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Abstract: This article investigates the potential for carbon reduction in urban parks in Shangqiu City
using high-resolution remote sensing imagery. The aim is to guide modern urban carbon neutrality
strategies. The carbon-saving potential is estimated based on the mitigation of the urban heat island
effect by park greenery, which reduces energy consumption. Then, the sample parks were divided
into different categories, and 16 landscape metrics were selected to analyze their relationship with
carbon-saving potential and driving factors. We found that a total of 300.57 t CO2 could be reduced in
Shangqiu City parks, and on average, a park could reduce 2.55 ± 0.31 t CO2 (1.79 ± 0.29 t CO2 ha−1)
per summer day. The significant effect of landscape patterns on park carbon-saving differs between
park categories, which means that park carbon-saving enhancement strategies need to be different for
different park categories. Meanwhile, this study implies that the landscape pattern can be designed
to enhance the carbon-saving potential of urban parks, which can play a great role in promoting the
process of carbon neutrality and mitigating climate change in China.

Keywords: urban park; carbon-saving potential; high spatial resolution; Shangqiu

1. Introduction

Changes in urban land cover have caused dramatic alterations in local urban micro-
climates, leading to a series of ecological issues. As urbanization continues to accelerate,
extreme weather events and the urban heat island (UHI) effect have become hot topics
among academics. The UHI effect refers to the phenomenon in which urban areas have
significantly higher temperatures than adjacent rural areas. Although the theory was pro-
posed early on, it remains a topic of great interest in the academic community, with many
unresolved issues even after extensive research into its causes and mitigation strategies [1].
Some studies suggest that the UHI effect leads to the formation of local air circulation
within cities, carrying air pollutants to higher altitudes and posing serious threats to human
health [2]. In addition, a strong UHI effect can greatly impact the comfort of urban living
conditions [3]. Especially in summer, the UHI effect is particularly pronounced, increas-
ing the use of air conditioning and leading to higher energy consumption and carbon
emissions. Therefore, reducing the UHI effect is a crucial component in achieving urban
carbon neutrality.

Urban park green spaces have a significant impact on mitigating the urban heat island
effect [4–7]. Many scholars have recognized the positive role of urban parks in offsetting
this effect and creating “cool islands” within cities [8–10]. This conclusion is supported by
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the results of studies in numerous countries, such as China [11,12], the USA [13], India [14],
Portugal [15], and the UK [16]. There are several reasons for this. First, vegetation can
provide shade, reducing direct solar radiation on the ground and decreasing the absorption
of heat radiation by the ground [17–19]. Second, through the transpiration of plants
and their low albedo, some of the solar radiation can be absorbed. Finally, blue–green
infrastructure, including urban green spaces, can effectively reduce the surface temperature
of adjacent areas by directing airflow within the city. Therefore, enhancing the “cool island”
effect within urban areas is considered an effective way to mitigate the heat effect [20].

In the past, most studies on urban green spaces have focused on their direct carbon
sequestration capacity, which increases as vegetation biomass increases [21]. For example, in
Xi’an, urban green spaces have an annual fixed carbon amount of 0.70 t CO2 ha−1 [22], while
in Beijing, Changchun, and Harbin, the average carbon densities are 28.6 t CO2 ha−1 [23],
31.9 t CO2 ha−1 [24], and 28.2 t CO2 ha−1 [25], respectively. However, other studies have
pointed out that the role of vegetation in reducing energy consumption in urban areas and
bringing about carbon emission reductions cannot be ignored [26,27]. An empirical study
showed that park green spaces have great potential to reduce carbon emissions and could
save 23.7 ± 1.6 t CO2 in the Yangtze River Economic Belt region [26]. Therefore, it is critical
to understand the potential carbon emission reduction capacity through reducing thermal
environmental pressure. However, the potential carbon emission reduction capacity of
urban green spaces has received limited attention, especially in central China. Shangqiu is
the core city of China’s Central Plains Economic Zone and one of the most promising cities
in Henan Province, China. Since its establishment in 1997, Shangqiu has undergone rapid
urbanization, with significant expansion of construction and transportation land use. From
2000 to 2015, the city’s construction land use expanded rapidly, increasing by as much as
696.57 square kilometers, which accounted for 37.57% of the total construction land use in
2000. This rapid urbanization has led to significant changes in the city’s landscape pattern,
making it an ideal area to study the potential for carbon-saving in urban areas.

This study examines the potential for reducing carbon emissions in urban parks
in Shangqiu, a city in Central China. Our objective is to provide guidance for urban
development and construction from the perspective of urban ecology and environmental
economics. Specifically, we aim to answer the following research questions: (1) What is
the magnitude and spatial distribution of carbon-saving potential in Shangqiu’s urban
parks? (2) What are the landscape factors driving spatial heterogeneity in the carbon-saving
potential across different urban parks in Shangqiu?

2. Materials and Methods
2.1. Study Area

Shangqiu is located in the eastern Henan province of China between longitudes
114◦49′~116◦39′ E and latitudes 33◦43′~34◦52′ N (Figure 1). It has a total area of 10,704 square
kilometers and a population of 7.723 million. It is a national civilized city, national health
city, national garden city, and national forest city, with tourist attractions like the ancient city
of Shangqiu. The city’s plains account for 99.2% of its total area, with only 0.8% being hilly
areas. Shangqiu has a warm temperate semi-humid continental monsoon climate with four
distinct seasons, ample sunshine, and abundant rainfall. The city has an annual average of
1944 h of sunshine, an average annual temperature of 14.6 ◦C, an average annual rainfall of
736.2 mm, and a frost-free period of about 211 days. In recent years, Shangqiu has gradually
become a densely populated and economically developed large city in central China.

