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Abstract: Urbanization and climate change pose significant challenges to urban ecosystems, under-
scoring the necessity for innovative strategies to enhance urban green infrastructure. Tree planting, a
crucial aspect of green infrastructure, has been analyzed for optimized positioning using data metrics,
priority scoring, and GIS. However, due to the dynamic nature of environmental information, the
accuracy of current approaches is compromised. This study aims to present a novel approach inte-
grating deep learning and cellular automata to prioritize urban tree planting locations to anticipate
the optimal urban tree network. Initially, GIS data were collated and visualized to identify a suitable
study site within London. CycleGAN models were trained using cellular automata outputs and
forest mycorrhizal network samples. The comparison validated cellular automata’s applicability,
enabled observing spatial feature information in the outputs and guiding the parameter design of
our 3D cellular automata system for predicting tree planting locations. The locations were optimized
by simulating the network connectivity of urban trees after planting, following the spatial-behavioral
pattern of the forest mycorrhizal network. The results highlight the role of robust tree networks in
fostering ecological stability and cushioning climate change impacts in urban contexts. The proposed
approach addresses existing methodological and practical limitations, providing innovative strate-
gies for optimal tree planting and prioritization of urban green infrastructure, thereby informing
sustainable urban planning and design. Our findings illustrate the symbiotic relationship between
urban trees and future cities and offer insights into street tree density planning, optimizing the spatial
distribution of trees within urban landscapes for sustainable urban development.

Keywords: carbon emissions; urban planting; ecological system; urban forestry; green infrastructure

1. Introduction

Carbon dioxide plays an important role in ecosystems [1,2]. Since pre-industrial times,
seasonal mean temperatures have been anomalous over most land areas and atmospheric
CO2 has been steadily increasing, leading to global warming and more frequent natural
disasters [3–5]. The Intergovernmental Panel on Climate Change (IPCC) concluded in its
Climate Change 2001 report that “humans have a clear impact on the global climate” [6].
The increasing concentrations of carbon dioxide (CO2), ozone (O3), methane (CH4) and
nitrous oxide (NO) in the atmosphere make it difficult for the heat radiated by the sun
to radiate into the air, resulting in higher temperatures near the surface and causing the
greenhouse effect [7,8]. The rise in carbon emissions is driven by the burning of fossil fuels,
the manufacture of commodities, deforestation, the use of transport, food production, the
use of electricity in buildings, etc. [9,10]. The world’s main sources of carbon emissions
are concentrated in three main regions—the USA, China and Europe—and the highest
emissions are spread around cities [11,12]. Excessive urban carbon emission makes the
temperature in the city center significantly higher than that in the surrounding areas, which
increases the temperature difference between day and night and leads to the urban heat
island effect, and also aggravates the frequency of natural disasters [13–15]. The growing
demand for transportation in urban life causes the imbalance of the urban ecosystem and
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damages the urban environment [7,16]. Climate change has become one of the greatest
challenges facing humanity in the 21st century [17,18].

Forests are the largest plant communities on land and play an important role in
the absorption of CO2 [19,20]. Trees in forests, from growth to death, absorb carbon
dioxide through photosynthesis and respiration and fix it in the vegetation and soil, and
the capacity of different parts of the forest tree to absorb carbon varies [21]. There are
different types of forests on the planet, such as tropical rainforests, temperate rainforests,
temperate deciduous broadleaf forests, and temperate coniferous forests. The biodiversity
and carbon storage capacity of forests at different latitudes also differ [22,23]. The Amazon
basin is particularly rich and is the largest ecosystem carbon sink on Earth that could help
mitigate carbon emissions [24,25]. The richness of the forest hierarchy helps to build solid
forest ecosystems [26,27]. However, with human deforestation and forest degradation,
the Amazon’s carbon sink capacity has gradually diminished and the growth rate of
above-ground biomass in the forest has fallen by a third, releasing large amounts of carbon
emissions into the air that cannot be trapped, a shift that has turned the once carbon-dioxide-
absorbing forest into a source of global warming [25,28]. Governments around the world
are currently seeking solutions to reduce carbon emissions, with net-zero carbon emissions
becoming the focus of global climate change research [29,30]. In the Paris Agreement,
net-zero carbon emissions is described as a system that “balances anthropogenic emissions
by sources and removals by sinks”. Many European countries have started to develop
policies to achieve this goal [31].

