive chemical fertilizer use and reduced chemical fertilizer
use [14]. According to Food and Agriculture Organization (FAO) statistics, in 2020, the
intensity of chemical fertilizer application measured according to potassium content in China
was 61.92 kg/ha, which was much higher than the value of 20.23 kg/ha in the European
Union (EU), and the intensity of organic fertilizer application measured according to potassium
content was 29.72 kg/ha, which was lower than the value of 39.59 kg/ha in the EU (data source:
Food and Agriculture Organization (FAO); https://www.fao.org/faostat/en/#data/ESB
(accessed on 19 July 2023)). In light of contract farming’s benefits and potential to influence
sustainable farming practices, we can focus on its role in reducing chemical fertilizer use.
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The worldwide emphasis on sustainable agriculture is driven by the growing under-
standing of the environmental, health, and economic implications of traditional farming
methods, among which is, notably, the excessive use of chemical fertilizers [15]. These
chemical fertilizers, while boosting crop yield in the short term, have been linked to a
variety of environmental issues, such as soil degradation, water pollution, and the loss
of biodiversity. Moreover, overreliance on chemical fertilizer often results in diminishing
returns over time, with increased quantities being needed to maintain productivity [16].
Consequently, the adoption of organic fertilizer and sustainable farming techniques is being
advanced as an essential step toward sustainable agriculture [17]. In recent years, the po-
tential of contract farming to foster sustainable agricultural practices has been increasingly
recognized [18]. Given the pivotal role that contract farming plays in shaping farming
practices, it is worth exploring how this model can influence the transition towards reduced
chemical fertilizer usage and increased organic fertilizer application.

The limited available literature explores the effects of contract farming on chemical
and organic fertilizer application, and the role of risk in this context. Ragasa et al. (2018)
conducted empirical research demonstrating how contract farming can increase the adop-
tion of new technologies and improve crop yields by providing an assessment of various
maize-based contract-farming schemes in Ghana [18]. Schewe and Stuart (2017) presented a
mixed-methods study on seed corn contract farming in southwest Michigan, revealing that
competitive agricultural contracts pose significant structural barriers to adopting climate
change mitigation behaviors, including constraints on information access and decision mak-
ing [12]. Ren et al. (2021) conducted an empirical study on 623 Chinese farmers, finding that
contract farming increases the likelihood of applying environmentally sustainable control
technologies and organic fertilizers, thereby promoting sustainable agricultural practices
and potentially mitigating the overuse of organic fertilizers [19]. Gao et al. (2022) developed
a dynamic analysis framework to assess the impact of contract farming on farmers’ use of
organic fertilizers, finding empirical evidence from a survey of 473 vegetable farmers in
Shandong, China, indicating that contract-farming participation increases the probability
of organic fertilizer application by 50.7% [20]. Mishra et al. (2018) provided empirical
evidence showing that contract farming in baby corn production leads to higher yields and
the reduced use and cost of chemical fertilizers without compromising yield, effectively
enhancing the livelihood of smallholders and reducing environmental degradation [21].
The reviewed literature offers valuable insights for the current study, although certain
limitations should be noted.

The shortcomings of the existing literature are mainly due to the following three factors:
Firstly, while existing research acknowledges risk as a determinant in farmers’ adoption of
technology, many studies merely reduce this risk to a matter of preference and choice, a
subjective measure lacking standardized quantification. Secondly, a common limitation
of existing studies is their emphasis on farmers’ willingness to adopt technology as the
dependent variable while seemingly disregarding the potential disparity between expressed
willingness and actual behavior. Lastly, the prevailing focus in the existing literature either
explores the influence of risk on farmers’ participation in contract farming or assesses
the impact of contract farming on organic and chemical fertilizer application behavior.
These studies, however, do not incorporate risk, contract farming, and chemical fertilizer
application behavior into a unified analytical framework. Consequently, they do not
elucidate the potential mediating role of risk in the impact of contract farming on farmers’
organic fertilizer application and chemical fertilizer usage reduction practices.

This paper attempts to compensate for the shortcomings of the existing literature
by exploring farmers’ fertilizer and organic fertilizer application behavior. This study
explores the impact of contract farming on the reduction in the usage of chemical fertilizer
and the increased application of organic fertilizer in the case of China, and how farmers’
risk-prevention ability impacts the contract-farming participation decision of farmers. Our
research aims to shed light on how contract farming can catalyze more sustainable and
environmentally friendly agricultural practices, leading to a healthier ecosystem and better
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crop yield in the long term. This study utilized micro-level survey data on tea farming
households in the main tea-producing provinces of Fujian and Hubei, collected by our
research team in 2016. Initially, this study focused on gauging risk through the lens of
farmer’s risk-prevention ability, as opposed to their risk preferences. Subsequently, it
incorporated the actual patterns of organic and chemical fertilizer usage by farmers as the
dependent variable. Utilizing a binary recursive probit model, this study estimated the
impact of contract-farming participation decision and rate from a risk perspective on the
decision to use organic and chemical fertilizers and the intensity of organic and chemical
fertilizer usage by farmers. The 2SLS (two-stage least-squares) model was employed to
check the robustness of the results. By integrating risk into the decision-making process of
contract farming and investigating its impact on farmers’ chemical fertilizer application
behavior, this study aims to contribute to the advancement of sustainable agriculture
practices and provide empirical evidence to support policy making related to the promotion
of contract farming.

2. Theoretical Framework

This section presents a theoretical framework to understand the relevance between
contract-farming participation and the use of chemical and organic fertilizers. Considering
the time-dependent impact of organic fertilizer on soil quality, this study analyzes how con-
tract farming influences farmers’ organic fertilizer use in a dynamic context, with soil quality
equilibrium as a transversality condition. Our study treats contract-farming participation
as endogenous, with heterogeneous farmer characteristics. It also incorporates farmers’
risk-prevention ability, which is often overlooked in the literature, as a key factor in their
decision to participate in contract farming. Assuming that farmers decide between organic
and chemical fertilizers for each land unit, with these inputs being substituted, the study
posits risk mitigation as a crucial farm-level characteristic. Enlightened by the practice of
Ma et al. (2018) [22] and the location models proposed by Fulton and Giannakas (2013) [23],
the cost function is expressed as follows:

C = CO + CM = (α− βθO)O(t) + (α− βθM)M(t)
= (α− βηẽO(z))O(t) + (α− βηẽM(z))M(t)