2.2. Methods

The research process is shown in Figure 2. Firstly, the park LST is extracted based
on Landsat 8 remote sensing images, and the park’s land use information is extracted
based on GF-2 remote sensing images. Secondly, the park landscape pattern index was
calculated based on the park’s land use information. Finally, the influence of the landscape
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pattern index on the carbon-saving potential of the park was explored by correlation and
stepwise regression.

Land 2023, 12, x FOR PEER REVIEW 3 of 21 
 

 
Figure 1. The study area’s location with a background map displaying land cover data. (a): China, 
(b): Henan Province and Shangqiu City, and (c): main urban area of Shangqiu and land use data of 
118 parks. 

2.2. Methods 
The research process is shown in Figure 2. Firstly, the park LST is extracted based on 

Landsat 8 remote sensing images, and the park’s land use information is extracted based 
on GF-2 remote sensing images. Secondly, the park landscape pattern index was calcu-
lated based on the park’s land use information. Finally, the influence of the landscape 
pattern index on the carbon-saving potential of the park was explored by correlation and 
stepwise regression. 

 
Figure 2. Flowchart of this study. 

2.2.1. Remote-Sensed Urban Park 
The Split-Window algorithm is a commonly used method in the field of land surface 

temperature (LST) remote sensing retrieval. It uses the ratio of reflectance in two spectral 
bands to remove atmospheric effects and obtain the land surface radiation temperature, 
which is then converted to LST using thermal radiation principles [28,29]. This algorithm 
applies to remote sensing image data of different resolutions and spectral bands and has 
the advantages of high accuracy and strong operability [30]. In this study, the original data 
were obtained from a Landsat 8 image data set with a spatial resolution of 30 m. All remote 
sensing images of cloudless and sunny days were selected from the summers of 2020 to 
2021 (Table 1). 

Figure 1. The study area’s location with a background map displaying land cover data. (a): China,
(b): Henan Province and Shangqiu City, and (c): main urban area of Shangqiu and land use data of
118 parks.

Land 2023, 12, x FOR PEER REVIEW 3 of 21 
 

 
Figure 1. The study area’s location with a background map displaying land cover data. (a): China, 
(b): Henan Province and Shangqiu City, and (c): main urban area of Shangqiu and land use data of 
118 parks. 

2.2. Methods 
The research process is shown in Figure 2. Firstly, the park LST is extracted based on 

Landsat 8 remote sensing images, and the park’s land use information is extracted based 
on GF-2 remote sensing images. Secondly, the park landscape pattern index was calcu-
lated based on the park’s land use information. Finally, the influence of the landscape 
pattern index on the carbon-saving potential of the park was explored by correlation and 
stepwise regression. 

 
Figure 2. Flowchart of this study. 

2.2.1. Remote-Sensed Urban Park 
The Split-Window algorithm is a commonly used method in the field of land surface 

temperature (LST) remote sensing retrieval. It uses the ratio of reflectance in two spectral 
bands to remove atmospheric effects and obtain the land surface radiation temperature, 
which is then converted to LST using thermal radiation principles [28,29]. This algorithm 
applies to remote sensing image data of different resolutions and spectral bands and has 
the advantages of high accuracy and strong operability [30]. In this study, the original data 
were obtained from a Landsat 8 image data set with a spatial resolution of 30 m. All remote 
sensing images of cloudless and sunny days were selected from the summers of 2020 to 
2021 (Table 1). 

Figure 2. Flowchart of this study.

2.2.1. Remote-Sensed Urban Park

The Split-Window algorithm is a commonly used method in the field of land surface
temperature (LST) remote sensing retrieval. It uses the ratio of reflectance in two spectral
bands to remove atmospheric effects and obtain the land surface radiation temperature,
which is then converted to LST using thermal radiation principles [28,29]. This algorithm
applies to remote sensing image data of different resolutions and spectral bands and has
the advantages of high accuracy and strong operability [30]. In this study, the original data
were obtained from a Landsat 8 image data set with a spatial resolution of 30 m. All remote
sensing images of cloudless and sunny days were selected from the summers of 2020 to
2021 (Table 1).
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Table 1. Information on remotely sensed data for Shangqiu.

Satellite Path/Row Peirod (Year-Month-Day)

Landsat 122/36 2020-08-28
Landsat 122/36 2020-09-04
Landsat 122/36 2021-06-28
Landsat 122/36 2021-07-30
Landsat 122/36 2021-09-16

GF-2 —— 2021-08-10

The radiative transfer equation used in the Split-Window algorithm for calculating
LST is expressed as follows:

Lλ =
[
ε·B(TS) + (1− ε)·L↓

]
·τ + L↑ (1)

where Lλ represents the thermal radiation intensity of wavelength λ received by the
satellite sensor, ε is the land surface emissivity, B(TS) is the radiation brightness received by
a blackbody with temperature TS, and its unit is W·m−2·sr−1·µm−1. τ is the atmospheric
transmissivity, and L↑ and L↓ are the upwelling and downwelling atmospheric radiances
obtained from NASA [31]. This equation, based on the principles of thermal radiation,
considers the effects of the atmosphere on radiation and can be used to retrieve land surface
temperature from satellite data. It is a crucial component of the Split-Window algorithm.

