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Abstract: Despite the Yangtze River Basin (YRB)’s abundant land and forestry resources, there is still
a dearth of research on forecasting habitat quality changes resulting from various geographic and
environmental factors that drive landscape transformations. Hence, this study concentrates on the
YRB as the focal area, with the aim of utilizing the Patch Landscape Upscaling Simulation model
(PLUS) and the habitat quality model to scrutinize the spatial distribution of landscape patterns
and the evolution of HQ under four scenarios: the natural development scenario (NDS), farmland
protection scenario (CPS), urban development scenario (UDS), and ecological protection scenario
(EPS), spanning from the past to 2030. Our results show that (1) from 2000 to 2020, the construction
land in the YRB expanded at a high dynamic rate of 47.86% per year, leading to a decrease of
32,776 km2 in the cultivated land area; (2) the UDS had the most significant expansion of construction
land, followed by the NDS, CPS, and EPS, which had higher proportions of ecologically used land
such as forests and grasslands; (3) from 2000 to 2020, the HQ index ranged from 0.211 to 0.215 (low
level), showing a slight upward trend, with the most drastic changes occurring in the low-level
areas (−0.49%); (4) the EPS had the highest HQ (0.231), followed by the CPS (0.215), with the CPS
increasing the HQ proportion of the lower-level areas by 2.64%; (5) and in addition to government
policies, NDVI, DEM, GDP, and population were also significant factors affecting landscape pattern
and changes in habitat quality.

Keywords: PLUS model; In-VEST model; landscape pattern; habitat quality; driving factors

1. Introduction

Human activities and climate change are transforming Earth’s ecosystems in ways
that threaten their well-being and sustainability [1]. These changes have far-reaching
consequences for the ecological environment on a local, regional, and global scale [2],
particularly affecting the habitat quality (HQ) for biological organisms [3]. HQ, which
reflects to some extent regional biodiversity landscape pattern dynamics, has become
one of the significant risk factors affecting HQ [4], which changes the composition and
structure of habitats and ultimately affects the material circulation and energy flow between
habitat patches [5]. Currently, more than two-thirds of the world’s ice-free land surface has
undergone some form of human activity [6]. The scope, magnitude, and implications of
global land use are unprecedented in Earth’s history [7], making it the primary driver of
biodiversity decline worldwide [8]. Hence, investigating the correlation between landscape
patterns and HQ and effectively forecasting and assessing the dynamics of LUCC pattern
evolution under varying scenarios are crucial ecological issues for the future and hold
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significant importance in safeguarding regional biodiversity and promoting sustainable
LUCC practices [9].

HQ is a pivotal parameter of ecosystem service functionality and ecosystem health [10],
and assessing HQ and developing models for predicting its future evolution based on
landscape patterns are crucial for comprehending the ecological stability of watersheds [11].
Many HQ models have been developed internationally according to research needs, the
most common of which is the habitat suitability model HIS [12], C-Plan [13], and Max-
ent [14]. However, these models are challenging to apply because they require species
biodiversity data and information on the number of species present in the environment. The
Integrated Valuation of Ecosystem Services and Tradeoffs (In-VEST) model system provides
a quick evaluation of the functional volume of ecosystem services [15]. Its HQ module
enables a rapid assessment of the impacts of different threat sources and LUCC [16]. The
In-VEST model has the advantages of easy data access, minimal requirements, accurate an-
alytics, and simple operation and data processing [17,18]. The model has been successfully
used to assess HQ [19], the impact of urban expansion on the HQ [20], and predicted future
HQ through simulations [21,22]. It has also explored the relationship between landscape
pattern intensity, population density, and HQ [23]. Notwithstanding, the existing research
has predominantly centered on protected areas and habitats of individual species, with
inadequate emphasis given to transformations occurring at the core of major watersheds.
Hence, there is a pressing need to direct more attention towards this issue.

As previously discussed, the PLUS and In-VEST models are widely used. Still, there
needs to be more studies involving the coupled PLUS-In-VEST models to evaluate and
simulate the future evolution of land use and habitat quality characteristics in various
scenarios. The YRB holds immense importance as a zone for economic development
in China and is also acknowledged as a Global 200 freshwater ecosystem by the World
Wildlife Fund (WWF) [24]. Due to the significant transformation of patterns and the fragile
ecosystems present in the YRB [25], there are minimal modeling changes in LUCC, HQ,
and coupling the driving mechanisms for the YRB and even the entire Asian basin.

Thus, the objectives of this study were as follows: (a) to establish the CA-Markov-
PLUS model and the In-VEST-HQ model based on the history of LUCC patterns; (b) to
simulate the changes in landscape pattern and HQ under multiple scenarios for 2030 (natu-
ral development scenario (NDS), cropland protection scenario (CPS), urban development
scenario (UDS), and ecological protection scenario (EPS)); and (c) to conduct a comprehen-
sive analysis of the temporal and spatial fluctuations in HQ levels across various scenarios
and to explore the underlying mechanisms that drive the changes in landscape patterns
and HQ. This research is anticipated to provide scientific backing for the conservation of
watersheds and the promotion of sustainable development practices by building upon
previous studies on land-use modeling and pattern analysis.

2. Materials and Methods
2.1. Study Area and Data Processing

The YRB, located between 90◦33′~122◦25′ east, and 24◦30′~35◦45′ north (Figure 1),
is the third most extended river basin in the world (about 6397 km) and the third most
significant basin in the world (1.8 million km2). Originating on the southwest side of
Mount Tangulah in the Qinghai–Tibet Plateau, it spans three major economic zones in
southwest, central, and eastern China. It flows west to east into the East China Sea [26]. The
Yangtze River Basin boasts a temperate climate, ample precipitation, intricate topography,
diverse land-use patterns, and extensive biological resources. Notably, the region harbors a
significant proportion of China’s rare and endangered flora, accounting for 39.7% of the
national total, and serves as a focal point for the conservation of endangered wildlife.
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Figure 1. The study area, located in YRB. 