(1)

where α, β > 0; α− βθ > 0; θO > θM. (Throughout the text, the superscripts O and M refer
to the application of organic and chemical fertilizers, respectively; the superscripts C and
N refer to participation and non-participation in contract farming, respectively.) Let CO

and CM denote the cost of chemical fertilizer application and organic fertilizer application,
respectively. Let θ = ηẽ(z) denote farmer characteristics, where η denotes household-level
and farm-level characteristics. Let ẽ(z) denote the risk faced by a farmer, which decreases
with the farmer’s risk-prevention ability. As opposed to chemical fertilizers, suppose that
organic fertilizers pose a higher risk in the short term, but they improve soil quality in
the long run, which implies ẽO > ẽM, so θO > θM. Let θ be distributed over the interval
[0, 1], with θ = 0 implying the lowest impact and θ = 1 implying the highest impact
on net returns from production. O(t) and M(t) indicate a farmer’s organic and chemical
fertilizer expenditures, respectively, at time t. Let us assume that the farmer characteristics
(θ) decrease with the cost function, which implies Cθ(·; θ) < 0 and Cθθ(·; θ) > 0. (In this
paper, the subscript represents the partial derivative). The cost functions are linear in O(t)
and M(t), so the marginal costs of chemical fertilizer and organic fertilizer, CO and CM,
respectively, only depend on θ. (To simplify the expressions, t is omitted unless necessary.)

Let us presume that farmers do not change their decision to participate in contract
farming. The income function is given as:

R = RO + RM = PYO(M, O, S; θO) + PYM(M, O, S; θM) (2)

Let Y(·) denote the production function of one unit of land cultivation and Y(·) be
strictly concave in arguments O, M, S and additively separable. Let YO and YM denote the
production function of one unit of land cultivation when organic fertilizer and chemical fer-
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tilizer, respectively, are applied. Let RM and RO represent income from sales of agricultural
products when chemical and organic fertilizers, respectively, are applied. (On the premise
of not losing generality, we only consider the impact of risk perception on output and cost
and do not consider the changes in product price that may be caused by changes in product
quality. Nevertheless, this does not change the results of the analysis.)

The profit function of farmers applying chemical fertilizer can be expressed as:

pro f itM = RM − CM = PYM(M, S; θM)− (α− βθM)M(t) (3)

The profit function of farmers applying organic fertilizer can be expressed as:

pro f itO = RO − CO = PYO(O, S; θO)− (α− βθO)O(t) (4)

Let CM and CO represent the costs of chemical and organic fertilizer application per
unit area of land cultivated, respectively. Figure 1 shows the cost and benefit functions of
non-contract agricultural farmers as functions of θ. Chemical fertilizers are not profitable
when θ < θM, but they are profitable when θ > θM. Organic fertilizers are not profitable
when θ < θO, but they are profitable when θ > θO. Since ẽO(z) > ẽM(z), as shown in
Figure 1, the cost function of chemical fertilizer application is flatter, so θO > θM.
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Figure 2 shows a case in which the revenue function changes. The higher risk of
applying organic fertilizer leads to a reduction in the expected income. Hence, for farmers
applying organic fertilizer, it is profitable when θ > θO. Organic fertilizer application
behavior requires higher θ than its chemical fertilizer equivalent, which implies θO > θM.
Considering the changes in the cost and revenue functions described above, it can be
proposed that due to the increased risk associated with the application of organic fertilizer,
higher risk-prevention ability is required to achieve profitable agricultural production. The
above-discussed anticipated rise in costs and reduction in revenue are expectations held by
farmers that influence their decision-making process rather than being the actual sources of
costs and revenue.

This section also attempts to analyze farmers’ decision-making process in contract-
farming participation. Theoretically, risk influences farmers’ participation in contract
farming [24]. Let us suppose that the revenue function remains constant and the cost
function changes. Participants in contract farming have a cost function of CC(·; θ), and non-
participants have a cost function of CN(·; θ). The costs of organic and chemical fertilizer
application for farmers participating in contract farming are represented by COC(·; θ) and
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CMC(·; θ), respectively. Then, the cost of organic fertilizer application for contract-farming
participants can be expressed as:

COC(·; θ) = (α− βθOC)O (5)
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It is assumed that participants and non-participants in contract farming have similar
qualitative properties of their cost functions, which means that CO, CM are only related to θ.
Different ways to plot the cost function and the revenue function lead to different results,
which depend on the location of θ and θC. Contract farming may or may not be beneficial
to farmers with all characteristics. Therefore, Figure 3 shows only an intermediate case and
is consistent with our empirical analysis that participation or non-participation in contract
farming is affected by specific subdivisions of farmer characteristics.
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Figure 3. Cost and revenue functions of organic fertilizer use by contract-farming and non-contract-
farming farmers.

As shown in Figure 3, when only organic fertilizer application is considered, farmers
participating in contract farming must be at least θOC to engage in farming. Non-contract-
farming agricultural production brings better profits if its characteristics are higher than

θ
OC

. When their characteristics fall into [θOC, θ
OC

], farmers participate in contract farming,



Land 2023, 12, 1495 6 of 20

because contract farming can bring higher profits. In Figure 4, the orange field represents
the profits earned by all farmers. The green area represents the additional profits that
farmers who participate in contract agriculture receive compared with those who do not
participate in contract farming. The blue area represents the additional profits that farmers
who do not participate in contract farming receive compared with those who participate in
contract farming. Contract-farming participation reaches its upper limit when the blue area
equals the green area.
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Therefore, for farmers with lower risk-prevention ability, larger ẽ(z) implies larger θ.

Given that the farming profitable range of θ ([θOC, θ
OC

]) is wider when participating in

contract farming than in non-contract farming ([θON , θ
OC

]), it is more likely that farmers
with lower risk-prevention ability engage in contract farming. Hence, Hypothesis 1 can be
proposed as shown below.

Hypothesis 1. Farmers with lower risk-prevention ability are more willing to participate in
contract farming.

Next, we examine how contract farming influences a farmer’s fertilizer application
behavior. While chemical fertilizer is considered a static input, organic fertilizer can improve
soil quality over time. Therefore, we hypothesize that the application of organic fertilizer
improves soil quality with αO, while farming reduces soil quality by crop harvesting with
αY, with αO > 0 and αY > 0. The evolution of soil quality over time can be expressed as:

.
S = αOO− αYY(·; θ), S(0, θ) = S0 (6)

where the dot over the variable represents the operator d/dt and S0 is the initial quality of
the soil. Let us assume that the present value of soil quality at time T is S(T; θ)e−δT , where
δ represents the discount rate. We consider dynamic optimization within a finite period T,
maximizing the present value of profits throughout the planning period.