Later, we used the GF-2 image (Table 1) and the method of object-based image classifi-
cation to interpret the land use in the study area. To improve the accuracy of interpretation,
we optimized the samples based on auxiliary data and combined manual corrections by
researchers to modify the parts with significant deviation, maximizing the accuracy of land
use data. We divided the land use of 118 parks into four categories: forest (including trees
and shrubs), grass, water bodies (including ponds, streams, etc.), and impervious surfaces
(including buildings, squares, and other facilities) (Figure 1c).

Based on high-resolution remote sensing images, the 118 parks in Shangqiu City
can be classified according to different features and classification standards (Table 2).
Firstly, according to the nature of the park and the urban land classification standard
(CJJ/T85-2017), parks can be classified into community parks, small parks, special parks,
and comprehensive parks. Secondly, according to the size of the park’s area, it can be
divided into less than 2 ha parks, 2–5 ha parks, 5–10 ha parks, and more than 10 ha
parks. Thirdly, the presence of water bodies within the park is also a classification criterion
that can divide parks into parks with water and parks without water. Through these
classification criteria, we can have a more comprehensive understanding of the distribution
and characteristics of parks in Shangqiu City.

2.2.2. Landscape Metrics

Landscape indices are statistical measures used to describe and quantify landscape
patterns. They are commonly used to analyze the impact of different land use types and
landscape characteristics on ecosystems, including biodiversity, ecosystem services, and
landscape functionality. In this study, 16 landscape pattern indices were selected (Table 3)
based on the reference of the results of previous studies related to LST and landscape
pattern indices in Shangqiu City and nearby cities [10,32,33]. These landscape pattern
indices are calculated in Fragstats 4.2 based on the 8-unit neighborhood method [34].

These landscape indices are Number of Patches (NP), Patch Density (PD), Aggregation
Index (AI), Contagion (CONTAG), Interspersion and Juxtaposition Index (IJI), Cohesion
Index (COHESION), Splitting Index (SPLIT), Landscape shape index (LSI), Mean Patch
Shape Index (SHAPE_MN), Mean Patch Area (PARA_MN), Mean Fragment Shape In-
dex (FRAC_MN), Largest Patch Index (LPI), Mean Patch Area (AREA_MN), Shannon’s
Evenness Index (SHEI), Shannon’s Diversity Index (SHDI), Percentage of Forest, Grass,
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Impervious surfaces, and water (PLAND_Forest, PLAND_Grass, PLAND_Imper, and
PLAND_Water).

Table 2. Park classification criteria and description.

Classification Standards Park Type Description

Park character

Community park
The area is larger than 1 ha; the site is independent, with basic service
facilities, mainly a service green space for the residents of a certain

community to carry out daily leisure activities.

Small park
Smaller areas or diverse shapes, independent sites, convenient for

residents to access nearby, with certain recreational functions of the
green space.

Special park A green space with specific content or form with corresponding
service facilities; for example, zoos, botanical gardens, etc.

Comprehensive park The area is larger than 10 ha, rich in content, suitable for all kinds of
outdoor interaction, with green space with complete facilities.

Park size

<2 ha park Parks less than 2 hectares in size.

2–5 ha park Parks of 2–5 hectares in size.

5–10 ha park Parks of 5–10 hectares in size.

>10 ha park Parks of more than 10 hectares in size.

Park with or without water
Park with water The park has water resources such as lakes, creeks, and rivers.

Park without water No water resources such as lakes, creeks, and rivers inside the park.

Table 3. Description of landscape indices used in this study.

Category Metrics Abbreviation Description

Aggregation metric

Number of Patches NP
Reflecting the spatial pattern of the landscape,

the value is positively correlated with
landscape fragmentation.

Patch Density PD The density of corresponding patches within an
analysis unit.

Aggregation Index AI Degree of aggregation of the corresponding
patches within an analysis unit.

Contagion CONTAG
Reflecting different patch types and clustering or
extension trends in the landscape, small values

indicate high landscape fragmentation.

Interspersion and
Juxtaposition Index IJI

Reflecting the spatial pattern of the landscape,
larger values indicate the proximity of patch

types to each other and high dispersion.

Patch Cohesion Index COHESION The measure of the physical connectedness of
the focal land cover class.

Splitting Index SPLIT

SPLIT equals the total landscape area (m2)
squared divided by the sum of patch area (m2)

squared, summed across all patches of the
corresponding patch type.

Landscape Shape Index LSI Landscape shape index, landscape shape index
of the landscape in the spatial unit.
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Table 3. Cont.

Category Metrics Abbreviation Description

Shape metric

Shape Index Distribution SHAPE_MN Average shape index of the corresponding
patches within an analysis unit.

Perimeter–Area
Ratio Distribution PARA_MN

Reflecting the complexity of landscape patch
shapes and the extent to which land use is

influenced by human activities.

Mean Fractal
Dimension Index FRAC_MN

Average patch shape complexity measures
approach 1 for simple shapes and 2 for complex

shapes; it reflects shape complexity across
various spatial scales (patch sizes).

Area and edge metric

Percentage of Landscape PLAND Landscape percentage of the
corresponding patch.

Largest Patch Index LPI The percentage of the landscape occupied by
the largest patch.

Mean Patch Area AREA_MN The average size of the patches.

Diversity metric
Shannon’s Evenness Index SHEI Uniformity of distribution of landscape types.

Shannon’s Diversity Index SHDI Reflecting the abundance and complexity
of landscape types.