To ensure the precision and dependability of future HQ model simulations, we have 
identified crucial indicators from three perspectives: geographic environment, socioeco-
nomic factors, and climate conditions. Concerning the geographic environment, the DEM 
is a digital elevation model utilized to depict terrain height and topography. A higher 
DEM value corresponds to better HQ, as high-altitude areas tend to harbor richer ecosys-
tems and more biodiversity. Additionally, steeper slopes are associated with lower LUCC 
and ecosystem stability. Variations in soil types can also affect the stability of ecosystems 
and the survival and reproduction of organisms. For instance, black and red loam soils 
promote plant growth and development, while sandy soils have limited effects. Mean-
while, a higher NDVI coverage corresponds to better HQ, primarily because vegetation 
plays a crucial role in fulfilling the ecological functions required by the ecosystem. The 
water system is also a vital component of the ecosystem. Regarding socioeconomic factors, 
a higher density of GDP and population (POP) increases the likelihood of HQ destruction, 
since human production and living activities have a significant ecological impact. High 
temperatures and excessive rainfall can also have adverse effects on ecosystems. The dis-
tance from roads, counties, highways, and railways is mainly due to regional urbaniza-
tion, industrialization, agricultural production, and the disruption and destruction of the 
ecological environment caused by transportation. In terms of climate, high temperatures 
can accelerate moisture evaporation and reduce soil moisture, leading to nutrient loss in 
the soil, reduced soil quality, and affected plant growth. Warmer temperatures can also 
alter the growing season and range of plants, as well as change key ecological processes, 
such as carbon and nitrogen cycles. Precipitation has a more significant impact on the 
hydrological cycle and water quality, and excessive precipitation can cause flooding and 
erosion, affecting soil moisture, plant growth, species diversity, and the productivity of 
ecosystems. Therefore, this study selected 16 driving factors, including the Yangtze River 
Basin DEM, GDP, population density, soil type, temperature, precipitation, water, slope, 
distance from level I–IV roads, distance from county premises, distance from highways, 
distance from townships, NDVI, and more (Figure 2). 

Figure 1. The study area, located in YRB.

To ensure the precision and dependability of future HQ model simulations, we have
identified crucial indicators from three perspectives: geographic environment, socioeco-
nomic factors, and climate conditions. Concerning the geographic environment, the DEM
is a digital elevation model utilized to depict terrain height and topography. A higher DEM
value corresponds to better HQ, as high-altitude areas tend to harbor richer ecosystems
and more biodiversity. Additionally, steeper slopes are associated with lower LUCC and
ecosystem stability. Variations in soil types can also affect the stability of ecosystems and
the survival and reproduction of organisms. For instance, black and red loam soils promote
plant growth and development, while sandy soils have limited effects. Meanwhile, a higher
NDVI coverage corresponds to better HQ, primarily because vegetation plays a crucial role
in fulfilling the ecological functions required by the ecosystem. The water system is also
a vital component of the ecosystem. Regarding socioeconomic factors, a higher density
of GDP and population (POP) increases the likelihood of HQ destruction, since human
production and living activities have a significant ecological impact. High temperatures
and excessive rainfall can also have adverse effects on ecosystems. The distance from roads,
counties, highways, and railways is mainly due to regional urbanization, industrialization,
agricultural production, and the disruption and destruction of the ecological environment
caused by transportation. In terms of climate, high temperatures can accelerate moisture
evaporation and reduce soil moisture, leading to nutrient loss in the soil, reduced soil
quality, and affected plant growth. Warmer temperatures can also alter the growing season
and range of plants, as well as change key ecological processes, such as carbon and nitrogen
cycles. Precipitation has a more significant impact on the hydrological cycle and water
quality, and excessive precipitation can cause flooding and erosion, affecting soil moisture,
plant growth, species diversity, and the productivity of ecosystems. Therefore, this study
selected 16 driving factors, including the Yangtze River Basin DEM, GDP, population
density, soil type, temperature, precipitation, water, slope, distance from level I–IV roads,
distance from county premises, distance from highways, distance from townships, NDVI,
and more (Figure 2).
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Figure 2. Spatial distribution of various influencing factors of PLUS in the study area.

The data used in this study include land-use data, socioeconomic data, digital elevation
model (DEM) data, and natural environment data. Sixteen sets of driving data were selected
by selecting principles such as consistency, quantifiability, completeness, and significance
of filtering and driving factors. The LUCC data used in this study were obtained from
the Chinese Academy of Sciences Resources and Environmental Sciences in Data center
(https://www.resdc.cn, accessed on 12 May 2022). The classification of land use was
based on the land resource remote sensing survey classification standards designated
by the Ministry of Land and Resources. The LUCC in the basin was reclassified from
67 categories to 6 primary land-use types: cropland, forest, grassland, water, construction
land, and unused land. Construction land refers to land used for urban and rural residential
areas, as well as industrial, mining, oil, salt, quarry, transportation, and other purposes
outside residential areas. The normalized difference vegetation index (NDVI) data are
all from the Resource Environmental Science Data Center of the Chinese Academy of
Sciences (https://www.resdc.cn, accessed on 12 May 2022) with a resolution of 1 km
×1 km: distance from water, distance from road, distance from rail, distance from high
speed, according to the county station distance and other data from Open Street Map (https:
//www.openstreetmap.org, 9 May 2022), calculated using Euclidean space with a resolution
of 1 km× 1 km. The Digital Elevation Model (DEM) data were obtained from the Geospatial
Data Cloud Platform (http://www.gscloud.cn, accessed on 12 May 2022). To ensure that
all collected data were better suited for the PLUS model, we processed the selected data
using ArcGIS 10.4 software. We standardized all data to the geographic coordinate system
GCS_WG_1984 and the projected coordinate system wgs_1984_um_zone_48n, with a
column count of 3264 and a row count of 1432.