J∗ = max
O,M,ξ

T∫
0
[ξPYC + (1− ξ)PYN − ξCC − (1− ξ)CN ]e−δtdt + S(T; θ)e−δT

= max
O,M,ξ

T∫
0

{
ξ[PYOC(·; θO) + PYMC(·; θM)] + (1− ξ)[PYON(·; θO) + PYMN(·; θM)]− ξ[(α− βθOC)O

+(α− βθMC)M]− (1− ξ)[(α− βθON)O + (α− βθMN)M]
}

e−δtdt + S(T; θ)e−δT

(7)

s.t.O > 0, M > 0, θ > 0,
.
S = αOO− αYY(·; θ), S(0, θ) = S0, (8)
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where O, M, and ξ are the control variables, and S represents the state variables. We build
the following Hamiltonian function:

H = ξPYC(·; θ)+ (1− ξ)PYN(·; θ)− ξCC(·; θ)− (1− ξ)CN(·; θ)+λ(αOO− αYY(·; θ)) (9)

We solve the Hamiltonian function as follows:

HO = ξPYC
O(·; θ) + (1− ξ)PYN

O (·; θ)− ξCC
O − (1− ξ)CN

O + λ(αO − αYYO) = 0 (10)

HM = ξPYC
M(·; θ) + (1− ξ)PYN

M(·; θ)− ξCC
M − (1− ξ)CN

M − λαYYM = 0 (11)

Hξ = PYC(·; θO)− PYN(·; θM)− CC + CN = 0 (12)

λ′ = −HS = −ξPYS(·; θO)− (1− ξ)PYS(·; θM) + λαYYS (13)

S′ = Hλ = αOO− αYY(O, M, S; θ) (14)

S(0, θ) = S0 (15)

λ(T) =
dS(T)e−δT

dS
(16)

The Hamiltonian function is linear with respect to ξ and ξ ∈ [0, 1]. Therefore, the
extremum occurs at the critical point of ξ if the profit function is strictly increasing. The
potential solutions for farmers are to choose either to participate or not to participate in
contract farming.

Let us assume that the initial soil quality is the same among farmers; the steady state
of soil quality is S∞, and the soil quality (S(t)) varies according to different decisions
made by farmers regarding the application of organic and chemical fertilizers. Organic
fertilizer application (O) is a substitute for chemical fertilizer application (M); YMS < 0,
and YOS < 0. Therefore, as the soil quality (S(t)) increases, the marginal productivity of
O and M decreases. Based on the above assumptions, farmers’ optimal organic fertilizer
application behaviors are given by Equation (10), as shown in Figure 4.

The blue line in Figure 4 provides the solution to Equation (10). Specifically, under the
contract-farming participation condition, where ξ = 1, Equation (10) can be rewritten as:

HO = PYC
O(·; θ)− CC

O + λ(αO − αYYO) = 0 (17)

Under the contract-farming non-participation condition, where ξ = 0, Equation (10)
can be rewritten as:

HO = PYN
O (·; θ)− CN

O + λ(αO − αYYO) = 0 (18)

Under the contract-farming participation condition, the derivative of the cost function
with respect to O is:

CC
O = α− βθC = α− βθOC = α− βϕẽOC(z) (19)

Under the contract-farming non-participation condition, the derivative of the cost
function with respect to O is:

CN
O = α− βθN = α− βθON = α− βϕẽON(z) (20)

Extensive empirical evidence suggests that contract farming can mitigate risks for
farmers. Firstly, it directly reduces risks tied to the use of organic fertilizer in farming
processes. Farmers engaged in contract farming often receive technical support from the
contract issuer (e.g., IOFs or cooperatives). Those with robust risk-prevention ability and
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knowledge of organic fertilizer use perceive lower or even no cost increase. Conversely,
farmers with weaker risk-prevention skills and less familiarity with organic fertilizer use
perceive a higher cost increase. Thus, contract-farming participation reduces the uncertainty
of perceived cost increases. Secondly, contract farming alleviates inherent agricultural
risks, including price volatility due to long production cycles. With a pre-agreed selling
price, it reduces uncertainty due to price fluctuations and transaction costs due to price
negotiations. It also mitigates market risks for small farmers in large markets by ensuring
sales channel certainty, reducing the transaction costs of finding buyers, and lessening
asset-specificity risks and the risks of fresh-produce spoilage. By agreeing on price and
sales channels, it reduces market risks in specialized production [25,26]. Therefore, it is
reasonable to believe that contract-farming participation can reduce the risks associated
with organic fertilizer use, either by directly mitigating these risks or by reducing overall
risk perception caused by inherent risks. This leads to ẽOC(z) < ẽON(z). Therefore,
CC

O < CN
O is illustrated in Figure 4 as the derivative of the cost function for contract

farming, with respect to O, below the derivative of the cost function for non-contract
farming, with respect to O. Likewise, farmers expect the organic fertilizer marginal output
to be higher when they participate in contract farming due to the lower risks. Hence,
PYC

O(·; θ) + λ(αO − αYYO) > PYN
O (·; θ) + λ(αO − αYYO) is illustrated in Figure 4 as the

orange line (participation in contract farming) above the blue line (non-participation in
contract farming). ON and OC represent the optimal organic fertilizer use scenarios for
farmers not participating and participating in contract farming, respectively. In light of this,
research Hypothesis 2 is proposed below.

Hypothesis 2. Participation in contract farming can increase farmers’ organic fertilizer application
behavior and decrease farmers’ chemical fertilizer application behavior.

3. Empirical Specification

Building on the proposed hypothesis and illustrated graph, we now move to a more
detailed discussion on the empirical specification of the problem. In Equation (7), we
assume that farmers with characteristics θ maximize the present value of expected farm
profits over the planning period. However, the expected present value of farm profits is
subjective and unobservable; what can be observed is the farmer’s decision to participate in
contract farming and the decision to apply organic fertilizer or chemical fertilizer. Therefore,
we denote the unobservable latent variable, which is the expected present value of farm
profits, by R∗ik. We denote a farmer’s decision to apply fertilizer by Rik. When Rik = 1,
the farmer decides to use organic fertilizer or chemical fertilizer, and when Rik = 0, the
farmer decides not to use organic or chemical fertilizer. We refer to organic fertilizer when
the subscript k equals 1 and to fertilizer when k equals 2. According to the maximization
problem shown in Equation (7), R∗ik is positive when both ∂J∗/∂O and ∂J∗/∂M are positive.
Furthermore, Equations (10) and (11) indicate that farmers’ decisions to apply fertilizer are
influenced by their decision to participate in contract farming, as well as by characteristics
at the household and farm levels.