2.2.3. Quantification of Urban Parks’ Carbon-saving Potential

This section aims to estimate the carbon emission reduction potential of urban green
spaces by calculating the carbon emission reduction resulting from the alleviation of the
urban heat island effect in city parks. Following the previous study [26,27], we calculate
the carbon-saving intensity (CSI) and the carbon emission reduction efficiency (CSE):

CSI = k·ρ·a·
∫ H

0

N

∑
i=0

1
3
(Si + Si+1 +

√
SiSi+1)∆Tdh (2)

CSE = CSI ÷ S (3)

among them, k represents the specific heat at constant pressure, with a value of
1004.68 J kg−1 ◦C−1, ρ represents the air density (1.2923 kg m−3), and a is the conversion
coefficient of energy consumption into carbon emissions from coal-fired power generation
(841 g/3.6 MJ). h represents the vertical influence range (H = 70 m). ∆T is the tempera-
ture difference between adjacent buffer zones, Si and Si+1 are the base areas, and S is the
park area.

2.2.4. Correlation between Urban Parks’ Carbon-Saving Potential and Landscape Metrics

This study applied various statistical analysis methods to explore the relationship
between carbon-saving potential and landscape pattern index in urban parks. These
methods include the Shapiro–Wilk test, One-way analysis of variance (ANOVA), Pearson
correlation analysis, and stepwise multiple linear regression. Firstly, the Shapiro–Wilk test
is used to ensure that the sampled data set conforms to a normal distribution. Secondly,
ANOVAs are used to analyze whether there are significant differences in the carbon-saving
potential of urban parks under different park classifications. Thirdly, Pearson correlation
analysis is used to determine whether there is a statistically significant correlation between
various landscape indices and carbon-saving intensity, as well as if the correlation is
obvious. Finally, stepwise multiple linear regression is used to establish the relationship
between carbon-saving intensity and landscape patterns, the best-fitting model is selected,
and the significance of the coefficients is determined based on regression statistics (R2,
p-value) [10]. In conclusion, these methods provide a comprehensive way to analyze factors
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that influence carbon-saving intensity in urban parks and can be used to propose strategies
for achieving carbon neutralization.

3. Results
3.1. Spatial Heterogeneity of Carbon-Saving Potential in Different Urban Parks

For CSI, Shangqiu City Park green spaces (538 ha) can reduce a total of 300.57 t CO2
emissions. Specifically, in the parks of Shangqiu, the CSI distribution range is 0.04~18.93 t,
and on average, each park can save 2.55 ± 0.31 t CO2 emissions for the city because of its
contribution to the mitigation of surface heat effects, of which the canal ribbon park has
the highest CSI, reaching 18.93 t CO2. Among the parks divided according to different
classification criteria, special parks (3.42 t), parks larger than 10 ha (6.94 t), and parks with
water bodies (4.71 t) had the largest CSI average in their respective classifications. From the
efficiency perspective, the CSE distribution in Shangqiu City was 16.34~0.04 t CO2 ha−1,
and the average CSE was 1.79± 0.29 t CO2 ha−1. Among them, small parks, parks less than
2 ha, and parks without water showed a higher trend of average CSE. In other words, the
CSE was larger for smaller parks, with the highest CSE (16.34 t CO2 ha−1) found in Chinese
Phalarope Square (0.10 ha). Figure 3 shows the results of the analysis of the difference
between CSI and CSE in different classifications of parks, and there are certain differences
in the performance of CSI in different types of parks, but the CSE of each park does not
show significant differences, and this difference is not reflected in all park classifications.
According to the classification of different areas, the CSI of parks less than 2 ha in size is
significantly lower than that of parks with an area of 5–10 ha and parks larger than 10 ha,
the CSI of parks with an area of 2–5 ha is significantly lower than that of parks with an area
greater than 5 ha, and the CSI of parks with an area greater than 10 ha is significantly larger.
Among the parks classified according to whether the park contains water bodies, the CSI of
parks with water is significantly higher than that of parks without water.
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3.2. Spatial Changes in Landscape Metrics

In the study area, the park area was distributed in 0.03~357.00 ha, and the proportion
of various landscapes in the park was different, from large to small; they were woodland
(59.42%), grassland (23.09%), impervious surface (22.20%), and water body (12.34%). We se-
lected 15 landscape pattern indexes to explore the differences in surface landscape patterns
of various parks, and on the whole, Shangqiu City Park has a high degree of fragmentation,
a high degree of aggregation, and landscape diversity, but the shape of various landscape
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patches is more complex. In different types of parks, there are certain differences in land-
scape indicators (Figure 4). The analysis of the differences in the landscape pattern indices
of different parks shows that the landscape indices do not show significant differences
when the parks are divided according to the park category, and among the parks with
different areas, the AI, SHDI, and COHESION of parks with an area of less than 2 ha were
significantly larger than those with an area greater than 2 ha, and COHESION was the
opposite. Parks with an area greater than 5 ha SHAPE_MN were significantly larger than
parks with an area of less than 2 ha, LSI and NP were significantly larger than parks with
an area of less than 5 ha in parks with an area of 5–10 ha, and LSI, NP, and PLAND_Imper
were significantly smaller in parks with an area of less than 2 ha. LSI, NP, SPLIT, and
AREA_MN increased significantly with the increase of park area when the park area was
less than 10 ha, and on the contrary, PD decreased significantly with the increase of area
when the area was greater than 2 ha. For parks with and without water, the values of AI,
LPI, COHESION, PD, and PLAND_Forest in parks with water were significantly greater
than those in parks without water, while SHDI, SPLIT, AREA_MN, LSI, and NP were the
opposite, and their values in parks without water were significantly larger.