Some scholars have proposed the concept of urban forestry to further strengthen
the urban ecological cycle system by optimizing urban green infrastructure in pursuit
of sustainable development [32–34]. Although European countries have a long history
in the design and management of urban green space, there is still controversy on the
specific content of the concept of urban forestry [35]. In the broad sense, natural resource
management activities such as forestry plantations are supposed to take place in suburban
clearings but, in reality, such activities can take place in any tree-growing area of the city [36].
A more comprehensive definition of urban forests is networks or systems of all trees in a city,
including green infrastructure or individual trees [37–40]. In China, research has addressed
several issues related to the benefits of urban forests in relation to air quality, forest cover,
and spatial pattern [41–43]. Meanwhile, in Europe and the USA, studies have explored
the diversity of tree composition in urban forests and the relationship between forests and
people [44,45]. Part of the urban forest focuses on the potential of urban economic benefits,
biodiversity conservation, and urban climate regulation [36,46–48], which provides ample
evidence of the role of urban forests in the human living environment.

Previous researchers have demonstrated the importance of optimizing the location of
urban trees by analyzing data indicators related to urban trees, setting priority standard
classification scores or using prioritized geographic information systems [49,50]. Although
adequate use was made of existing urban tree data, the data variables changed in real
time and the lack of correlation between the data meant that the final data-oriented results
could be biased. Other studies have analyzed and counted urban natural resources to
improve tree survival by constructing comprehensive indicators and providing a tree
planting priority index [51,52]. Alternatively, a design model approach has been used to try
to change the relationship between the location of urban trees and the roadway to increase
the comfort of the habitat [53,54]. However, the fact that improper planting of urban trees
will reduce the ecological value of trees and cause environmental problems and potential
risks has been ignored [55].

It is worth noting that previous approaches to urban planning have used computer
models to predict future urban change and to help justify urban planning from a holistic
perspective [56,57]. Computational results from model simulations confirm that cellular
automata perform better in computational urban simulation models [58,59]. Cellular
automata have the ability to simulate dynamic processes, and are suitable for considering
neighborhood relationships and the urban spatial dimension, and are widely used in
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predicting the urban expansion process and land use planning [60–62]. This approach was
previously used in early urban studies, where tree roads were generated using cellular
automata, and plots of land to be developed were placed on both sides of the road [63,64].
Cellular automata are capable of simple rule making based on the local urban environment,
reflecting the spatial organization of the city in a dynamic process [63]. However, most of
these studies have used formulae and urban tree data to calculate comparisons that can only
be obtained over a wide range of tree planting areas, or data over a real period of time to
explore index relationships. There are also limitations in the dynamic iterations of cellular
automata, which lead to uncertainty and uncontrollability of the iterations [65]. Cellular
automata have been used to test a large range of cities, and the predictions were altered
at the urban texture level, but failed to optimize urban green infrastructure to improve
urban climatic issues from an urban ecological sustainability perspective. Few studies have
attempted to model the precise location of tree planting in a block, particularly in terms
of the connectivity between urban green infrastructure at the regional scale, ignoring the
location of existing and new trees in the city.

This study addresses the following questions: (1) How can potential urban tree plant-
ing sites be identified to face the current situation of fragmented tree planting in urban
forestry? (2) How can the connectivity between green infrastructures be strengthened?
(3) How can deep learning and cellular automata, representing connectionist and behavior-
ist AI, respectively, be combined to innovate urban forms? This paper aims to address these
questions with the goals of elucidating the significance of urban trees in urban ecosystems,
bolstering the design and management of green infrastructure to mitigate the impact of
urban climate change, and laying a foundation for future sustainable urban development.

2. Materials and Methods
2.1. Introduction and Definition of the Main Methodological Components

With the rapid development of deep learning technology in recent years, implicit
learning [66–68] has been widely used to handle the dynamism of information input,
wherein dynamic cognitive models replace predefined ones. Consequently, we harness the
implicit learning and generative capabilities of deep learning as an enhancement, guiding
the computational simulation of discrete models to reason complex, dynamic behavior in
response to environmental dynamics. The combination of CycleGAN and cellular automata
techniques is adopted to establish the methodological framework of this study.

Cellular automata are a type of computational discrete model introduced by S. Ulan
and J. von Neumann in the late 1940s [69]. The advantage of the cellular automata model is
that it is able to model complex discrete dynamical systems [70], for instance, integrating
the spatial and temporal dimensions of a city. Early scholars first proposed the application
of cellular spatial models to geographical modeling [71]. In the 1980s and 1990s, cellular
automata began to be used to simulate urban sprawl as the computational power and
concepts of cellular automata models were updated [72,73]. The spatial patterns formed by
the iterative process of cellular automata and the development of theories have facilitated
the design of simulation models for urban evolution, allowing the cellular automata method
to be used to test the assumptions of urban theories and to simulate the urban form [62,72].
In previous studies, researchers have adapted different transition rules to fit the study
plots based on the model, for example, cellular automata model testing based on a strict
rule-based transformation where the cellular grid space was set to 250 m and urban spatial
changes were simulated by changing the rule setting [74]. Other researchers transformed
rules based on urban morphology to use the model for visualizing future urban growth [75].
However, in response to the development of urban cellular automata models, some scholars
have suggested that this may lead to problems in practice when a high number of influences
are included within the model and questioned whether extensive rule adjustments can
actually constitute cellular automata models [69]. Such experiments with large urban scales
usually have a large range of individual cell space settings in the cellular automata model,
which can easily lead to a lack of precision. In addition, cellular automata models lack a
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standard method for defining transformation rules, which can be aided by incorporating a
CycleGAN model.

