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Abstract: Relative pollen productivity (RPP) is a key parameter for quantitative reconstruction of past
vegetation cover. However, RPP estimates are rarely obtained in the subtropical and tropical regions.
In this study, the extended R-value (ERV) model was used to estimate RPP for major plant taxa in the
evergreen broadleaved and mixed forests in middle subtropical China based on soil samples and
vegetation data from 23 sites. The best result was obtained with the combinations of ERV sub-model
3 and Prentice’s or 1/d vegetation distance-weighting method. The relevant source area of pollen
(RSAP) of the soil samples was estimated to be ca. 500 m. RPP on the basis of ERV sub-model 3 and
Prentice’s model was obtained for seven taxa and the ranking is as follows: Castanopsis (1 ± 0), Ilex
(0.352 ± 0.031), Mallotus (0.221 ± 0.028), Liquidambar (0.115 ± 0.007), Cyclobalanopsis (0.107 ± 0.006),
Camelia (0.033 ± 0.001), Symplocos (0.010 ± 0.002). RPPs for Cyclobalanopsis, Camelia, Ilex, and Symplocos
which are dominant elements in the subtropical evergreen broadleaved forests were first obtained.
Our result demonstrates a significant effect of pollen dispersal models on the estimates of RPPs. The
RPPs obtained in this study provide an important basis for quantitative vegetation reconstruction in
the subtropical region of China.

Keywords: evergreen broadleaved forest; extended R-value model; pollen-vegetation relationship

1. Introduction

The current state of the biosphere is not only affected by ongoing climate change
but also by the history of (anthropogenic) land-cover change [1,2] and feedback between
land-cover and the climate system [3]. Therefore, it is crucial to reconstruct past land-cover
change and investigate its relationship with human activities and the climate to anticipate
the impact of current and future anthropogenic climate change on the environment. Pollen
analysis is one of the most important methods for past vegetation reconstruction. Several
pollen-based methods have been developed including, e.g., modern analogue [4], and
biomization [5]. The landscape reconstruction algorithm (LRA) is a theory-based approach
to the quantitative reconstruction of land-cover changes. It includes two models, the RE-
VEALS (Regional Estimates of VEgetation Abundance from Large Sites) model to estimate
regional vegetation composition [6] and the LOVE (LOcal Vegetation Estimates) model to
estimate local vegetation composition within the relevant source area of pollen (RASP) [7].
The LRA relies on one important parameter, relative pollen productivity (RPP), which can
be estimated with the extended R-value (ERV) models [8–10]. The ERV models can reduce
the effects of the non-linear nature of the pollen percentage-vegetation relationships and
make it possible to objectively estimate pollen productivity. Considering that biases in
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pollen production and dispersal for a taxon are the main factors controlling pollen represen-
tation of plant abundance, the ERV models have a major assumption on pollen dispersal
that the wind above the vegetation canopy is the dominant agent for pollen transport.
The RPP has now been estimated for a wide range of plants in temperate regions where
wind pollination is more common than in the tropics [11–14]. This has aided large-scale
quantitative estimates of Holocene land-cover changes which in turn provides important
information to assess the interactions between land-cover changes and climate in the past
(e.g., [15,16]). However, attempts to estimate RPPs in tropical and subtropical regions of
the world are rare, including only several studies from China and South Africa [17–22].
The difficulty of such attempts includes a wide variety of pollen productivity and dispersal
mechanisms of plant species in the tropics with extremely high biodiversity [17].

Here we represent RPP results from a middle subtropical region of China, which is
dominated by zonal evergreen broadleaved forests [23]. The available RPPs obtained in
subtropical China focused on deciduous species [20,21]. Thus, our study is an important
supplement to the estimates of RPPs for major evergreen plant taxa. This would enable an
accurate quantitative reconstruction of the evergreen plant covers in addition to the decidu-
ous plant covers, contributing to a comprehensive understanding of the past vegetation
succession in subtropical China which is important for the study of the origin of human rice
agriculture and land-cover-human-climate interactions. By comparing the results based on
several combinations of models, we also highlight the impact of pollen dispersal models
on the estimates of RPPs. In view of a majority of studies relying on Prentice’s model to
estimate RPPs, we suggest validating the different RPP datasets produced with different
dispersal models to obtain the most reliable estimates.

2. Study Area

Our study area is located within the Jinggangshan National Natural Reserve (Figure 1).
The Jinggangshan Mountain region belongs to the middle subtropical climatic zone. The
regional mean annual temperature is approximately 14 ◦C, and the mean annual precipita-
tion is approximately 1800 mm [24]. The zonal vegetation in the Jinggangshan Mountains
is a subtropical evergreen broadleaved forest. The vegetation composition in altitude is as
follows [23]:

(1) Evergreen broadleaved forest (<1000 m) dominated by Castanopsis sclerophylla (Lindl.
et Paxton) Schottky, Castanopsis concinna (Champ. ex Benth.) A. DC., Castanopsis faberi
Hance, Castanopsis tibetana Hance, Machilus thunbergii Sieb. et Zucc., Phoebe hunanensis
Hand.-Mazz., and Elacocarpus japonicus Sieb.et Zucc.

(2) Mixed evergreen and broadleaved forest (1000–1400 m) composed of deciduous
elements including Castanopsis eyrei (Champ. ex Benth.) Tutch., Schima superba Gardn.
et Champ., and Fagus lucida Rehd. et Wils.