3.3. The Relationship between the Carbon-Saving Potential and Landscape Driving Factors in
Different Urban Parks

There were similarities and differences in the correlation results between various
park landscape indexes and CSI (Figure 5). On the whole, CSI was significantly positively
correlated with SPLIT, IJI, AREA_MN, LSI, NP, and PLAND_Water, and significantly
negatively correlated with LPI and PLAND_Imper. Among the different types of parks,
the CSI of AREA_MN and comprehensive parks (−0.952) and community parks (−0.869)
showed a strong and significant positive correlation, while PLAND_imper was the opposite.
The CSI of the garden was positively correlated with NP, IJI, and SPLIT, but negatively
correlated with LPI. The CSI of special parks showed a significantly strong positive correlation
with AREA_MN (0.952), NP (0.92), and PLAND_water (0.905), while it showed a significantly
strong negative correlation with FRAC_MN (−0.989), and the CSI of comprehensive parks
showed a correlation with the most landscape index, among which there was a strong
positive correlation with AREA_MN (0.952) and CONTAG (0.856) and a strong positive
correlation with PLAND_Imper (−0.957); PLAND_Grass (−0.818) showed a strong negative
correlation. Among parks of different sizes, the number of landscape indices associated
with CSI was slightly smaller than in the other two categories, but the correlation between
them was strongest. The CSI of 2–5 ha parks was significantly positively correlated with
SHEI (0.995), SHDI (0.995), and PLAND_Grass (0.998), the CSI and AREA_MN of parks
with an area greater than 2 ha showed a significant positive correlation, and the CSI of
parks with an area greater than 10 ha showed a different correlation from other parks; the
CSI was significantly positively correlated with NP (0.717) and PLAND_Water (0.813), and
it was significantly negatively correlated with PLAND_imper (−0.591). In the classification
according to whether the park has a water body, there are more landscape pattern indices
related to CSI, and the correlation between parks with water and parks without water and
landscape pattern indexes is similar, and there are significant positive correlations with
SPLIT, AREA_MN, LSI, and NP, among which the positive correlation between CSI and
NP in parks with water is the strongest (0.733), while the negative correlation between
parks without water and LPI is the strongest (−0.385). The difference is that the significant
correlation between IJI (0.37), PLAND_Water (0.644), and PLAND_Imper (−0.348) and
parks with water is not reflected in parks without water.
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Figure 6 shows the correlation between CSE and landscape pattern index of vari-
ous parks in Shangqiu City, and the results show that the correlation between CSE and
landscape pattern index is similar to the CSI trend overall, both in parks classified by
category, the most relevant landscape pattern index, and by parks classified according
to water bodies, and the correlation between CSE and landscape pattern in parks classi-
fied by size is weak. The difference is that the landscape pattern index related to CSE of
various parks is completely different from CSI, and AI, COHESION, and park CSE are
significantly negatively correlated, while PARA_MN and PD are significantly positively
correlated with park CSE. Among different types of parks, the landscape pattern indexes
related to CSE of community parks were SHEI (0.809), SHDI (0.809), PARA_MN (0.831), and
PLAND_Grass (0.945), respectively, and all showed positive correlations. In contrast, CSE
in comprehensive parks was only significantly negatively correlated with PLAND_Grass
(−0.836). In small parks and special parks, CSE had a significant negative correlation with
AI and COHESION and a positive correlation with PARA_MN and PD, with the latter
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correlation being stronger in special parks. In addition, SHAPE_MN (−0.458), AREA_MN
(−0.466), and small park CSE were significantly negatively correlated, while special park
CSE and LSI were negatively correlated and positively correlated with PLAND_Imper
(0.986). Among the parks with different areas, park CSEs less than 2 ha were positively
correlated with NP (0.85), and park CSEs with 5–10 ha also showed a positive correlation
with AREA_MN (0.734). Among parks with water and parks without water, the correlation
between landscape pattern index and CSE was more consistent and significantly negatively
correlated with AI and COHESION; this correlation was stronger in parks with water,
the significant positive correlation with PD was stronger in parks without water, and the
difference was reflected in the significant positive correlation between CSE and PARA_MN
(0.406) in parks with water, while CSE in parks without water was positively correlated
with PLAND_Grass (0.292).
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3.4. Identify the Landscape-Driving Factors