This paper’s exploration of neurally guided cellular automata involves the develop-
ment of a validation method based upon the hierarchical identification of urban data in
learning zones. It also investigates the potential of combining cellular automata with deep
learning, extending the research methods of cellular automata models beyond traditional
urban theory, with an aim to bridge the gaps in past methods. The CycleGAN model
can execute powerful image generation by completing image-to-image translation using
cycle-consistent adversarial networks [76]. Specifically, this technical approach can generate
a potential representation of an image X by identifying a corresponding representation and
presenting this potential as a style Y. Other researchers have similarly employed adversarial
loss for training to complete image-to-image translations [77]. The generated output can
provide an initial design guide for model experiments, aiding in generating the desired
target urban morphology. This can assist in defining the transition rules in the cellular
automata model to find an approach better suited to improving the accuracy of tree planting
in the study area.

2.2. Study Framework

As the first country in Europe to plan for urban forestry, England has a long-term
plan for urban trees and a vision of zero greenhouse gas emissions by 2050 [36]. London,
as the capital of the UK, is a good candidate for this study as it is vital to improve its
urban forestry. In order to improve the ecological value of urban trees in urban forestry,
a program was designed to predict the best planting position of trees in future urban
forestry by learning the connection relation of the underground tree network in primary
forest and the basic rules of cellular automata, including the following stages (Figure 1).
The first stage focused on collecting carbon emission data and spatial coverage of green
space in different London boroughs, visualizing the data using GIS spatial data analysis,
comparing the data, selecting areas with high carbon emission and low green space based
on the visualization results, selecting learning areas, and analyzing the data related to
street trees. In the second stage, CycleGAN was used to propose a hypothesis of future
urban morphological changes and to try to realize an ecological construction orientation of
the urban forest, surrounded by trees and buildings. The third stage used the rules and
principles of cellular automata to translate the programming language into the parametric
software Grasshopper to simulate and more accurately predict the generated results by
adding field site constraints. The fourth stage compared the predicted iterations of the
cellular automata to analyze the results of the iterations under different variable settings,
to see the network connections between urban trees after planting new trees, and to test the
feasibility of previous assumptions.
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2.3. Study Area

The study area excludes parcels with large urban ecological parks, focusing on parcels
with a predominantly built-up distribution and a small and scattered distribution of green
spaces and trees, which were then further selected according to the road hierarchy character-
istics of the urban neighborhood. The study area is located in the northern part of the Cam-
den district at a scale of 1:80 m (51◦56′ N–51◦55′ N, 0◦12′ W–0◦11′ W) and contains roads
with predominantly service functions, and the urban distribution analysis includes water,
green infrastructure, buildings, and roads (Figure 2). The distribution map shows that more
traffic arteries are located in communities with little green infrastructure and scattered
urban street trees, making it difficult to cope with the carbon emissions from daily traffic.
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2.4. Data Source and Processing

The GIS spatial data analysis method can help analyze the collected spatial data
through the geographic information system. In this study, spatial data analysis can be
used to more intuitively visualize the data and compare the differences between different
regions. Spatial data analysis can be flexibly applied according to Excel tables to identify
different categories, and the size of data in the classification can be matched according
to geographical coordinates without being restricted by the regional area. The Office for
National Statistics has collected and provided a table of annual average carbon dioxide
emissions for London in 2019 and the woodland cover area for local authority areas
in London in the same year (Figure 3). The information from the Excel spreadsheet was
combined to match the UK regions’ geographic coordinate system and then visualized using
ArcGIS. The boroughs near downtown London tend to have the highest carbon emissions
per square meter, according to the annual statistics on carbon emissions. Additionally,
the distribution of green spaces in London, as well as the amount of tree cover in each
London borough, were entered in the same coordinate system for comparison. The data
visualization’s findings indicate that, with a high concentration of real estate development,
over half of all London boroughs currently have a proportion of tree cover of only 0–8%.
The distribution of green space from the urban fringes of London towards the city center
is characterized by an over-representation of large whole areas of green space to small
pockets of fragmented green space. At the same time, through the comparison of the three
groups of data, we find that there are administrative districts with a wide distribution of
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green space and low carbon emissions, but there are still some administrative districts with
important roads, resulting in an imbalance between the green space and the average annual
carbon emissions.
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Camden has a higher average annual carbon footprint than the rest of London and
less tree cover in the area. A small and medium-sized community with abundant data
information and dense traffic network was selected from the 1 KM × 1 KM region in
Camden district. Data analysis included water conservation (normalized difference mois-
ture index, NDMI); plant health (normalized difference vegetation index, NDVI; sunlight
(direct sun hours of the site); and existing tree canopy and tree species. To gain an in-depth
understanding of the vegetation health status of the site from multiple perspectives, the
street tree data in the learning area were imported into Rhino by tree species stratification
and merged with building, road, and other data to restore the status quo of the site. The
position of each tree was corresponded to the geographical coordinate system individually
to prepare for the subsequent data calculation of cellular automata (Table 1).