The equation for determining whether an individual farmer engages in contract
farming may be expressed as an equation for the following latent variable:

ξ∗i = βZi + εi
ξi = 1, if ξ∗i > 0,
ξi = 0, if ξ∗i < 0,

(21)

where ξi is a binary variable. If the expected present value of the profits from participating
in contract farming, ξ∗i1, is greater than the expected present value of the profits from
non-contract farming, ξ∗i0, which means that ξ∗i = ξ∗i1− ξ∗i0 > 0, then the farmer participates
in contract farming, and ξi = 1. Zi represents the vector of factors influencing a farmer’s
decision to participate in contract farming. β denotes the parameters to be estimated. εi
denotes the random error term assumed to be normally distributed.
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The use of fertilizer by a farmer can be explained as follows:

R∗ik = ωξi + γθi + µik,
Rik = 1, if R∗ik > 0,
Rik = 0, if R∗ik ≤ 0,

(22)

where Rik is a binary variable. When the farmer’s expected profit present value, R∗ik, is
positive, farmer i chooses to apply organic fertilizer (k = 1) or chemical fertilizer (k = 2),
at which point Rik equals 1; otherwise, Rik equals 0. ξi is a binary variable representing
whether farmer i participates in contract farming. ω and γ are parameters to be estimated.
µik is the error term assumed to be normally distributed.

If the random error in Equations (21) and (22) contains the same unobservable vari-
ables, a selection bias occurs, resulting in a correlation between εi and µik, which implies
corr(εi, µi) = ρεµ. To obtain unbiased estimates and strictly estimate the impact of contract
farming on farmers’ decisions to apply fertilizer, endogeneity must be addressed.

The recursive bivariate probit (RBP) model uses the full information maximum likeli-
hood (FIML) method, simultaneously estimating the contract-farming participation equa-
tion and the fertilizer application decision equation, allowing for the estimation of the
average treatment effect and marginal effect of endogenous binary variables on binary
dependent variables when unobservable variables exist. The RBP model allows for the
existence of the same variables in vector θi and vector Zi, but this model requires at least
one exogenous instrumental variable to identify the probability of farmers participating
in contract farming, and this instrumental variable is unrelated to the farmers’ fertilizer
application decisions. In this study’s RBP model, the logarithm of the “distance from the
farmer’s residence to the tea market” was used as an instrumental variable [27–29]. The
farther the farmer’s home is from the tea market, the higher the transaction costs. The
increase in transaction costs leads farmers to internalize these costs, leading to transactions
in the form of contracts. This is also the fundamental theory behind the emergence of
contract farming [30–32]. Additionally, from various perspectives, there should not be a
causal relationship between the distance from a farmer’s home to the tea market and the
farmer’s fertilizer application decision.

We also estimate the average treatment effect on the treated (ATT) using the method
proposed by Chiburis et al. (2012) [33]:

ATT =
1

Nξ
∑Nξ

i=1{Pr(Yik = 1|ξi = 1)− Pr(Yik = 0|ξi = 1)} (23)

where Nξ denotes the sample from the treatment group, Pr(Yik = 1|ξi = 1) represents the
possibility of using organic fertilizer/chemical fertilizer of farmers participating in contract
farming predicted by observed samples, and Pr(Yik = 0|ξi = 1) represents the possibility
of not using organic fertilizer/chemical fertilizer of farmers not participating in contract
farming predicted by observed samples.

4. Data, Variables, and Descriptive Statistics
4.1. Data

The data for this study were gathered with field surveys conducted by our project team
in 2017 in Quanzhou, Nanping, and Ningde in Fujian province, and in 2018 in Yichang,
Hubei province. These surveys were designed to gather information about local tea farmers’
production and sales activities during 2016.

Our sampling method was multi-stage and random. We began by selecting Fujian and
Hubei provinces as the focus of our surveys. These provinces are situated in the Jiangnan
tea region, one of China’s four major tea-producing areas and a significant contributor
to global tea production. In 2019, Fujian province, renowned as the “world’s home of
Oolong tea,” produced 439,900 tons of tea, which represented 15.8% of China’s total tea
production. Hubei province contributed an additional 352,500 tons or 12.7% of the national
total. Combined, these two provinces accounted for nearly 30% of China’s tea production.
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Within each province, we selected areas known for their tea production. In Fujian
province, the city of Ningde is the top tea producer, followed by the cities of Quanzhou and
Nanping. These areas produce a variety of teas, including green, black, red, and white teas.
Fujian is famous for its Tianshan green tea, Jinmin red tea, Anxi Tieguanyin, Huangjingui,
Wuyi Da Hong Pao, Rougui, and Shuixian. In Hubei province, well-known teas include
Qings brick tea, Enshi Jade Dew, Yihong tea, Laojun eyebrow tea, Yingshan Cloud Mist,
Dengcun green tea, Longfeng tea, Xiashou Bifeng, Baokang Songzhen, and Caihua Maojian.

In each village, we randomly selected 25–30 tea farmers for our survey, including
both those who participated in contract farming and those who did not. Our questionnaire
covered a wide range of topics, such as tea cultivation, picking, processing, sales, storage,
social services, quality safety control, and risk-prevention ability. We collected a total of
956 questionnaires. After excluding those with missing values and logical contradictions,
we had 694 valid responses, representing 69.67% and 72.59% of the total of the provinces of
Fujian and Hubei, respectively.

4.2. Variables and Descriptive Statistics

Independent variables: The independent variables in this study were the decision
to participate in contract farming and the degree of participation in contract farming.
The former is a binary variable, with 1 indicating participation and 0 indicating non-
participation. As per our data, 33.89% of farmers participated in contract farming. The
degree of participation is represented by the continuous variable “percentage of tea sold
under contracts in total sales”, with an average of 4.52%.

Dependent variables: The dependent variables included two binary variables—the
decision to apply organic fertilizer and the decision to apply chemical fertilizer—and
two continuous variables—the intensity of the organic fertilizer application and that of
the chemical fertilizer application. The binary variables were assigned a value of 1 if the
farmer applied the respective fertilizer and 0 if not. Our data show that 64.13% of farmers
applied organic fertilizer and 75% applied chemical fertilizer. The continuous variables are
represented by the per-acre cost of using each type of fertilizer in tea planting, taken in
logarithmic form.