https://www.resdc.cn
https://www.resdc.cn
https://www.openstreetmap.org
https://www.openstreetmap.org
http://www.gscloud.cn
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2.2. LUCC Simulation Based on PLUS Model

The PLUS model, which was utilized in this study, was developed by the HPSCIL@CUG
Laboratory Development Team at China University of Geosciences [27]. It is a model com-
bining a new LEAS based on the forecast of LUCC requirements for the Markov module, a
common mining framework for models [28], and a CARS model based on stochastic plaque
seeds [29]. The LEAS module can extract and sample land expansion between two phases of
land-use change. To obtain the contribution rates of development probabilities and drivers
for all types of land, stochastic forest algorithms were used in this study. The CARS module
combines random seed generation and threshold reduction mechanisms to effectively mine
and analyze the data. The automatic generation of plaque is simulated under the constraint
of development probability. The advantage of the model over the traditional model is
that it can better affect multiple types of land-use pattern changes and tap the drivers of
land-use change [30]. Meanwhile, using the historical transfer probability matrix for the
YRB’s 2010–2020 data, the corresponding transfer probability matrices are built using the
Markov model for quantity prediction as per the requirements of the natural development,
urban development, cropland protection, and ecological protection scenarios’ forecast of
the size of the research area in 2030 under the four simulated scenarios of environmental
protection, cropland conservation, nature development, and town growth. This paper uses
the kappa coefficient to evaluate model accuracy.

Pij =


P11 P12 · · · P1n
P21 P22 · · · P2n
· · · · · · · · ·

Pn1 Pn2 · · · Pnn

 , and
n

∑
j=1

Pij = 1(i, j = 1, 2, · · · , n) (1)

where the transfer matrix of Pij is the unused type; St, St+1 denote the t and t + 1 periods
of the LUCC; n is the type of LUCC.

2.2.1. The Cellular Automata–Markov Model

The CA-Markov model (cellular automata–Markov model) is a land-use change pre-
diction model based on cellular automata (CA) and Markov models [31]. Initially, the
CA model is utilized to simulate the spatial distribution of land-use changes, followed
by the Markov model to forecast future land-use changes. Specifically, the CA-Markov
model establishes a cellular automaton model based on the study area’s characteristics
and the type of land use, dividing the area into cells that represent various land-use types,
such as unused land, forest, construction land, etc. Transfer probability between different
land-use types is calculated based on historical land use and other relevant data. The
transition matrix is built, and the results of the CA model prediction are used to calculate
and weigh the probability of each cell using different functions in the future using Markov’s
model [32]. Finally, future land-use patterns are projected by modeling future land-use
changes through CA. The CA-Markov model has the advantage of considering spatial
autocorrelation and the history of LUCC, simulating the spatial distribution and evolution
of land-use changes.

2.2.2. The Land Expansion Analysis Strategy Module

In the land expansion analysis strategy (LEAS) module, the LUCC of the second
phase was analyzed by extracting the regions where class changes occurred and randomly
selecting sampling points [28]. The random forest classification algorithm was utilized
to investigate the relationship between class expansion and multiple drivers in different
regions, derive the development probability of classes in various areas, and determine
the contribution of drivers to class expansion during different periods [33]. For this study,
the decision tree value was set to 20, the default sampling rate was 0.01, the mTry did
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not exceed the number of driver factors, which was set to 16, and the number of parallel
threads was set to 1. The calculation formula is as follows:

Pd
i,k(X) =

M
∑

n=1
I[hn(X) = d]

M
(2)

where d can be 0 or 1. When d is 1, it means that other LUCC types change to the LUCC
type k, and when it is 0, there is no change. X is the vector of driving factors, and h(X) is
the land-use prediction type calculated when the decision tree is n. This is the indicator
function of the decision tree. P is the probability of k LUCC-type growth at the spatial unit.

2.2.3. The Change Analysis, Resilience, and Sustainability Model

The change analysis, resilience, and sustainability (CARS) model for the evolution of
multiple terrestrial patches adopts a multiple-type random patch seed mechanism based
on the threshold decline [34]. Under the constraints of the LEAS module generation
development probability, domain weight, and transition matrix, the total land use can
meet future demands on a macro level [35]. For this study, the CARS parameters were
set as follows: the neighborhood range was assigned to the default value of 3, thread was
specified as 1, the decline threshold coefficient was set to 0.5, the diffusion coefficient was
set to 0.1, and the random patch seed probability was set to 0.0001. Historical LUCC data
and experience mainly set the transfer cost matrix. The neighborhood weight parameter
represents the expansion intensity of different land-use types and reflects the expansion
ability of local classes under the influence of spatial driving factors.

Xi =
4TAi −4TAmin

4TAmax −4TAmin
(3)

where Xi is the neighborhood weighting parameter of a certain land type 4TAi is the
amount of change of the land type TA during the study period. 4TAmax, and4TAmin are
the maximum and minimum changes of TA during the study period, respectively.

In this study, values were assigned based on the normalized value of land-use expan-
sion in the previous stage. The neighborhood weight of each land-use type is as follows:
cropland is 1, forest is 0.6, grassland is 0.8, water is 0.3, construction land is 1, and unused
land is 0.5.

2.3. Accuracy Verification of the PLUS Model

The kappa coefficient is one of the commonly used indicators for evaluating the
accuracy and consistency of classification, and can measure the consistency between the
classification results and the actual situation. The definition of the kappa coefficient is the
ratio of the classification accuracy to the random classification accuracy.

Kappa =
P0 − Pc

Pp − Pc
(4)

where P0 is the correct grid proportion to simulate, PP is the correct proportion to simulate
under ideal conditions, and PC is the correct proportion to affect under random conditions.
The value range of the kappa coefficient is between −1 and 1. When the kappa coefficient
is 1, it indicates that the classification results are completely consistent with the actual
situation. When the kappa coefficient is 0, it means that the classification results are
consistent with the random classification results. When the kappa coefficient is negative, it
indicates that the classification results are worse than the random classification results.