Table 1. Street trees of study area, Camden.

Gla_id Tree Species and Scientific Names Longitude Latitude

glaid_682290 Plane (Platanus hispanica) −0.12786102449052 51.5675131207381
glaid_682291 Plane (Platanus hispanica) −0.12788095908132 51.5675441929378
glaid_682292 Ash (Fraxinus excelsior) −0.12772311698794 51.5675262975231
glaid_682293 Plane (Platanus hispanica) −0.12762451064078 51.5675697763205
glaid_682294 Pear (Pyrus communis) −0.12755616291557 51.5676037562588
glaid_682295 Plane (Platanus hispanica) −0.12747623124352 51.5676387203248
glaid_682296 Plane (Platanus hispanica) −0.12735170738228 51.5677124495487
glaid_682297 Plane (Platanus hispanica) −0.12726708752885 51.5677561512526
glaid_682298 Plane (Platanus hispanica) −0.12719287232343 51.5678064935142
glaid_682299 Cherry (Prunus genus) −0.12715312606818 51.5678958735313
glaid_682300 Cherry (Prunus genus) −0.12710738384612 51.5679380374256
glaid_682301 Cherry (Prunus genus) −0.12706859431744 51.5679374183132
glaid_682394 Cherry (Prunus genus) −0.12700819278152 51.5676059818775
glaid_682398 Whitebeam (Sorbus aria) −0.12713078708266 51.5672386188778
glaid_682399 Whitebeam (Sorbus aria) −0.12711551260981 51.5672240770995
glaid_682400 Whitebeam (Sorbus aria) −0.12714728020639 51.5672235050338
glaid_682401 Whitebeam (Sorbus aria) −0.12713378040792 51.5672079124889
glaid_682402 Ash (Fraxinus excelsior) −0.12705398809426 51.5671341598225
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Table 1. Cont.

Gla_id Tree Species and Scientific Names Longitude Latitude

glaid_682618 Hawthorn (Crataegus) −0.12798605750201 51.5679855102208
glaid_688705 Cherry (Prunus genus) −0.12737171242051 51.5670113580804
glaid_697556 Lime (Tilia europaea) −0.12774688769460 51.5673551009506
glaid_697557 Cherry (Prunus genus) −0.12779069456203 51.5673635333951
glaid_697558 Cherry (Prunus genus) −0.12777973154878 51.5674161441307
glaid_697559 Lime (Tilia europaea) −0.12742623316460 51.5676018627646
glaid_697560 Cherry (Prunus genus) −0.12748077097416 51.5674334053296
glaid_697561 Pear (Pyrus communis) −0.12745816111797 51.5674253110274
glaid_697562 Pear (Pyrus communis) −0.12744097518780 51.5674151450884
glaid_697563 Cherry (Prunus genus) −0.12744327917633 51.5673590689984
glaid_697564 Pear (Pyrus communis) −0.12737621039910 51.5673162737598
glaid_697565 Pear (Pyrus communis) −0.12734530308466 51.5672959072194
glaid_697566 Cherry (Prunus genus) −0.12751479831096 51.5673778354607
glaid_697567 Pear (Pyrus communis) −0.12756027765596 51.5673455589041
glaid_697568 Pear (Pyrus communis) −0.12758720845964 51.5673327697381

2.5. Methods

We investigated the possibility of using cellular automata (CA) to alter urban spaces by
training CycleGAN with the outputs of CA and the samples from the forest mycorrhizal net-
work. By comparing these two, we validated the applicability of CA and visually collected
spatial feature information to guide the parameter setting of CA design. Subsequently,
we utilized this information to set up a 3D cellular automata for predicting tree planting
locations for the site.