Control variables: This paper utilizes the farmers’ risk-prevention ability as the princi-
pal control variable, because it is believed that the farmers’ risk-prevention ability affects
the decision to participate in contract farming. This variable is measured by the question of
whether farmers’ tea-based income is affected by low temperature climates. If unaffected,
we assign a value of 1 to this variable, suggesting robust risk-prevention abilities. If affected,
the variable is designated a value of 0, signifying weaker risk-prevention abilities. The
motivation behind gauging risk-prevention skills in this manner is based on the vulner-
ability of tea plants to cold weather. However, the surveyed regions, primarily in the
lower hilly regions of central and northern Fujian and southern Hubei, are situated in the
Jiangnan tea area. Here, the subtropical monsoon climate, late frosts, and northern cold
currents pose potential hazards. Consequently, mitigating low-temperature risk becomes
a critical factor for tea farmers when determining various production decisions. Notably,
in the tea production process, managing low-temperature risks is a crucial skill for tea
farmers. Descriptive statistics reveal that nearly 38% of tea farmers’ incomes remains
unaffected by low-temperature climates. Furthermore, this paper acknowledges the work
of Rondhi et al. (2020) on the factors influencing contract farming participation [34], and
Ma et al.’s (2018) research on farmers’ fertilizer application [22]. Factors considered include
the head of the household’s age, years of education, gender, family size, urban resettlement
preference, access to subsidies and loans, land fragmentation, land rights certification, tea
cultivation area, and tea production experience. The definition and descriptive statistics for
each of these variables are detailed in Table 1.
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Table 1. Definitions of variables and descriptive statistics.

Type Variables Definition Std. Dev. Mean Min Max Obs.

Independent
variables

Confarm_par A value of 1 if farmer participated in contract farming and
0 otherwise. 0.4736 0.3389 0 1 956

Confarm_rate Tea sold through contracts as a percentage of all sales (%). 0.1951 0.0452 0 1 921

Dependent
variables

Orgafer_app A value of 1 if farmer used organic fertilizer and 0
otherwise. 0.4799 0.6413 0 1 906

Ln_orgainten Expenditure on organic fertilizer (CNY/mu). 2.7535 3.3479 0 8.1120 943

Chemfer_app A value of 1 if farmer used chemical fertilizer and 0
otherwise. 0.4332 0.7500 0 1 940

Ln_cheminten Expenditure on chemical fertilizer (CNY/mu). 2.6289 4.2590 0 9.6159 943

Control
variables

Riskpre A value of 1 if farmer’s income from selling tea was
affected by cold weather and 0 otherwise. 0.4857 0.3796 0 1 548

Ln_subsidy Subsidies given by the government for tea production and
processing (CNY). 3.0170 1.6334 0 12.2061 898

Loan A value of 1 if farmer had loans and 0 otherwise. 0.4100 0.2135 0 1 951
Ln_landfrag Number of tea cultivation plots. 0.6557 1.8328 0 6.3986 943

Landcerti A value of 1 if farmer’s land ownership had certification
and 0 otherwise. 0.3854 0.8188 0 1 949

Area Area of tea cultivation land (mu). 68.0715 19.9706 0 1000 951

Farmexpe Tea industry experience of the longest-serving family
member (years). 15.6520 25.7692 0 32 953

Age Age of the head of the household. 11.2830 54.3868 21 90 954
Edu Years of education of head of household. 3.3578 7.4843 0 20 953

Gender A value of 1 if the gender of head of household was male
and 0 otherwise. 0.2817 0.9132 0 1 956

Familysize Number of members who stayed more than six months at
home on a household’s hukou. 1.7198 4.3291 1 13 954

Citywill A value of 1 if household was willing to give up
agriculture and settle in the city and 0 otherwise. 0.4164 0.2229 0 1 951

Instrumental
variables

Marketdis Distance from farm to tea market (km). 26.6603 4.6218 0 500 742

Confarm_nei A value of 1 if there was a neighbor participating in
contract farming and 0 otherwise. 0.4926 0.4131 0 1 949

Instrumental variables: The instrumental variable used in this study was the “distance
from the farmer’s home to the tea market” in logarithmic form. The idea is that the farther
the distance is, the higher the transaction cost of selling tea is, which increases the incentive
to participate in contract farming. However, this distance should not affect the farmer’s
decision to apply fertilizer, making it an exogenous variable suitable as an instrumental
variable. For robustness checks, the variable “whether the neighbor participates in contract
farming” was used as an instrumental variable, based on the “peer effect”.

5. Results and Discussion

In this section, we focus on the estimated results of the recursive bivariate probit (RBP)
model. As a preliminary measure of the statistical validity of the RBP model, estimates of
a seemingly unrelated bivariate probit (SUBP) model are presented first, followed by the
goodness-of-fit test.

5.1. Results of SUBP Estimates

A SUBP model is mainly used to examine whether the decision to engage in contract
farming relates to the outcome variables (fertilizer use) through unobserved heterogeneities,
and whether these two decisions are substitutes or complementary. The estimation results of
the SUBP model are shown in Table 2. Model 1 estimated the impact of the contract-farming
participation decision on organic fertilizer application. Model 2 estimated the impact of the
contract-farming participation decision on the chemical fertilizer application decision. The
p-values of ρ′εµ in both Model 1 and Model 2 rejected the null hypothesis, thus confirming
that ρ′εµ 6= 0 was significant. The p-value indicated that the unobservable factors in the
decision to participate in contract farming were correlated with the unobservable factors
in the decision to apply organic or chemical fertilizers, which confirmed the presence of
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endogeneity. The impact of the unobservable factors captured by the error term suggests
that the likelihood of a farmer’s choice to participate in contract farming was related
to their choice to apply organic or chemical fertilizer. Moreover, ρ′εµ was positive in
Model 1, implying that participating in contract farming and applying organic fertilizer are
complementary decisions, while ρ′εµ was negative in Model 2, suggesting that participating
in contract farming and applying chemical fertilizer are substitute decisions [35,36].

Table 2. Results of SUBP model estimates.

Variables

Model 1 Model 2

Participation Organic
Fertilizer Participation Chemical

Fertilizer

Riskpre −0.3767 **
(0.1331)

−0.4205 **
(0.1326)

Age −0.0722 *
(0.0333)

0.0162
(0.0344)

−0.0696 *
(0.0320)

−0.0333
(0.0340)

Age_square 0.0006 *
(0.0003)

−0.0003
(0.0003)

0.0006 *
(0.0003)

0.0002
(0.0003)

Edu −0.0085
(0.0499)

0.1135 *
(0.0466)

−0.0354
(0.0451)

−0.0392
(0.0481)

Edu_square 0.0030
(0.0033)

−0.0079 *
(0.0031)

0.0043
(0.0030)

0.0002
(0.0032)

Gender 0.1645
(0.1853)

0.3403 *
(0.1695)

0.2351
(0.1809)

−0.1530
(0.1888)

Familysize 0.0680 *
(0.0323)

0.0278
(0.0334)

0.0475
(0.0315)

−0.0294
(0.0325)

Ln_subsidy 0.0119
(0.0181)

−0.0042
(0.0175)

0.0062
(0.0177)

0.0306
(0.0190)