2.4. Setting of Future Scenarios

To explore land-use changes in the YRB under different development goals based on
Chinese watershed policy and previous experience [36,37], this paper sets up four different
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LUCC transformation matrices to predict and simulate land use in the Yangtze River Basin
in 2030. Natural development scenario (NDS): the parameters are not adjusted based on
the extrapolation of existing trends. Cropland protection scenario (CPS): increased area
conversion of forest, grassland, and unused land to cropland, reduced area conversion of
cropped land to these land types, and increased pre-measurement of cropland as a result of
simulations. Urban development scenario (UDS): the area of cropland, forest, and grassland
converted to construction land increased, the area of construction land converted to the
rest of the category decreased, and the simulation results increased the pre-measurement of
construction land. Ecological protection scenario (EPS): to increase the transfer of unused
land and cropland to forest, grassland, and water, reduce the transfer of forest, grassland,
and water to other species, and improve the prediction of forest, grassland, and water in
simulated years. The conversion cost matrix for the four scenarios is shown in Table 1, with
a–f representing six LUCC types in turn; 0 means that it cannot be converted; 1 means that
conversion is allowed.

Table 1. LUCC conversion cost matrix for each scenario.

NDS CPS UDS EPS

a b c d e f a b c d e f a b c d e f a b c d e f

a 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1
b 0 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 0 0
c 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 1 0 0
d 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0
e 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2.5. Habitat Quality Assessment Based on In-VEST Model

The In-VEST model is designed to evaluate ecosystem service functions and simulate
changes in ecosystem services under different landscape pattern scenarios. It presents
results in raster charts and includes three significant modules for terrestrial, marine, and
freshwater ecosystem assessments [38]. The HQ module of the In-VEST model is based on
land-use data. The relationship between landscape pattern dynamics and HQ in the study
area is characterized by calculating the HQ index based on the data of various coercion
factors, habitat suitability of habitat types, and sensitivity to coercion factors.

Qxj = Hj[1− (
Dxj

z

Dxj
z + kxj

z )] (5)

where Qxj is the land-use/cover (LULC) type j, the habitat quality of grid x is 0–1, the
larger the value indicates the better the HQ, the more suitable the species to survive, Hj is
habitat suitability, Z is the scale constant (typically 2.5), and k is the semi-saturated constant
(the software default value is 0.5).

Dxj =
R

∑
r=1

Yr

∑
y=1

ωr
R
∑

r=1
ωr

ryirxyβxSjr (6)

irxy = 1− (
dxy

drmax
) (7)

where Dxj is the total threat level of the grid x in landscape pattern type J or habitat type
j, r is a source of habitat threats, Yr is the number of sets of grids occupied by r, Wr is the
weight of each threat factor r, ry is the threat factor value for grid y, irxy is the threat factor
of grid Yr to habitat grid x, β is the accessibility level of the grid x, Sjr is habitat type j
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sensitivity to coercion factor r, dxy is the linear distance between the grid and the grid, and
drmax is the maximum influence distance of the coercion factor.

The types of land use in cropland, construction land and unused land are selected as
habitat threat factors, with set weights of 0.7, 10.5 and a maximum distance of 4, 8, 6. The
sensitivity and habitat suitability of each threat source is shown in Table 2.

Rij =
(Hj − Hi)Si

Si
(8)

where the rate of habitat contribution of Rij to the transformation of i into j− land, Hi and
Hj are the habitat quality indices for the initial and final stages of the change in a particular
area during the study period, respectively, Si is the area of land used for the land change,
and St is the total area.

Table 2. Sensitivity and habitat suitability of each threat source.

Habitat Cropland Construction
Land Unused Land

Cropland 0.3 0 0.6 0.1
Forest 0.9 0.8 0.6 0.2

Grassland 0.7 0.4 0.5 0.2
Water 0.75 0.7 0.8 0.2

3. Results
3.1. Spatiotemporal Analysis of Landscape Pattern

The landscape pattern of the YRB is dominated by forest, grassland, and cropland.
Through statistical analysis of LUCC types in 2000 and 2020 in the YRB (Figure 3 and
Table 3), it is found that the area of forest, water, and construction land has shown an
expanding trend in the past 20 years, and the area of construction land has had the largest
increase, increasing by 27,976 km2, an increase of 95.72%. On the contrary, the area of
cultivated land, grassland, and unused land continued to decrease by 23,391 km2, 6130 km2,
and 10,463 km2, respectively, to 2020. The unused land area decreased the most (17.65%),
followed by cropland (4.6%) and grassland (1.45%). The transfer matrix of different types
of land use from 2000 to 2020 was obtained by using the ArcMap grid calculator (see
Table 3 and Figure 4). The total area of transferred land use in the Yangtze River Basin is
164,847 km2, accounting for 9.14% of the land-use area in the study area, and the land-use
pattern has shown little change. Among these, the largest area of cultivated land was
transferred, reaching 32,776 km2, of which 58.96% was converted to forest land and 26.92%
to grassland. The reason for this was the growth in the urban population, the continuous
expansion of urban construction land, and the encroachment of cultivated land. The
largest area of forest land was transferred to 51,703 km2, of which 55.71% was converted to
grassland and 41.52% to cultivated land. Large-scale return of grassland to forests resulted
in a net reduction in grassland area of 43,843 km2. The water area increased significantly,
with a cumulative net increase of 9307 km2, of which 51.81% was converted from arable land.
The unutilized area decreased by 10,463 km2, with a major transfer of 87.14% to grassland.
This was mainly due to China’s response to carry out the environmental protection policy
of the river basin and implement the action of returning farmland to the forest to protect
the ecological environment. In general, the land-use types in the YRB mainly show the
characteristics of a rapid increase in construction land, a substantial reduction in cropland,
and large regional differences in development intensity. This is due to the increasing
demand for social and economic development in the YRB, the fact that the country views
land as an important means to attract investment, and construction land and unused land
have experienced rapid and unequal expansion, occupying a large amount of cropland.
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Table 3. Transition matrix of landscape pattern from 2000 to 2020 in YRB/km2.