2.5.1. CycleGAN Image-to-Image Translation

To enhance urban green ecology and combat urban climate change, CycleGAN re-
shapes existing urban surfaces through image style transformation, creating a diversity of
future urban forms and providing guidance for urban design. The morphological design
of urban neighborhoods greatly affects the outdoor environment. In this paper, satellite
images containing learning areas of 1 KM × 1 KM and two different image samples were
selected and tested separately to find ways to enhance the effective construction of urban
forestry. This was used as a design guide to improve the management of urban forestry in
the city. CycleGAN is commonly used to solve migration problems between images [78].
This method performs image transformation from reference image domain X to target
image domain Y without relying on paired images. In this case, G and F are mapping
functions between two image domains X and Y. The model includes two discriminators
DY and Dx. DY promotes G to translate X into outputs that are identical to domain Y, and
vice versa for Dx, F, and X. CycleGAN also uses the adversary loss [79] and cyclic consis-
tency loss, which are two loss functions that are expressed respectively in the following
formulas [76]:

LGAN(G, DY, X, Y)= Ey∼pdat (y)[log DY(y)] +Ex∼pdata (x)[log(1− DY(G(x))] , (1)

Lcyc (G, F)= Ex∼pdata (x)[‖ F(G(x))− x ‖1] +Ey∼pdat (y)[‖ G(F(y))− y ‖1]. (2)

CycleGAN requires the collection of hundreds of sets in each example folder. Due to
the limitations of collecting samples of the same type of data, this paper cuts the samples
into 1000 sheets each and selects 300 (180 × 180 pixels) of the field features that need to be
preserved as the training dataset for transformation training.

2.5.2. Calculation Principles of Cellular Automata

Cellular automata are made up of a grid of cells, the size of which can be changed
according to the requirements of the setup. Each cell’s life and death relationship are
controlled by setting rules in the grid [80,81]. The basic principle in cellular automata is
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that if the life and death relationship of a cell changes, other cells in the vicinity of that cell
will also be affected [82]. Some of the cells in the lattice are given an initial state (usually
time t = 0), while others are given a state (advance t by 1). The cells in the grid are housed
in separate compartments but are closely related to each other, with a neighborhood effect,
just as the trees in a forest exist as a whole. There are two common types of communities
in which cellular automata identify neighbors, named after the theorists who invented
them, Moore neighbors and Von Neumann neighbors (Figure 4). The Moore neighborhood
consists of eight orthogonally adjacent unit cells, and the von Neumann neighborhood
consists of four diagonally adjacent unit cells. The two differ in their results for visualizing
changes in cellular automata [83]. Some scholars have examined the urban matrix layout
of satellite images of residential areas in Australia to determine the applicability of the
rules of the cellular automata model, and have proposed that Moore neighbors allow
diagonal or vertical access to cellular space, whereas Von Neumann neighbors allow only
vertical access to the space [84]. In terms of the more regular grid layout of modern cities,
Moore neighbors possess stronger accessibility characteristics to help achieve the spatial
distribution of urban trees. Therefore, we chose Moore neighbors to conduct the urban
form experiment for deep learning.
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2.5.3. Urban Reconstruction by CycleGAN

In this study, two sets of tests were conducted using CycleGAN. The first group
(Figure 5) is an image transformation between satellite images of London city (sample A)
and the forest mycorrhizal network intention map (sample B), in order to make the trans-
formation results achieve the urban design orientation of green space as the main feature
and the rest as secondary. In this training set, the images containing more green space
features were selected. From the final training results obtained, although the green areas
cover the largest area, the results cover the original building sites and roads, forming an
urban surface with traffic networks cutting through the green areas and not realizing the
urban green infrastructure construction with trees surrounding buildings.

The second group (Figure 6) uses the original sample A, but this time selecting feature
points with 50 percent each of the images having a green space or building feature to
ensure that the building footprint was not completely covered and lost in the final results.
Sample B was chosen as the result of one iteration in the cellular automata. The samples
used Moore neighbors, which modeled the canopy layer growth competition between trees
in an urban forest, with common features between them and the problem of urban land
competition. The results of the second image transformation test achieved a similar area of
green space occupation to that of building occupation. Some of these areas formed a more
coherent image of urban green space surrounding the building sites, but the main roads
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were completely covered in the results. The outcomes produced by the CycleGAN model
demonstrate that the experimental results, derived from the Moore neighbor samples,
can alter urban morphological features. Furthermore, they maintain several recognizable
spatial features and deliver more reasonable spatial layouts compared to group 1 outputs.
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2.5.4. Grasshopper Transformation and Tree Networks