Loan 0.1100
(0.1324)

0.2918 *
(0.1322)

0.1296
(0.1259)

−0.0348
(0.1298)

Ln_landfrag −0.1791 *
(0.0915)

0.1871 *
(0.0909)

−0.1749
(0.0887)

0.1148
(0.0913)

Landcerti −0.0755
(0.1320)

−0.2506
(0.1374)

−0.0608
(0.1299)

0.2268
(0.1327)

Area 14.7464
(8.7753)

0.9959
(7.7655)

15.2960
(9.3908)

−8.7925
(7.5614)

Farmexp −0.0095 *
(0.0044)

0.0027
(0.0032)

−0.0113 *
(0.0044)

0.0022
(0.0031)

Citywill −0.2686
(0.1383)

−0.3645 **
(0.1243)

−0.1815
(0.1301)

0.2143
(0.1344)

Marketdis 0.0056 ***
(0.0007)

0.0087 ***
(0.0009)

Confarm_nei 1.6367
(0.9347)

−0.6086
(0.9704)

1.7061
(0.9099)

1.7993
(0.969)

ρ′εµ 0.3627 *** −0.2037 **
Log-likelihood −779.4842 −774.6875
Wald test:ρ′εµ 24.6557 *** −0.2037 **

Sample size 694 694
*, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively, with the robust standard error being
shown in parentheses.

Additionally, to validate the suitability of the recursive binary probit (RBP) model,
certain tests are needed [35]. This paper used the score test proposed by Murphy (2007)
(Murphy score test) and the Hosmer–Lemeshow goodness-of-fit test suggested by Hosmer
and Lemeshow (1980) to check whether the RBP model could perform a good maximization
fit of the joint density of the dependent variables [37,38]. The results are shown in Table 3.
The null hypothesis of the Murphy score test is that the error terms of the regression in the
first and second stages are joint binary standard normal distributions. The null hypothesis
of the Hosmer–Lemeshow goodness-of-fit test is that the sample frequency of the dependent
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variable is the same as the goodness-of-fit probability of the observed subsample. The results
show that all p-values were not significantly different from zero at the 10% level, and the
null hypothesis was not rejected, meaning that the RBP model was valid.

Table 3. Murphy score test and Hosmer–Lemeshow suitability test.

Murphy’s Score Test Hosmer–Lemeshow Test

Contract farming and organic
fertilizer application

Chi2(9) = 8.5200 with
Prob > chi2 = 0.4830

Chi2(9) = 18.6900 with
Prob > chi2 = 0.6048

Contract farming and chemical
fertilizer application

Chi2(9) = 7.3100 with
Prob > chi2 = 0.6235

Chi2(9) = 22.6700 with
Prob > chi2 = 0.3618

5.2. Results of RBP Estimates

Based on the RBP model, Table 2 shows the estimates of the determinants of con-
tract-farming participation and their impact on organic fertilizer and chemical fertilizer
application. In the RBP model, the FIML method was used to jointly estimate the con-tract-
farming participation equation and the organic or chemical fertilizer application decision
equation. The results presented in the lower part of Table 4 show that all estimated correla-
tion coefficients, ρ′εµ, in Models 1 and 2 no longer differ significantly from 0, suggesting
that unobservable factors no longer contribute to endogeneity. In addition, the Wald tests
of Models 1 and 2 did not reject the null hypothesis of being zero, indicating that partic-
ipation in contract farming was an exogenous variable. The two decisions are not made
simultaneously. Farmers first decide whether to participate in contract farming and then
decide whether to apply organic or chemical fertilizer [39].

Table 4. Results of RBP model estimates.

Variables
Model 1 Model 2

Participation Organic Fertilizer Participation Chemical Fertilizer

Confarm_par 1.8529 ***
(0.1234)

−1.5326 ***
(0.3997)

Riskpre −0.3356 *
(0.1344)

−0.3390 *
(0.1424)

Controls Yes Yes Yes Yes
Instruments Yes Yes Yes Yes

Constant 0.7593
(1.4033)

−4.0068 ***
(1.1363)

1.2856
(1.5757)

3.4315 *
(1.3731)

ρ′εµ
−5.2820
(8.1792)

0.7671
(0.4067)

Log-likelihood −766.83 765.65
Wald test:ρ′εµ 0.4170 3.5584

ATE 0.4820 ***
(0.1424)

−0.5242 ***
(0. 1341)

ATT 0.7927 ***
(0.2176)

−0.3695 ***
(0. 1311)

Sample size 666 694
* and *** indicate significance at the 10% and 1% levels, respectively, with the robust standard error being shown
in parentheses.

5.3. Determinants of Contract-Farming Participation and Fertilizer Application

As a result of the RBP model, Table 4 displays the impact of contract farming partici-
pation on farmers’ fertilizer application. This consists of two stages.

Firstly, in Table 4, the second and fourth columns present the results of the first-stage
estimations of the RBP model, which identify the determinants of farmers’ decisions to
engage in contract farming. The estimated results of Model 1 and Model 2 are similar in
terms of their coefficient signs and significance levels, so the two models are discussed
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together. Farmers’ risk-prevention abilities significantly deterred contract-farming partici-
pation, suggesting that farmers with weaker risk-prevention abilities were more inclined to
participate in contract farming, while those with stronger risk-prevention ability were less
likely to engage. This result validates Hypothesis 1 of this paper, supporting the idea that
risk management at the farm level is a significant factor for farmers [40,41]. This finding is
also consistent with the widely accepted view in the literature that contract farming serves
a risk-shifting function [25,26,41,42]. From an empirical standpoint, this paper presents
evidence suggesting that farmers’ risk-prevention abilities significantly influences farmers’
participation in contract farming. It is necessary to point out that in the literature con-
cerning risk as a determinant of contract-farming participation, risk is mainly measured
using risk preferences [43–45]. This result provides an alternative perspective, because
risk-prevention ability is the outcome variable, while risk preference is the latent variable.
The results show that risk factors affecting contract farming can be measured using farmers’
risk-prevention ability. This solves the problem that risk preference is difficult to objectively
quantify to a certain extent.