For all the landscape pattern variables examined in our study, the direction and
magnitude of their impact on park CSI and CSE were generally different (Figures 7 and 8).
Moreover, the specific influencing factors are different from the direction and degree of
their influence on CSI and CSE to different park categories, and the overall changes in CSI
and CSE in different parks have a high degree of explanation. The fragmentation index
has a more common effect on the changes in CSI and CSE in various parks, while the
explanatory degree of the diversity index on CSI and CSE changes is significantly higher
than that of other factors. The overall interpretation rate of CSI of various landscape pattern
indexes can reach 83%, of which NP contributed the largest 52% of the interpretation rate,
followed by AREA_MN (17.39%), PD (9.41), and FRAC_MN (4.2%). Among the different
types of parks, the regression model of CSI for comprehensive parks was the best, with a
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goodness of fit of 99%, and the fitting degree of the model for special parks was also high,
at 98.03%. Among them, PLAND_Imper contributed the highest explanation rate (88.7%)
for the CSI of the comprehensive park, PARA_MN contributed 10.3% of the explanation
rate, the largest contributor in the regression model of the special park was FRAC_MN
(94.7%), and SPLIT also explained a small part of the CSI change. The CSI model fit was
slightly weak, but the influencing factors were relatively balanced: SPLIT contributed 51.8%
of the explanation rate, and PLAND_Forest contributed 11.8%. In parks with different
areas, except for parks with an area of less than 2 ha, the park model with a smaller area
has a higher fit and clearer influencing factors. The park regression model of 2–5 ha had
the highest goodness of fit (98.6%), and the vast majority of explanatory degrees were
contributed by PLAND_Grass (97.8%), while SHDI explained the model only 0.8%. For
5–10 ha parks, two variables, AREA_MN and LSI, were introduced into the regression
model, with explanatory rates of 75.5% and 22.2%, respectively. Among the parks with an
area greater than 10 ha, the interpretation of CSI was PLAND_Water (63.7%), AREA_MN
(13.82%), and NP (5.36%), respectively. Compared with the above classification, the CSI
driving factors of the parks with water and parks without water were scattered, and the
four influencing factors, FRAC_MN (4.16%), AREA_MN (17.39%), PD (9.41%), and NP
(52%), were introduced into the parks with water’s regression model; the overall model
goodness of fit reached 83%. The goodness of fit of the CSI regression model for parks
without water was 50.5%, of which SPLIT contributed 40.4% of the explanatory degrees.
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The results of CSE stepwise regression in various parks (Figure 8) showed that com-
pared with the CSI regression model, the CSE model introduced fewer variables, and the
overall explanatory rate was not high. All parks were included in the model, and the model
introduced COHESION as the only explanatory variable, with an explanatory rate of 44.2%.
Among the different types of parks, community parks also introduced PLAND_Grass as
the only explanatory variable, but the explanatory degree reached 85.7%, and PD in small
parks and special parks were the most explanatory landscape pattern indicators, with 93.1%
and 96.8% explanatory degrees, respectively. The goodness of fit of the small park CSE
regression model was 97.7%, and in addition to PD, AREA_MN and PLAND_imper also
contributed 3.99% and 0.78% of the explanatory degrees, respectively. IJI was also intro-
duced into the special park CSE model to provide an explanatory rate of 0.2%. Classified
by area, none of the factors were introduced into the regression model due to confounding
factors. COHESION and PD were introduced as the only explanatory variables in the
regression model of the park with water and park without water, and the goodness of fit
was 44.2% and 43.1%, respectively.

4. Discussion
4.1. The Carbon-Saving Potential of Urban Parks

The results showed that the average CSE of Shangqiu City Park was 1.79± 0.29 t CO2 ha−1,
which was higher than the previous CSE study of the Yangtze River Economic Belt City
Park in China (1.08 ± 0.03 t CO2 ha−1). First, studying the size difference of the region
may be one of the reasons for the difference in CSE. The study area is a city-level city in
Henan Province, with a total of 118 parks. The previous study area included 1510 parks in
26 cities, spanning 11 provinces in China. A higher number of parks studied directly means
greater differences in size between parks, many types of parks, and more complex basic
information about parks. So, it is understandable that the average CSE for 1510 parks is
lower than the average CSE for 118 parks. On the other hand, the size of the study area will
cause differences in the urban LST results, and may also indirectly affect the calculation
results of CSI and CSE. For example, a study of Bangkok, Jakarta, and Manila showed that
LST studies presented different results at different spatial resolutions, and proposed that
210 m × 210 m is an optimal characteristic area or land climate footprint that can be used
for examining any meteorological, climatic, or environmental issues in urban areas or for
landscape and urban planning [35]. The results for the 960 m scale and the 240 m scale are
completely different [32]. It is worth noting that the previous research results also show
that the average CSE of small urban parks is generally high, which is partly consistent with
the results of this study.

Second, the climate type of the study area is also responsible for the difference in CSE.
Previous results on the Yangtze River Economic Belt showed that the average CSE of parks
with humid subtropical climates was higher than that of parks located in humid subtropical
monsoon climates. The climate of Shangqiu City is a temperate monsoon climate, and the
difference in climatic characteristics is more obvious. Different climatic characteristics lead
to different LST research results and indirectly lead to different CSEs [10,36].

Third, studying differences in regional economic development, population density,
and urbanization levels will also lead to differences in the average CSE of parks. Several
studies have pointed out that economic development, population growth, and urbanization
are important causes of rising surface temperature [37]. Higher levels of urbanization mean
more natural features, such as vegetation and water bodies, that have been replaced by
impervious materials and buildings [38]. Economic activity and population agglomeration
consume large amounts of fossil fuel resources and exacerbate the urban thermal envi-
ronment [39]. Compared to Shangqiu City, the Yangtze River Economic Belt, the former
study area, has the most prosperous and dense urbanization performance in China, which
also means a denser population [40]. In contrast, Shangqiu City, Henan Province, located
in central China, is lower than the Yangtze River Economic Belt in terms of economy,
population density, and urbanization level. This directly leads to the different urban heat
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island effects between the two, and also indirectly leads to the difference in the average
CSE of the park.

Fourth, Shangqiu City’s emphasis on park construction has also greatly increased
the average CSE of the park. Shangqiu City was awarded the honorary title of “National
Garden City” as early as 2010. Shangqiu City uses the “14th Five-Year Plan for Urban
Renewal and Urban and Rural Habitat Environment Construction of Shangqiu City” as its
program, intending to build a green city and ecological city by continuously strengthening
the urban landscaping construction in Shangqiu City, continuing to pay attention to the
incremental quality improvement in park green spaces, and improving the carbon emission
reduction capacity of Shangqiu City Park.