The cellular automata were implemented in the code as a two-dimensional spatial
iteration, using previously prepared site data to set up the grid according to the size of
the study area. In Grasshopper, the two-dimensional iterative change procedure is built
according to the rules of cellular automata, setting up adjustable parameter entries and
iteration rules, and the initial state of each grid cell is divided into two types: alive and
dead. In the original code, the starting point for the calculation of cellular automata is
randomly generated, whereas in Grasshopper the starting point can be set manually by
combining the existing tree location data from the Rhino with the box selection to increase
the controllability of the calculation. In this cellular automata model, we set the Moore
neighborhood rules as follows: (1) a dead cell becomes alive when it is surrounded by
exactly three living neighbors; (2) a cell becomes dead when it is surrounded by a single or
four or more living neighbors; (3) a living cell continues to live until the next iteration when
it is surrounded by two or three living neighbors. Cellular automata also have the ability to
pause and restart, and the relationship between cell life and death changes continuously
after multiple iterations. In Grasshopper, the grid is set up to look at the life and death
status of cells centered on a single cell, with a set rule to find the neighboring cells in each
row and column moving in the direction of the surrounding cells. The cellular automata
will first look for cells in the grid around existing trees in the city and calculate whether
the cellular cells are likely to be symbiotic. In the design program, the two-dimensional
iterations are made three-dimensional to allow visual comparison of the planting changes
between old and new trees. In addition, a new constraint was added to the conversion
procedure to accurately calculate the location of new trees. Cells cannot be calculated in
grids where buildings or main roads are distributed. This method enhances the urban
ecology while preserving the existing buildings and traffic on the site.

After obtaining the iterative results of the cellular automata, it is still necessary to
determine the validity of the urban tree planting locations. By combining the commonalities
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between tree dimensional networks in forests and cellular automata, urban tree networks
are created using the program Closest point and Graft tree to analyze and optimize the
reasonableness of the computational results. Scientists have experimentally demonstrated
that trees in a forest interact with each other to form a large interconnected community. A
team of researchers utilized DNA analysis to map a fungal network in a patch of Cana-
dian forest [85] (Figure 7(a1,a2)). Model simulations revealed that more connections are
lost when some trees are removed (Figure 7(b1,b2)). We categorized the different canopy
sizes in the mycorrhizal network and viewed the tree connectivity relationships hierar-
chically (Figure 7(c1,c2,d1,d2)). These trees act as important hubs in the urban transport
network, communicating with neighboring trees [85,86], supporting the energy transfer
between the rest of the small trees, and enhancing the ecological stability of the urban green
infrastructure area.
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3. Experimental Results
3.1. Relationship between CycleGAN Results and Cellular Automata

According to its experimental output, CycleGAN can help to adjust the cellular au-
tomata model. From the first set of CycleGAN experimental outputs, it can be seen that
restrictions should be set before the calculation of the urban cellular automata to exclude
cellular grids that cannot be used for the calculation in order to keep the residential areas or
major roads in the study area, so as to avoid the situation that the urban tree planting will
cover all the cellular space in the cellular automata at the later stage of the calculation. The
second set of CycleGAN outputs shows more intuitively that the grid size of the cellular
automata model affects the distribution pattern of green space in the city when a larger city
range is selected. With a larger spatial extent of a single cell, its green space distribution
area may be prone to a scattered distribution, weakening the aggregation connection be-
tween green spaces. The current results suggest that this kind of urban surface remodeling
orientation is more suitable for small and medium-sized urban ecological development,
such as four-level roads in urban communities, and that such urban side roads are more
preferable to urban traffic arteries for ecological development. The results of the test orien-
tation were rationalized and applied to the cellular automata model. Therefore, the range
of the setup grid was reduced in this model setup, and the individual cell space was set
to 10 M × 10 M for calculation with reference to the canopy size of the most planted tree
species in the study area. Furthermore, from examining the image generation pattern, the
generation pattern of the Moore neighborhood extending from a single cell in all directions
constitutes a more ideal tree planting condition, which can support part of the assumption
that the tree surrounds the building. The experimental results show that the cellular au-
tomata model can be used for simulation when both CycleGAN output and urban satellite
data maintain some common features.
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3.2. Iteration of Cellular Automata

The results of the cellular automata iterations were transformed from 2D planes to 3D
stereoscopic images using a design program to transfer the tree data within the learning
area (Figure 8). The 3D iterative results provide a clearer view of the iterative life and death
relationships between each generation of the cellular automata than the 2D flat images,
making it easier to adjust the model parameters.
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Cellular automata can set different starting points for the test results obtained accord-
ing to the tree classification. According to the statistics of the number of tree species in
the learning area, this paper selected three most common street trees in London, namely
cherry, maple, and whitebeam, for calculation. The final result of the first generation is the
superposition of the three tree species in separate iterations, and the same is true for the
third and sixth generations (Figure 9). The number of iterated trees increases gradually
with the number of iterations compared to the 3D iterations without classification. The
number of iterations is positively correlated without taking into account the life cycle of the
tree and the precise location of the tree planting in the grid. Urban forestry construction is
prioritized but access to feeder roads within urban communities needs to be reclassified.
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3.3. Trees Network Connection