Secondly, the third and fifth columns of Table 4 present the results of the second stage
of the RBP model, that is, the factors influencing farmers’ organic and chemical fertilizer
application behavior, respectively. Based on the estimated results in the third column,
contract farming had a significant positive impact on farmers’ organic fertilizer application
behavior. The fifth column shows the impact of participation in contract farming on farmers’
chemical fertilizer application behavior. The coefficient of contract-farming participation
was significantly negative, indicating that participation in contract farming curbed the
decision to apply chemical fertilizers. Based on this result, Hypothesis 2 in this paper is
confirmed. It is consistent with the existing literature that contract farming is beneficial
for adopting production techniques [46–48]. It confirms the view that contract farming
contributes to an increase in the application of organic fertilizer and a reduction in fertilizer
use [20,48]. However, the existing literature does not fully consider the heterogeneity
of farmers’ participation in contract agriculture [48], nor does it consider the role of risk
in farmers’ participation in contract agriculture [20]. As a result of the study, empirical
evidence is provided supporting the role of contract agriculture in farmers adopting green
production technologies [49,50], indicating that contract agriculture contributes to the
sustainable development of agriculture and the achievement of the global sustainable
development goals (SDGs).

The results demonstrate that a farmer’s risk-prevention ability influences their deci-
sion to participate in contract farming, which, in turn, affects their choice to use organic or
chemical fertilizer. By incorporating the risk-prevention ability into the decision-making
model, we can better understand how contract farming influences farmers’ fertilizer ap-
plication behavior. Specifically, farmers with lower risk-prevention ability are more likely
to engage in contract farming as a risk-mitigation strategy, which can enhance their pro-
duction behaviors, such as increasing the use of organic fertilizer and reducing the use of
chemical fertilizer. Furthermore, the promotion of organic fertilizer use and the reduction
in chemical fertilizer use in contract farming suggest a substitution relationship between
the decisions to apply these two types of fertilizer.

5.4. Marginal Effects and Average Treatment Effects

Considering that the estimated coefficients of the explanatory variables in Table 4
cannot be directly interpreted, we also calculated the marginal effects to better under-stand
the impact of the variables on investment. The results in Table 5 show that participation in
contract farming increased the probability of farmers using organic fertilizer by 48.13% but
reduced the probability of chemical fertilizer use by 53.24%. Among other variables, for
each additional plot of land, the likelihood of using organic fertilizer decreased by 8.72%,
and the likelihood of using chemical fertilizer decreased by 4.48%. For every additional
acre of tea cultivation area, the likelihood of using organic fertilizer increased by 0.64%,
and the likelihood of using chemical fertilizer increased by 0.37%.



Land 2023, 12, 1495 15 of 20

Table 5. Marginal effects of RBP model estimation on marginal probability.

Variables Organic Fertilizer Chemical Fertilizer

Confarm_par 0.4813 −0.5324
Age −0.0016 −0.0204

Age_square 0.0000 0.0002
Edu −0.0282 −0.0032

Edu_square 0.0012 0.0002
Gender 0.1276 0.0654

Familysize −0.0129 −0.0103
Ln_subsidy 0.0111 0.0076

Loan 0.0220 0.0019
Ln_landfrag −0.0872 −0.0448

Landcerti 0.0881 0.0927
Area 0.0064 0.0037

Farmexpe 0.0010 0.0001
Citywill −0.0596 −0.0138

We also adopted the method proposed by Chiburis et al. (2012) to estimate the average
treatment effect (ATE) and the average treatment effect on the treated (ATT), as shown in
Table 4 [33]. This method uses bootstrap replications (sampling with replacement from
the original sample) to reduce the sample noise. The results show that for all samples,
participating in contract farming increased the likelihood of using organic fertilizer by
48.20%. For the treated group, compared with not participating in contract farming,
participating in contract farming significantly increased the probability of farmers using
organic fertilizer, with an increase of 79.27%. For the full sample, participating in contract
farming reduced the likelihood of farmers using chemical fertilizers by 52.42%. For the
treated group, compared with not participating in contract farming, participation also
reduced the likelihood of farmers using chemical fertilizers by 36.95%. Although there was
a slight difference in numerical values between the marginal effects estimated by the RBP
model and the average treatment effects, they both showed a strong and significant impact
of participating in contract farming on the decision to use organic and chemical fertilizers.

5.5. Robustness Test

For robustness checks, we took two measures. First, we applied the two-stage least
squares (2SLS) method. This method helped us transform binary variables into continuous
ones, allowing us to view the decision to participate in contract farming, not just as a
yes or no choice but rather as a matter of degree or extent of participation. Similarly, the
decision to apply organic and chemical fertilizers was expanded to consider the intensity
of fertilizer application. Specifically, we converted “whether to participate in contract
farming” into “the percentage of tea sold through contract farming,” and “whether to use
organic/chemical fertilizers” into “average organic/chemical fertilizer expenditure per
acre”. Secondly, we replaced the instrumental variables, switching from the original dis-
tance from the tea sales market to “whether the neighbors participate in contract farming”.
This variable should not affect the farmers’ behavior of applying organic and chemical
fertilizers, but according to the “peer effect,” it may influence the likelihood of farmers’
participating in contract farming.

As shown in Table 6, both the second and fourth columns represent the impact of
individual farmer factors, such as risk-prevention ability abd contract-farming decisions,
while the third and fifth columns represent the impact of contract-farming decisions on
organic and chemical fertilizer application intensity, respectively. The instrumental variable
in both Model 1 and Model 2 was whether the neighbors participated in contract farming.
Both models passed the unidentifiability test, the weak identification test, and the Hansen J
exogeneity test. In the first stage of the model, namely, columns 2 and 4, the results are the
same. The results show that farmers with strong risk-prevention ability were less likely
to participate in contract farming, which is consistent with the results obtained with the
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previous SUBP model. The results in column 3 show that participation in contract farming
could increase organic fertilizer application intensity. Specifically, farmers who participated
in contract farming spent CNY 4.26 more per acre on organic fertilizer than those who did
not participate in contract farming. The results in column 5 indicate that participating in
contract farming could reduce chemical fertilizer application. Specifically, farmers who
participated in contract farming spent CNY 2.44 less per acre on chemical fertilizers than
those who did not participate in contract farming.

Table 6. The 2SLS model estimation: contract-farming participation and fertilizer application intensity.

Variables

Model 1 Model 2

Participation Organic Fertilizer
Application Intensity Participation Chemical Fertilizer

Application Intensity

Confarm_par 4.2624 ***
(1.1968)

−2.4434 *
(1.0984)

Riskpre −0.0797 *
(0.0367)

−0.0797 *
(0.0367)

Controls Yes Yes Yes Yes
Instruments Yes Yes Yes Yes

Obs. 502 502
Underidentification test

Kleibergen–Paap rk LM statistic
32.8720 ***

[0.0000]
32.8720 ***

[0.0000]
Weakidentification test

Kleibergen–Paap rk Wald F statistic
18.0430
{11.59}

18.0430
{11.59}

Overidentification test
Hansen J statistic

0.0060
[0.9403]

2.7460
[0.0975]

* and *** indicate significance at the 10% and 1% levels, respectively, with the robust standard error being shown
in parentheses. The p-values are in square brackets. The critical values corresponding to the Stock–Yogo test at the
15% level are in curly brackets.