In addition, this study shows that the annual CSE of the park green spaces in Shangqiu
City is 154.8 t CO2 ha−1 year−1. Another result of our ongoing study shows that the
annual average carbon serum in Zhengzhou Parkland is 19.07 t CO2 ha−1 year−1. Another
study based on the rates of major Chinese cities showed that the average annual carbon
sequestration of green infrastructure in Zhengzhou was 10.52 t CO2 ha−1 year−1 [41]. This
study showed that CSE in Shangqiu was 8 and 14 times higher than the two studies on
green space carbon sequestration in Zhengzhou, respectively. This strongly indicates that
the cooling effect of the park’s green space leads to significant carbon reduction.

4.2. Effects of Landscape Patterns on the Carbon-Saving Potential

In general, the impact of the park’s landscape pattern on the park’s carbon reduction
potential is significant. The park’s carbon reduction capacity is equivalent to the park’s
cooling and energy-saving effects. This result is, therefore, consistent with previous studies,
confirming the cooling effect of landscape patterns on parks [10,42–45]. Specifically, the
main drivers of CSI in Shangqiu City Park are NP, AREA_MN, and PD. In other words,
the number of park patches and the degree of landscape fragmentation (characterized by
AREA_MN and PD) significantly affected the park CSI. For the number of patches (NP),
it can be interpreted that smaller, more numerous plaques in the park can play a role in
cooling energy saving and carbon reduction. A study of 197 water bodies in Beijing showed
that tiny lakes and ponds play an important role in cooling. Therefore, it is suggested that
decomposing parks with large water areas into smaller ones can improve the cooling effect
of parks, and the same applies to park carbon reduction [46]. The impact on landscape
fragmentation depends on the type of land use. For example, the AREA_MN of impervious
surface panel blocks has an increasing effect on LST, while plant plaques have the opposite
effect. Today’s increased urbanization has led to the fragmentation of impervious surfaces
and patches of green space, resulting in the fragmentation of the urban landscape pattern.
By reducing the fragmentation of the urban landscape, urban LST can be lowered, and the
carbon reduction potential of parks can be increased [45].

In addition, the impact of the PLAND index on the CSI and CSE of Shangqiu City
parks was shown in different categories of parks, including PLAND_Grass, PLAND_Water,
PLAND_Imper, and PLAND_Forest. This result is supported by many LST studies [32,47,48].
Even if the study area is different from the meteorological environment, the enhancement
effect of PLAND_Imper on park LST and the cooling effect of PLAND_Grass, LAND_Forest,
and PLAND_Water on LST due to high reflectivity, transpiration, and providing shade to
reduce cooling and its specific heat capacity have been widely demonstrated [18,49–51].
A park’s carbon reduction potential, which is closely related to the park’s cooling and
energy-saving effects, will also be affected by the PLAND index.

But, contrary to Hao Hou’s index, where Shape_MN is the best-performing cooling
effect [43], Shape_MN does not affect Shangqiu City’s CSI. This inconsistency is normal in
LST studies. Different study areas and different climatic conditions significantly affect the
performance of landscape indicators [32,52,53]. For example, Shangqiu City has a typical
temperate continental monsoon climate, but Hangzhou City has a subtropical monsoon
climate, and there are significant climatic differences between the two. Therefore, when
exploring the relationship between landscape patterns and the effects of park cooling energy
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saving and carbon emission reduction, it is necessary to refer to the natural environmental
factors of the study area [52–54]. Second, the land use information in this study is two-
dimensional and does not involve factors such as urban elevation or building height. These
may also be the reasons for the different results. In more detail, [55] results showed that
densely built-up areas had lower LST acting as cool islands, which also implies a higher
carbon-saving potential. The reason is that buildings reduce surface albedo horizontally and
alter wind turbulence vertically, thereby reducing the diffusion of heat and pollutants [56].

4.3. Implications for Urban Planning and Management

This study explores the impact of landscape patterns on CSI and CSE of different
types of urban park green spaces, the specific relationship, and its potential value in
reducing carbon emissions from the perspective of carbon emission reduction caused by
the cooling effect of green space. Rapid urbanization has caused an imbalance in land
resource distribution, leading to the need for rational allocation of the internal landscape
pattern of parks. This is important to maximize the cooling effect of urban green spaces
and achieve the strongest carbon emission reduction efficiency in the context of carbon
neutrality in China. This study focuses on several parks and green spaces in the study area
to understand the impact of the internal landscape pattern on the efficiency and intensity
of urban carbon emission reduction at the regional scale. This will provide guidance and
suggestions for upgrading and renovating urban parks. Previous research shows that
landscape pattern change greatly affects the surface thermal environment of urban parks
and reduces carbon emissions. Urban planners can explore the strongest mode of urban
park green spaces to reduce carbon emissions by updating and transforming the urban
park landscape pattern through design.

The results showed that the CSI and CSE of the park differed with the change in
landscape pattern, and this difference was manifested in different types of parks. Overall,
FRAC_MN, PLAND_Forest, PLAND_Grass, and NP were all significant influencing factors
with positive effects on CSI and CSE. This indicates that parks with a larger proportion
of trees and ground cover plants, as well as more complex patch shapes, have a better
potential for carbon saving. These findings are consistent with previous research in the
field of the thermal environment [57–59]. The proportion of water in parks has a significant
positive impact on CSI, as water bodies have a high specific heat capacity. Small lakes
or ponds, in particular, play an important role in carbon emission reduction [60]. Parks
with water, special parks, and parks larger than 10 ha show significant carbon reduction
effects. Therefore, water design and transformation should be the focus of upgrading and
renovation in the aforementioned types of parks. Our research results indicate that changes
in various landscape patterns in different types of parks have varying degrees of impact on
carbon emission reduction. This paper proposes targeted park improvement and updated
suggestions for park categories with relatively low carbon emission reduction in the study
area. These include reorganizing landscapes and changing the area and location of different
landscape types. Suggestions for transforming different types of park green spaces with
weaker carbon emission reduction capacity were also proposed to adjust the density of
patches and the shape of parks, to accurately promote the carbon emission reduction in
park green spaces in Shangqiu.