Project

2020

Cropland Forest Grassland Water Construction
Land Unused Land Total Rollout

Totals

2020

Cropland 449,616 21,465 7428 4822 22,323 129 505,783 56,167
Forest 19,324 693,604 16,370 1568 4244 434 735,544 41,940

Grassland 8823 28,804 378,425 1396 1323 3497 422,268 43,843
Water 2069 519 619 47,895 755 594 52,451 4556

Construction
land 2498 322 107 261 26,020 18 29,226 3206

Unused
land 62 593 13,189 1260 31 44,135 59,270 15,135

Total 482,392 745,307 416,138 57,202 54,696 48,807 1,804,542 /
Turn in
totals 32,776 51,703 37,713 9307 28,676 4672 / 164,847
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3.2. Accuracy Verification of the PLUS Model

This study takes the land-use data of 2000 and 2010 as the initial data, uses the Markov
chain prediction result of 2020 to simulate the land use situation of the YRB in 2020, and
selects the above 16 driving factors combined with the actual situation of the Yangtze River
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Basin. LUCC development potential was represented in the suitability atlas generated by
the LEAS module. Land-use demand, transfer matrix, and domain weight parameters were
input into the CARS module. Simulation results were verified by the confusion matrix
(Figure 4), which showed that the kappa coefficient was 0.901 and the overall accuracy
was 93.7%; however, the simulation accuracy of unused land was relatively low, at 83.61%.
The accuracy of the other five LUCC types was above 90% (Table 4). Meanwhile, the FoM
(Figure of Merit) was 0.41. Therefore, the PLUS model achieved ideal simulation accuracy,
accurately reflecting the needs of land-use change in the YRB. It can be used for subsequent
simulation predictions.

Table 4. Comparison between actual and simulated LUCC grids in the YRB in 2020, by number.

Actual Simulation Simulated Correct
Number Accuracy Rating/% RMSE

Cropland 505,375 490,847 467,442 95.23 0.1662
Forest 733,940 750,593 736,843 98.17 0.1745

Grassland 420,480 411,067 398,320 96.90 0.1468
Water 52,340 50,500 49,125 97.28 0.0682

Construction Land 29,072 45,920 41,956 91.37 0.0632
Unused land 59,145 59,222 49,513 83.61 0.0539

3.3. Multi-Scenario Simulation of LUCC

The four future landscape pattern scenarios simulated by the Plus model show lower
rates of change in cropland, forest, and grassland. However, there were significant changes
observed in construction and unused land (Figure 5). The NDS scenario exhibited the most
substantial reduction in cropland, with a decrease of 3.95% or 19,032 km2 compared to
the year 2020. On the other hand, there was a clear expansion of construction land, which
increased by 51.76%. This expansion was mainly due to the conversion of large areas of
forest, grassland, and unused land. In the absence of policy restrictions, construction land
is likely to proliferate rapidly as human activity increases, encroaching on other types
of land and posing a significant threat to ecological and food security. The area of CPS
cropland was 498,787 km2, an increase of 3.4%. This is mainly due to the diversion of forest,
grassland, and water, indicating the implementation of the protection of cropland and
strict control over the occupation of arable land by other species, adequate protection of
cropland, and food security. The transfer of large areas of unused land and water under
the UDS led to an increase of 56.69% in construction land. This is mainly due to the
unconstrained development of towns and cities, which can rapidly expand the number of
construction sites. There was extensive encroachment on other species, such as in arable
land and water, in which the ecological environment is destroyed. The EPS forest area
increased by 41,362 km2, or 5.55%, but the most significant expansion was construction
land (25.51%). Despite the expansion of construction land, the implementation of ecological
protection policies has helped to reduce the expansion rate from 51.76% to 25.3% for natural
development scenarios. This achievement has successfully protected forests and water
resources, in line with the ecological protection goals.

3.4. Spatiotemporal Analysis of HQ Based on LUCC Change

Based on historical land-use analysis of the overall HQ of the YRB, the natural break-
point method was used to divide the habitat quality into five levels: low (0–0.2), lower
(0.2–0.4), medium (0.4–0.6), higher (0.6–0.8), and high (0.8–1) (Figure 6). As evident from
the data, the spatial distribution of the YRB’s HQ exhibits a decreasing trend from west
to east, with the most severely affected areas concentrated in downstream regions. This
trend is primarily attributable to the excessive amount of construction land in those areas.
The medium-HQ area is primarily distributed in cropland in the central part of the study
area and a few meadows in the eastern part region; the upper reaches are primarily dis-
tributed in high-HQ areas, whose HQ area is larger than the medium and low areas. Over
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the period of 2000–2020, the medium-, higher-, and high-HQ regions witnessed increases
of 3.26%, 3.52%, and 3.45%, respectively. On the other hand, low- and lower-HQ areas
showed a decrease of 0.83% and 1.59%, respectively. Among these regions, the low-HQ
area accounted for the highest percentage and exhibited a declining trend. Specifically, the
area of the 20a region decreased by a total of 8782 km2, which accounts for a decrease of
0.49%; the lower-HQ area changed dramatically, with a total reduction of 2953 km2, and
the proportion of the decrease was 0.16%; the medium-HQ area accounted for less than
10%, with a slight increase of 0.15; the higher-HQ area witnessed an increase of 2682 km2,
accounting for 0.35%, while the high-HQ area experienced an increase of 2749 km2, ac-
counting for 0.15%. The average HQ of YRB during the period of 2000–2020 was 0.211,
0.214, and 0.215, indicating a slight improvement trend at a lower level. However, it is
still imperative to strengthen ecological environment governance in the basin to ensure
sustainable development.
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3.5. Multi-Scenario Simulation of HQ