Predicting tree network connections from the iterative results can further optimize
urban tree locations and enhance urban green ecology. One of the tree location iterations
is randomly selected from the results of the cellular automata iteration using the closest
point assisted network calculation (Figure 10). According to the results, in the first single
tree location connectivity network, some of the tree locations were scattered within the
cellular automata grid at a distance from the densely populated areas of trees. In the end,
the tree network was compiled over a long distance and there was an unreasonable tree
network structure. In the second tree network test, the tree network connections were
recalculated with the addition of scrub data from the urban green infrastructure. The results
show that when the proportion of the iteration result data reaches a certain level, the tree
network connection begins to rationalize and the density of the tree network becomes more
concentrated. The distance from planting is judged based on the connectivity results, and
the tree planting location is improved.
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3.4. Results Comparison of Cellular Automata and CycleGAN

The cellular automata model calculates the weaving range of the network composition
that can inform the construction of green infrastructure in cities, and the comparison with
CycleGAN results also confirms the possibility of trees surrounding buildings. We compare
the cellular automata output with the CycleGAN output at the same range, observing the
changes in the reshaped urban morphology. We find that the model simulation results are
oriented towards clustering and tightly connecting the otherwise fragmented distribution
of green spaces in a piecemeal form compared to the traditional urban form, creating
an ideal urban form that prioritizes urban green spaces more in accordance with the
urban forest (Figure 11). Remarkably, we found that the network relationships simulated
by the cellular automata constitute a morphological distribution of urban green space
infrastructure with striking similarities to the CycleGAN output, an approach that alters
the priority hierarchical order of the traditional urban planning distribution. In the original
urban morphological distribution of the site, urban green spaces, buildings, and urban
public spaces are divided by roads. With the rapid development of global urbanization,
urban expansion and regeneration have led to an increase in urban areas and roads, and the
development of urban road networks has had an impact on the urban form. The buildings
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in the study area of this experiment are residential, and with the original residential areas
unchanged, we chose to prioritize the optimization of the green infrastructure in the site
and calculate its connectivity, before reprogramming the auxiliary roads in the residential
areas to ensure the connectivity between the community and the rest of the main roads.
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4. Discussion
4.1. Urban Planning and Design Implication

Determining where to plant trees will be an important issue in the future sustainable
development of cities. The findings of this paper highlight strategies to further optimize
the spatial distribution of potential future urban tree planting locations based on existing
trees on the site to help restore urban ecosystems. Other studies emphasizing the role of
urban trees and ecosystems are also supported [87,88], complementing the approach to pin-
pointing specific locations for tree planting in space and improving biodiversity by creating
green infrastructure patches, while providing a habitat for birds, insects, etc. Regulation
of biodiversity is one of the influencing factors in the stability of urban ecosystems [88].
Furthermore, urban trees play an important role in urban ecosystems. Increased planting
of trees can better conserve soil moisture and help reduce temperatures near the ground,
thereby mitigating the effects of urban climate change, such as the urban heat island effect.
Developing a strategy for well-planted trees can help protect the urban environment and
enhance the eco-efficiency of urban ecosystems. It creates a healthy spatial environment
for the daily activity space of city dwellers and reduces the interaction distance between
people and the natural environment. It can also help alleviate people’s daily work anxiety
and other problems at a spiritual and psychological level, and connect humans with nature
to provide more entertaining spatial environments that promote health and well-being.

This study proposes a new approach combining CycleGAN and cellular automata
techniques to prioritize urban tree planting locations to predict the optimal urban tree
network to help enhance connectivity between urban infrastructure developments. The
results of the current work may be important for urban planners, designers, and researchers
related to urban sustainability in urban planning and design, and advocate exploring
the value of urban forest planning methods in future green space development. Firstly,
the results of the cycle-consistent adversarial network training in CycleGAN show the
diversity and possibilities of urban morphological change. Instead of setting standards for
urban morphology or using inertial thinking in planning and design, we should constantly
optimize design principles to suit the current urban situation. The trained CycleGAN model
differs from traditional urban planning and design perspectives by creating urban forms
where trees surround community buildings, changing the status quo where green spaces are
fragmented by buildings. Green infrastructure zones are considered on a regional scale to
reshape the distribution of urban residents, green spaces, and roads. Secondly, trees are an
important part of the green infrastructure in the urban form. It is essential to enhance urban
forestry by improving the location of potential tree planting in future urban planning and
design management. Botanists emphasize that we need to plant trees in the right places [89].
Cellular automata calculation results elucidate the urban ecological construct relationships