The diversity index has a significant positive impact on the CSE of the integrated
park, and the increase in PLAND_Imper can bring about a significant decrease in CSI.
Therefore, when transforming comprehensive parks, the focus should be on reducing the
proportion of impervious surface area in the park and increasing the diversity of landscape
patches. This can include introducing a variety of plant communities into a single green
space and adding small water bodies, such as fountains and pools, to parks without water.
The CSI of LSI of a small park has a significant negative impact, and the complexity of the
park boundary provides an opportunity for energy exchange between the park and the
surrounding area, thereby increasing the cooling effect of the park to a certain extent [26],
so the design and transformation of the park should focus on the change in the shape of the
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park boundary. The increase of AREA_MN and PLAND_Grass can significantly improve
the carbon emission reduction capacity of parks and community parks with an area of
2–5 ha [61], so attention should be paid to improving the cover of surface grassland in the
renovation of such parks, to enhance the carbon storage of vegetation and thus improve
the carbon emission reduction capacity of parks. For parks with an area of 2–5 ha, it is
also possible to improve the carbon-saving capacity of the park by increasing the type
of landscape patch. In the park without water, PD, SPLIT, and AREA_MN all showed a
significant positive relationship with carbon emission reduction capacity, which indicates
that the degree of plate fragmentation has the most significant impact on the sewage park,
so attention should be paid to dividing the internal patches of the park to make them as
dispersed as possible to achieve greater carbon emission reduction efficiency.

4.4. Limitations and Future Research Directions

In this paper, 19 landscape pattern indicators were selected to comprehensively de-
scribe the morphology, patch characteristics, fragmentation degree, and aggregation degree
of the park, and the selected variables explained the changes in CSI (83%) and CSE (44.2%).
However, our study has some limitations in some aspects, and the influence mechanism of
landscape patterns on CSI and CSE of urban parks and green spaces needs further study.
First of all, it should be recognized that this study is based on a 2D plane, and the impact
of landscape changes in the vertical 3D range, including green amount, water depth, and
other factors on CSI and CSE, needs to be refined and improved in future studies. The
specific configuration of plant communities in the park, the physiological and ecological
indicators of vegetation, the vertical and planar structure of surrounding features, and
other factors that have a potential impact on the cooling effect of urban park green spaces
are also included in the research of carbon emission reduction and park enhancement
strategy of urban parks. The impact of influencing factors on carbon emission reduction
from various perspectives should be comprehensively considered.

Secondly, the research on the carbon emission reduction effect of urban parks in this
paper is based on surface temperature. Due to the difficulty in acquiring high-quality con-
tinuous meteorological data, this paper relied only on remote sensing images of cloudless
and sunny summer days in 2020–2021 to measure the carbon emission reduction in urban
park green spaces. Actual results may be biased due to this limitation. Future research
should explore higher precision surface temperature data combined with field survey data
to supplement remote sensing images. It should also introduce multi-source data from
seasonal changes in surface temperature, daily dynamic changes, interannual changes,
urban and rural changes, and other multi-temporal and spatial perspectives to explore the
changes in land surface temperature and its impact on carbon emission reduction efficiency
in a comprehensive manner. This approach will clarify the specific impact of landscape
pattern index and urban park CSI and CSE and will direct attention to the practical sig-
nificance and practical effect of research. It will also promote the combination of research
results and urban construction strategies and conduct in-depth research on the carbon
emission reduction effect of urban green spaces in practice.

5. Conclusions

Currently, there is extensive research on mitigating the surface heat island effect in
urban parks in the context of carbon neutrality. However, it is of significant importance
to quantify the carbon emission reduction resulting from the mitigation of urban park
thermal effects, as it contributes to achieving urban carbon neutrality goals. Additionally,
it is crucial to quantitatively analyze the influence of urban park landscape patterns on
carbon emission reduction intensity and efficiency. In this study, we estimated the carbon
emission reduction intensity and efficiency of 118 urban parks located in Shangqiu City,
Henan Province. The average CSI was found to be 2.55 ± 0.31 t CO2, and the CSE was
1.79 ± 0.29 t CO2 per ha across all studied parks. Consequently, a total carbon emission
reduction of 300.57 t CO2 was achieved. Parks larger than 10 ha and parks with water
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features exhibited higher carbon emission reduction, indicating that the landscape layout of
these parks is more conducive to carbon reduction compared to other park types. Among
all park categories, the proportion of trees, herbs, and water bodies significantly influenced
carbon conservation. Furthermore, the concentration of landscape patches, including
cohesion, split, and aggregation index (AI), played a crucial role in the CSI and CSE of
urban parks. Increased fragmentation also led to a stronger carbon emission reduction effect.
Based on these findings, we propose a series of strategic suggestions for the renovation and
improvement of different park types, aiming to enhance the carbon emission reduction
intensity of urban park green spaces through landscape pattern transformations at the
regional scale. These suggestions provide theoretical support and practical guidance for
urban planning, renovation, and renewal efforts, contributing to carbon emission reduction,
mitigation of the urban thermal environment, and enhancement of ecological benefits in
the Central Plains region. Ultimately, this research promotes the acceleration of the carbon
neutrality process in the Central Plains.
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