Table 7 shows the robustness test after converting the decision to use organic fertilizer
and chemical fertilizer into the degree of organic and chemical fertilizer use and after
converting the decision to participate in contract farming into the degree of participation in
contract farming. Both models passed the underidentification test, the weak identification
test, and the Hansen J exogeneity test. The results show that the degree of participation
in contract farming, namely, the percentage of tea sold through contract farming, was not
affected by the risk-prevention ability and did not affect the degree of organic and chemical
fertilizer use.

Table 8 shows the impact of the contract participation degree on the decision to use
organic and chemical fertilizers. Both models passed the underidentification test, the weak
identification test, and the Hansen J exogeneity test. The results indicate that the degree of
participation in contract farming was not affected by the ability to prevent risks and that
the degree of participation in contract farming did not affect the decision to use organic
and chemical fertilizers. Combining the results of Tables 7 and 8, we believe that the degree
of participation in contract farming is not a key factor affecting farmers’ decisions and the
degree of organic fertilizer use. Instead, the key factor lies in the decision to participate in
contract farming—what is commonly known as “participation is key”. The possible reason
is that as long as farmers participate in contract farming, the psychological level of risk
shift can be achieved. Therefore, the level of participation no longer matters.
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Table 7. The 2SLS model estimation: contract-farming participation rate and fertilizer application
intensity.

Variables

Model 1 Model 2

Participation Rate Organic Fertilizer
Application Intensity Participation Rate Chemical Fertilizer

Application Intensity

Confarm_rate 1.5810
(3.2889)

−2.3703
(1.5419)

Riskpre −0.0044
(0.0185)

−0.0044
(0.0185)

Controls Yes Yes Yes Yes
Instrumentals Yes Yes Yes Yes

Obs. 388 388
Underidentification test

Kleibergen–Paap rk LM statistic
9.8010 *
[0.0203]

9.8010 *
[0.0203]

Weak-variable-identification test
Kleibergen–Paap rk Wald F statistic

23.5130
{13.9100}

23.5130
{13.9100}

Overidentification test
Hansen J statistic

5.8790
[0.05290]

7.3390
[0.0255]

* indicate significance at the 10% levels, with the robust standard error being shown in parentheses. The p-values are
in square brackets. The critical values corresponding to the Stock–Yogo test at the 15% level are in curly brackets.

Table 8. The 2SLS model estimation: contract-farming participation rate and fertilizer application.

Variables

Model 1 Model 2

Participation Rate Organic Fertilizer
Application Participation Rate Chemical Fertilizer

Application

Confarm_rate 0.0614
(0.4910)

−0.3188
(0.3130)

Riskpre −0.0057
(0.0188)

−0.0049
(0.0187)

Controls Yes Yes Yes Yes
Instruments Yes Yes Yes Yes

Obs. 380 380
Underidentification test

Kleibergen–Paap rk LM statistic
10.138 *
[0.0174]

10.215 *
[0.0168]

Weak-variable-identification test
Kleibergen–Paap rk Wald F statistic

23.5750
{13.9100}

23.6300
{13.9100}

Overidentification test
Hansen J statistic

0.0628
[0.0528]

5.7660
[0.0560]

* indicate significance at the 10% levels, with the robust standard error being shown in parentheses. The p-values are
in square brackets. The critical values corresponding to the Stock–Yogo test at the 15% level are in curly brackets.

5.6. Empirical Results Discussion

The study examines the relevance between contract farming participation and fertilizer
application, showing that farmers with lower risk-prevention abilities are more likely to
participate in contract farming. This participation increases the use of organic fertilizers
and decreases the use of chemical ones. The decision to participate in contract farming is
more influential on fertilizer use than the extent of participation. This paper contributes
to filling that gap by linking the decision to participate in contract farming to shifts in
fertilizer use. In line with previous findings, it underscores contract farming’s function as a
risk management strategy [25,26,41,42]. However, it further unveils a connection between
farmers’ risk-prevention abilities and their inclination to participate in contract farming, an
aspect less considered in the literature [43,45]. Moreover, this study adds new insights by
demonstrating that the decision to participate in contract farming has a significant impact
on fertilizer use, contributing to the discourse on sustainable agricultural practices. This
reflects and expands existing studies, which highlighted the potential of contract farming
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in promoting sustainability [12–14]. The findings of this study offer a richer understanding
of the complex dynamics at play in contract farming decisions and their environmental
implications, thereby providing valuable empirical evidence to shape future research and
policy in sustainable agriculture.

6. Conclusions

This study investigated the influence of contract-farming participation on farmers’
utilization of organic fertilizer and reduction in chemical fertilizer usage. A dynamic
model was developed, emphasizing farmers’ risk-prevention ability and determining how
contract-farming participation, and household-level and production-level characteristics
impact fertilizer usage behaviors. We employed field survey data on tea farmers from
Fujian and Hubei provinces, China, and analyzed their decision to use organic/chemical
fertilizers and the degrees of organic/chemical fertilizer usage from a risk perspective. The
study concluded that under limited household-level and production-level characteristics, it
is optimal for farmers to participate in contract farming. Risk-prevention ability emerged as
a key factor driving this decision. The findings also reveal that contract-farming participants
were more likely to apply organic fertilizers and less likely to use chemical fertilizers.

Our research results advocate for policy measures encouraging small farmers to par-
ticipate in contract farming. This policy has potential benefits, including the promotion of
organic soil enhancement behaviors, reduction in chemical fertilizer usage, green agricul-
tural development, sustainable soil fertility, and environmental protection. Furthermore,
participation in contract farming could help mitigate the risks that farmers face when
adopting new agricultural technologies, reduce transaction cost risks for small farmers
in expansive markets, and alleviate the sales risks due to price fluctuations. Encourag-
ing contract farming could play a significant role in promoting organic fertilizer use and
minimizing chemical fertilizer usage among farmers.

While our study provides comprehensive insights, it also acknowledges certain limita-
tions. The data only covered short-term cross-sectional aspects, limiting the verification of
our theoretical analysis to short-term impacts. Our analysis did not consider the impact of
the degree of contract-farming participation on fertilizer usage. Additionally, the recursive
binary probit model results indicate that various factors, such as tea cultivation area, dis-
tance between residence and tea market, risk-prevention ability, plot number, land rights
confirmation, and age, influenced decisions related to participation in contract farming
and fertilizer usage. Future research should aim to gather long-term data and account for
variations in contract-farming participation, offering a more extensive understanding of
these relationships.
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