Coupling the In-VEST model with the future LUCC scenario results from PLUS
simulations can facilitate the analysis of spatiotemporal changes in HQ of YRB. The changes
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in HQ of YRB are obtained by superimposing analyses (Figure 7). The spatial pattern of
HQ in different LUCC scenarios is relatively stable in 2030. The average HQ of NPS, CPS,
UDS, and EPS is 0.212, 0.215, 0.214 and 0.231, respectively, slightly higher than in 2020,
but generally lower. Among them, EPS has the most significant improvement in HQ, with
an 18.36% increase in the high-HQ area compared to 2020 and a 20.16% increase in the
higher-HQ area. NPS, CPS, and UDS, however, led to a 5.41%, 1.23%, and 0.03% decline in
the quality of high-HQ areas, respectively. CPS increased the mass lower-HQ area by 2.64%,
resulting in a reduction in the area of the other grades. By calculating the difference in HQ
change for 2020–2030 (Figure 6), we discovered that regions with unaltered habitat quality
index values had a clear advantage, averaging 97.27%. There was some variability between
(0.1) and (1.98%). EPS has the smallest percentage of unchanged HQ (93.98%) compared to
2020, and the UDS was the most significant (99.69%). Of the variability (0.1), the EPS area
experienced the most significant change, increasing from 1.67% in the preceding period to
3.16%. Meanwhile, the USD decreased significantly, from 1.67% in the preceding period
to 0.28%. Based on the overall change trend, EPS had the maximum increase in HQ area
(5.13%), while UDS had the minimum (0.04%). NDS had the most extensive decrease in
HQ area (1.48%), while UDS had the smallest decrease (0.28%).

Land 2023, 12, x FOR PEER REVIEW 13 of 20 
 

 
Figure 7. Spatial distribution of HQ difference under different YRB scenarios. 

4. Discussion 
4.1. Potential Limitations of This Study 

Although the coupling model used in this study is well applied (the kappa coefficient 
of the CA-Markov-PLUS model reached 0.91), there are still uncertainties. For example, 
the land-use system is influenced by many factors, such as nature, society, the economy, 
the humanities, and so on. In the course of actual development, there are many factors 
influencing land-use change. It is not easy to quantify, so it cannot be considered in the 
model at this stage. Meanwhile, there is no uniform criterion for how the various drivers 
are selected scientifically. The types of land use simulated by scholars using different driv-
ing factors are also different. We built a PLUS model for the Yangtze River Basin. Up to 
16 meteorological items for the Yangtze River Basin were selected. Social and economic 
factors are driving mechanisms for model construction; at the same time, to ensure the 
high quality and reliability of the data, we selected the full version of data published by 
government departments or professional bodies. We also collected the latest data for 2020 
as much as possible. The integrity and timeliness of the data are guaranteed. We stand-
ardised the data to compare and analyze the model to minimize uncertainty in the simu-
lation. The data standards we selected are also intended to provide reference for future 
land-use simulations. When the In-VEST model evaluates HQ, setting parameters such as 
the range and intensity of the threat source and habitat sensitivity, modifications are typ-
ically made based on previous study and the In-VEST model user guide. There is no uni-
fied parametric setting system, and changes in HQ are influenced by many factors. There 
are some errors in the analysis results. In this study, when constructing the YRB’s HQ 
assessment model, the parameters we selected were also based on the average values set 
by multiple former scholars. The parameters set in this study are limited to the analysis of 
analyzing the changes in the HQ of YRB. Therefore, in the future, how to scientifically 
synthesize various ecological services in the basin through an in-depth analysis of the 
complex relationship between different ecosystem services will be necessary in order to 
better reveal the development and evolution of HQ of YRB. 

  

Figure 7. Spatial distribution of HQ difference under different YRB scenarios.

4. Discussion
4.1. Potential Limitations of This Study

Although the coupling model used in this study is well applied (the kappa coefficient
of the CA-Markov-PLUS model reached 0.91), there are still uncertainties. For example,
the land-use system is influenced by many factors, such as nature, society, the economy,
the humanities, and so on. In the course of actual development, there are many factors
influencing land-use change. It is not easy to quantify, so it cannot be considered in the
model at this stage. Meanwhile, there is no uniform criterion for how the various drivers
are selected scientifically. The types of land use simulated by scholars using different
driving factors are also different. We built a PLUS model for the Yangtze River Basin. Up to
16 meteorological items for the Yangtze River Basin were selected. Social and economic
factors are driving mechanisms for model construction; at the same time, to ensure the
high quality and reliability of the data, we selected the full version of data published
by government departments or professional bodies. We also collected the latest data for
2020 as much as possible. The integrity and timeliness of the data are guaranteed. We
standardised the data to compare and analyze the model to minimize uncertainty in the
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simulation. The data standards we selected are also intended to provide reference for
future land-use simulations. When the In-VEST model evaluates HQ, setting parameters
such as the range and intensity of the threat source and habitat sensitivity, modifications
are typically made based on previous study and the In-VEST model user guide. There is
no unified parametric setting system, and changes in HQ are influenced by many factors.
There are some errors in the analysis results. In this study, when constructing the YRB’s
HQ assessment model, the parameters we selected were also based on the average values
set by multiple former scholars. The parameters set in this study are limited to the analysis
of analyzing the changes in the HQ of YRB. Therefore, in the future, how to scientifically
synthesize various ecological services in the basin through an in-depth analysis of the
complex relationship between different ecosystem services will be necessary in order to
better reveal the development and evolution of HQ of YRB.