Land 2023, 12, 1479 14 of 18

between different levels of data by distinguishing between urban tree species and urban
forest hierarchies. The study provided a reference for improving the way street tree planting
density is planned and managed in urban forestry by pinpointing the potential planting
locations of different tree species. In addition, sustainable urban ecological construction is
the current goal of urban planning and design. A well-connected network of urban trees
will contribute to the stability of urban ecosystems in the face of increasing urban CO2
emissions. Previous studies have shown that street trees in urban centers are scattered
and fragmented, lacking a holistic approach to tree connectivity [90,91]. The small size
of the tree planting may affect the root growth and the smoothness of the road surface,
resulting in bending and deformation [92]. It also affects the life cycle of trees, reducing
survival rates and ecological benefits [93]. In contrast to traditional forestry, tree networks
do not focus on individual trees, but form a large, closely-knit community. The transfer of
nutrient energy through underground rhizomes increases tree survival and builds a strong
and stable ecosystem [85,86]. Study results on tree network connectivity encourage the
construction of green infrastructure areas with a high density of tree networks, which will
act as a link to maintain the ecological health of their surroundings.

4.2. Limitations and Further Research

This article has identified potential locations for tree planting to support the design
and management of green infrastructure and enhance its connectivity, but there are still
limitations to the ecological value of tree species planted in this study. For example, the
determination of urban tree species requires an analysis of urban soil conditions, canopy
size, and tree life cycle to maximize the ecological benefits of urban forestry in response
to urban climate change, which is not considered in the current work. It was also found
during field research and street tree data collection in the study area that the urban tree
database was not up to date with information on newly planted trees, and the limited data
available may lead to some uncertainty in the calculation results. In addition, it was found
during the cellular automata simulation that this method may not be applicable to areas
with a large building occupation area, and the large number of buildings occupying the
grid space may lead to unsatisfactory results in the final iterative calculations. In future
studies, it might be necessary to test the classification of different site occupation areas, for
instance, blocks with mainly public facilities land or industrial land. At the same time, there
is a need for further experimentation and validation to determine the feasibility of urban
green infrastructure in terms of its eco-efficiency. It is worth noting that, in conjunction
with the comprehensive analysis of the current urban situation, the connectivity of the
urban tree dimensional network will pose a challenge to the distribution of minor roads
and branch roads within urban communities in the future. The branch roads within urban
communities should be further explored in order to guarantee community access and
connectivity to surrounding roads while prioritizing green infrastructure, and to rethink
the symbiotic relationship between urban trees and the future city. The environment in
which trees grow in cities is different from that in forests. The environment in which urban
trees grow is influenced by human activities, so continuous awareness-raising on urban
forestry is required to increase the ecological resilience of cities.

5. Conclusions

This study, by employing a multitude of methodologies, scrutinizes selected learning
zones and lays the groundwork for ideas aimed at the future of urban ecology. One signif-
icant outcome is the design orientation that fuses urban buildings with trees, effectively
reimagining the current urban planning priorities from an urban design perspective. Our
findings strongly emphasize the transformative potential of machine learning tools in
reshaping the urban landscape. By employing CycleGAN and cellular automata models,
we demonstrated a novel method to prioritize and optimize urban tree planting locations,
hence paving the way towards more sustainable and eco-friendly urban environments.
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This research challenges the existing paradigm where urban land use is primarily
dominated by traffic and buildings, proposing instead a shift towards prioritizing urban
ecology. Such a shift has the potential to transform future urban transport and road
planning, offering more sustainable and eco-friendly alternatives. Building on field data
from the study area, we utilized a design program to simulate and calculate potential tree
planting locations for future urban forestry. These computations, combined with features of
the forest ecology network, aided in determining the network connections between urban
trees, thus enhancing urban green infrastructure.

The results suggest that the integration of these tools can reshape urban landscapes,
fostering green infrastructure and prioritizing urban forests. This approach creates an
urban form where green spaces surround and interact with buildings, challenging the tradi-
tional urban planning methods where green spaces are often fragmented by infrastructure.
Furthermore, the dynamic iterations of the cellular automata principle offered a unique lens
to simulate urban tree health and mortality. The specificity of the results to the site area of
each tree bolsters the confidence and adaptability of the simulation outcomes. The insights
gleaned from the three-dimensional network connections facilitated the further optimiza-
tion of potential tree-planting locations. When juxtaposed with machine learning results,
the network connections not only confirm the feasibility of the proposed design orientation,
but also enrich our understanding of urban green infrastructure network connections.

This research demonstrated a novel approach to computationally guide urban plan-
ning in enhancing urban forestry, leading to a reduction in carbon emissions and mitigating
the impacts of urban climate change. Notably, in this study, the application of CycleGAN
to the rule-making process of cellular automata occurs at the level of qualitative reference
based on visual observations of the CycleGAN outputs. Theoretically, the rules can be
customized according to the visual feature representation of the training image data, i.e., the
feature maps, extracted within the CycleGAN model. Such customized rules may enable
the cellular automata to output more desired states of urban landscapes. This concept
warrants further exploration in future research.
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