4.2. Driving Mechanism of LUCC Pattern Variation

The landscape pattern change in the YRB results from many factors [39]. According to
the characteristics of land-use evolution, the expansion of construction land is obviously
due to China’s implementation of the “Great Western Development” in the Yangtze River
Basin (1998), “The Rise of Central China” (2004), the Chengdu Economic Zone Development
Strategy (2007), the Hubei Two-Circle Belt Strategy (2009), and the Yangtze River Delta
Development Strategy (2018) [40,41], which makes the social and economic development
of the YRB rapid and the level of urbanization rapid. Li et al. in 2020 showed that the total
area of cultivated land in Dongting Lake decreased by 716.13 km2 in 1980–2011 [42]. In
the late 1990s, China focused on projects such as “Pingtu Flood,” “Return to the Lake,”
and “Migration to the Town,” which contributed to the restoration of water areas, and
the policy of returning the lake to the Three Gorges, which began in 2011 [43]. Since the
implementation of the national policy of returning to the lake, the waters of Dongting Lake
increased at a rate of 20.05 km2/a between 2003 and 2017 [44]. Tong et al. in 2014 indicated
that the area of the headwaters of the YRB showed an increasing trend [45]. China’s ecolog-
ical civilization construction in the 12th Five-Year Plan period and the implementation of
the Yangtze River Protection Strategy in the 13th Five-Year Plan period have successively
reduced the change rate of ecological land in the YRB and the development interference
index, thus protecting high-quality environmental land [46]. Yang et al. in 2022 noted that
forests in the Yangtze River Basin increased by a maximum of 62,635 km2 between 2001 and
2019 km2 [47]. Chen et al. in 2021 also pointed out that the implementation of ecological
restoration projects resulted in the restoration of 34.57% of the area of downstream forests.
The continued reduction of cropland is closely related to the policy of returning cropland
to forest and grassland [48]. Kong et al. in 2018 noted that, driven by policies, the YRB
experienced a 7.5% reduction in cropland, a 67.5% increase in construction land area, and a
2.1% increase in forest area [49]. The transformation of land use in the YRB is significantly
impacted by macro-land development and conservation policies. Policy factors and the
execution of national ecological projects are the leading factors driving changes in land-use
structure and space [50].

Apart from the macroscopic effects on national policies, micro-natural factors and
human activities have also contributed to alterations in landscape patterns [51]. In this
study, the PLUS-Land Expansion Analysis Strategy (LEAS) module was utilized to rank
the driving factors of various types of land-use changes over the past 20 years based on the
selected 16 factors. A contribution analysis of land-expansion factors was also conducted.
This approach can provide a better understanding of the selection of and changes in land-
use types, and provide a scientific basis for land management and planning. A thorough
examination of the 16 selected driving forces reveals that NDVI, temperature, population
density, GDP, DEM, and road distance are the primary factors that influence the six types
of LUCC in the landscape pattern (Figure 8). NDVI and temperature are the most affected
by changes in cropland. This is attributed to the rise in temperatures, which leads to an
increase in the demand for moisture and transpiration in the atmosphere. The main driving
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factors for forest area are NDVI and population density. The influence of temperature on
the growth of forest land is reflected in the enhancement of vegetation photosynthesis and
the promotion of organic matter decomposition. Grassland is most affected by DEM, the
YRB flows from west to east through mountains, plateaus, basins (tributaries), hills, and
plains, the Qinghai–Tibet Plateau averages an elevation above 4000 m, grassland covers
lower areas, the middle and lower Yangtze River plains are low, most of the elevation is less
than 50 m, and the grassland is widely distributed. The water area was the most affected
by slope and DEM, and the other influencing factors were more balanced, consistent with
the actual situation in the study area. The impact of the growth in construction land is
mainly determined by the distance from county residences and the distance from the first
road, which indicates that the urbanization process continues to advance and ultimately the
residential land area continues to expand. Unused land is strongly affected by population
density. The change in population quantity and structure promotes the exploitation of
unused land. There is rapid growth in construction land, and human beings obviously
improve the development and utilization degree of land development, and the utilization
degree of land is obviously improved enhanced by human beings. The expansion of
construction land poses a significant threat to the ecological environment of the YRB.
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Due to the difficulty in obtaining data, there are many factors that can cause changes
in land use, such as soil pollution caused by human activities such as mining and industri-
alization. In the future, we can use tools such as remote sensing technology and geographic
information systems to obtain information on changes in land-use types and related driving
factors. We can also obtain relevant information on the selection and changes of land-use
types through methods such as surveys and field inspections. By combining these methods,
we can more comprehensively and accurately evaluate the changes and driving factors of
land-use types and provide a scientific basis for land management and planning.
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4.3. Impacts of Landscape Pattern Variation on HQ

By utilizing the PLUS and In-VEST models to evaluate the present and future HQ
of the YRB, this study discovered that the spatial distribution of the HQ index is closely
aligned with the spatial distribution of LUCC types. In the future, the HQ will change
significantly under four different land-use scenarios in the YRB. Therefore, the accuracy
of future HQ assessments is closely related to the accuracy of land-use simulation. The
HQ index gradually increases in the 2000–2020 and 2030 scenarios. HQ is significantly
better in ecological protection scenarios than in 2020, indicating that HQ is constantly
being optimized with the support of environmental protection. However, NPS, CPS, and
UDS have led to a decline in the quality of high-HQ areas. The areas with higher HQ
are mainly concentrated in the upper reaches of the Jinsha and Yalong rivers, which are
influenced by topographic features. The mountainous areas in the upper reaches are
sparsely populated, and human activity is minimal. The continuous improvement in HQ is
due to crucial ecological restoration and management measures, such as environmental
fallow cropland, closing mountains and cultivating forests, planting grass, and fixing sand
in recent years [38]. The areas with poor habitat quality are mainly concentrated in the
middle and lower reaches. The leading causes are the rapid economic development and
population growth over the past 20 years, the scale of industrialization and urbanization,
and changes in land use, such as increased use of urban construction land, which affects
the HQ [52]. This is also the main reason that the spatial pattern of habitat quality in the
basin is high, middle, and low on both sides and high in the east and low in the west.

Over the past 20 years, various types of transformation have played a role in altering
HQ. However, the positive impacts of geo-transformation are significantly greater than
the negative effects (Table 5). Among the positive impacts, the conversion of unused
land to grassland, forest land, and water area contributed the most, above 10%, and the
contribution degree of grassland conversion was the largest, reaching 31.03%. The reason
was that the proportion of unused land converted to grassland accounted for 87.14% of
the transferred area. In comparison, the proportion of unused land converted to woodland
accounted for only 3.87% of the transferred area. Therefore, converting unused land to
grassland was the main reason for the improvement in HQ. Among the negative impacts,
grassland conversion to unused land contributed the most (12.61%). The conversion of
forest land to unused land and water land to unused land contributed 11.46% and 10.7%,
respectively. Therefore, the conversion of grassland to unused land was the primary cause
of the decline in HQ.

Table 5. Contribution index of land-use conversion to HQ change from 2000 to 2020.

Cropland Forest Grassland Water Construction Land Unused Land Total

Cropland −0.0016 −2.1432 −1.1548 −1.1263 −0.1682 −0.0353 −4.6293
Forest 2.0919 0.1089 0.1261 −0.2148 −0.0904 −11.4579 −9.4361

Grassland 3.6591 1.0434 0.6576 1.4815 −0.2393 −12.6144 −6.0121
Water 1.0007 −0.0149 1.6975 0.1418 −0.1716 −10.7005 −8.0469

Construction Land 0.6257 −0.4990 7.6254 −0.3885 −0.0284 −0.2517 7.0836
Unused Land 3.0873 26.3509 31.0341 12.6929 −0.0792 0.8028 73.8887

Total 10.4633 24.8461 39.9859 12.5866 −0.7770 −34.2570 52.8479

4.4. Future Expectations

Examining how humans can alleviate the adverse impacts on habitat quality under
future LUCC scenarios is crucial for safeguarding the ecological environment and biodi-
versity. From the previous discussion, it is evident that the YRB has undergone increased
urbanization over the past two decades. The impact of contradictions, such as changes in
agricultural production patterns and increased use of water resources on HQ, is becoming
more apparent. The overall HQ of the YRB remains at a lower level, with HQ and impact
factors varying in different scenarios. Therefore, specific actions are necessary for different
situations to minimize damage to HQ. We recommend the following measures to promote
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environmental protection and sustainable development, which are expected to inform
governments, businesses, and the public.

For the NDS scenario, we recommend that governments and all sectors of society
increase the protection and restoration of the ecological environment of the Yangtze River
Basin, strengthen ecosystem management and security, and promote the rational utilization
of water resources to reduce water pollution and waste. Additionally, we need to develop
and implement sustainable urbanization plans that advance the rational layout of urban-
ization and industrial land to reduce habitat fragmentation and loss. Finally, we should
strengthen environmental monitoring and management, promptly detect and deal with
environmental pollution and habitat damage, and protect the ecological environment of
the YRB.

Under the CPS scenario, we suggest that the government develop and implement
land-use plans for the Yangtze River Basin and strengthen land-use management to prevent
the illegal occupation of cultivated land and misuse of land resources. At the same time,
promoting cultivated land conservation and ecological restoration is necessary to restore
and improve land ecosystems. Additionally, promoting environmental agriculture is vital.
Using ecological cultivation, ecological aquaculture, and other techniques can reduce
agricultural damage to habitats and improve agricultural and environmental benefits.

For the UDS scenario, the government should promote the construction of ecological
cities and strengthen the planning and design of urban landscapes and environmental
environments to reduce urbanization’s adverse impact on HQ. Enhanced management of
construction land is essential to control urban land expansion and reduce habitat fragmenta-
tion and loss. Additionally, promoting green transportation construction and encouraging
green travel can reduce transportation’s adverse impact on HQ.

Under the EPS scenario, we suggest that governments and communities increase
the structure of ecological reserves to protect ecosystems and species diversity. Environ-
mental engineering techniques such as environmental restoration, ecological restoration,
and ecological construction can enhance ecosystem stability and anti-disturbance capacity.
Increasing green cover, such as forests, grasslands, wetlands, etc., can increase ecosystem
productivity and strength and reduce HQ damage. We should also strengthen environmen-
tal monitoring and management to promptly detect and address environmental pollution
and habitat destruction to protect ecosystems and biodiversity. Additionally, promot-
ing environmental education and information is essential to raise public environmental
awareness, promote environmental action and green lifestyles, and reduce HQ damage.

5. Conclusions

This study is based on historical data on land-use/land-cover changes in the YRB. NDS,
CPS, UDS and EPS scenarios for landscape pattern change in 2030 were constructed using
PLUS models combined with the In-VEST model to explore the changing characteristics
of HQ in different scenario designs and analyze the main influencing factors according to
national policies and related drivers. We have reached the following conclusions.

1. The area of forest, water, and construction land has increased significantly over the
past 20 years in the YRB, that of cropland and unused land has decreased significantly,
that of grassland has remained relatively stable, and there have not been significant
changes. Construction land is growing at a highly dynamic rate of 47.86% per year,
the most significant increase.

2. HQ levels have risen, but at a lower level. There has been a gradual decline in the area
of HQ at the low and lower levels, with increases in the medium-, high-, and higher-
HQ areas. NDS continues the characteristics of historical land-type development.
CPS restricts the expansion of construction land and increases the area of arable land
by 3.4%. UDS increases the growth of construction land. The implementation of
EPS led to a slowdown in the development of construction land, a decrease in the
reduction of arable land, and continued growth in grassland. The EPS improved the
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HQ significantly, while other scenarios increased compared to 2020, but the proportion
of high-HQ areas decreased, especially in the CPS and UDS.

3. The difference in HQ in different scenarios has an absolute advantage in areas that re-
main unchanged, with a significant upward trend in EPS and a significant downward
trend in UDS.

4. Besides national policies, NDVI, temperature, population density, GDP, DEM, and
road distance are essential factors influencing landscape patterns. The improvement
in HQ is mainly due to the conversion of unused land to grasslands, cropland and
waters, and the decline in HQ is due to grassland being turned into unused land.
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