(3) Shrub-meadow (>1400 m) on the mountain summits dominated by Rhododendron simiarum
Hance, Pieris formosa (Wall.) D. Don, and Enkianthus quinqueflorus Lour.

Due to human disturbance, the present-day vegetation in the mountainside is com-
posed of many secondary forest tree species such as Pinus massoniana Lamb., as well as
Phyllostachys edulis (Carrière) J. Houz. (bamboo) [25]. The lowlands are covered largely by
rice paddy.



Land 2023, 12, 1337 3 of 13Land 2023, 12, x FOR PEER REVIEW  3  of  14 

Figure 1. Land cover map of the study area (modified from [26]) and the distribution of the 32 stud-

ied modern sites (white dots). Other RPP studies from subtropical China are also shown in the inset: 
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Figure 1. Land cover map of the study area (modified from [26]) and the distribution of the 32 studied
modern sites (white dots). Other RPP studies from subtropical China are also shown in the inset:
1, Daba Mountains [21]; 2, Ta-pieh Mountains [20]; 3, Hainan cultural landscape [22]. The vegetation
zones in the inset are illustrated by different colors and numbers: I, temperate deciduous forest zone;
II, northern subtropical evergreen broadleaved forest zone (EVBF); III, middle EVBF; IV, southern
EVBF; V, tropical seasonal rainforest zone.

3. Materials and Methods
3.1. Field Work

The field work was undertaken in August 2019 within a 50 km × 50 km area. A total
of 32 sites were randomly selected with a distance of at least 3000 m between them to avoid
auto-correlation (Figure 1). Next, 32 surface soil samples were collected from the top ~2 cm
of the soil layer and consisted of several random sub-samples within an area of a 0.5 m
radius at each of the sampling points.

Following the standard protocol of [27], we conducted a vegetation survey within a
100 m radius of the sampling points for further RPP estimates using the ERV model. The
major vegetation communities recognized in the field are listed in Table 1.
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Table 1. Location of the 32 studied sites and the major vegetation communities surveyed in the field
within a 100 m radius area of the sampling sites.

Site
Latitude Longitude Elevation Major Vegetation Communities within 100 m
(◦) (◦) (m)

5 114.24 26.74 314 Woodland of Cunninghamia R. Br. ex A. Rich. and Cryptomeria D. Don; Bamboo
6 114.18 26.47 520 Woodland of Cyclobalanopsis Oerst. and Castanopsis Spach; crop field
14 114.12 26.35 441 Woodland of Castanopsis Spach and Cunninghamia; Bamboo
18 114.11 26.32 480 Woodland of Castanopsis and Castanea Mill.

22 114.16 26.39 322 Woodland of Castanopsis, Manglietia Blume, and Sterculia L.; Woodland of
Cunninghamia; Bamboo

27 114.11 26.68 320 Woodland of Liquidambar L, Camellia L., and Schima Reinw. ex Blume; Bamboo;
crop field

32 114.29 26.49 275 Woodland of Cyclobalanopsis, Sassafras J. Presl, and Machilus Nees; crop field

33 114.22 26.71 380 Woodland of Sapium Jacq., Fissistigma Griff., Eurya Thunb., and Myrtaceae
Juss.; woodland of Pinus L.; Bamboo

52 114.03 26.67 340 Woodland of Machilus, Eurya, and Cinnamomum verum; Bamboo; crop field
222 114.19 26.53 524 Woodland of Castanopsis, Exbucklandia R. W. Brown, and Garcinia L.
223 114.17 26.65 642 Woodland of Fagus L. and Castanopsis; crop field

DSC 113.9 26.72 240 Woodland of Cyclobalanopsis, Schima, and Taiwania Hayata; woodland of
Camellia; crop field

GCZ 114.04 26.77 221 Woodland of Pinus and Cunninghamia; Bamboo; crop field

N1 114.11 26.6 1300 Woodland of Daphniphyllum Bl.; woodland of Cryptomeria D. Don; woodland
of Castanopsis

N2 114.1 26.57 1330 Woodland of Eurya and Acer L.; woodland of Crypotomeria
N3 114.11 26.54 1180 Woodland of Machilus, Pinus, Castanopsis, and Schima; Bamboo
S01 114.31 26.53 253 Woodland of Castanopsis, Schima, and Cunninghamia; crop field
S05 114.22 26.51 377 Woodland of Castanopsis and Distylium Siebold and Zucc.; Bamboo; crop field

S15 114.17 26.5 829 Woodland of Castanopsis, Cunninghamia, and Cyclobalanopsis; woodland of
Cunninghamia

S20 114.17 26.55 594 Woodland of Castanopsis
W1 114.26 26.63 690 Woodland of Castanopsis, Machilus, and Eurya

W10 114.1 26.52 910 Woodland of Castanopsis, Liquidambar, Cyclobalanopsis, and Machilus; Bamboo;
woodland of Pinus; crop field; woodland of Crypotomeria

W11 114.15 26.54 880 Woodland of Cunninghamia, Cyclobalanopsis, Castanopsis

W2 114.27 26.6 370 Woodland of Schima, Symplocos, and Castanopsis; woodland of Cunninghamia;
Bamboo; crop field

W3 114.22 26.66 370 Woodland of Castanopsis and Ardisia Sw.; woodland of Cunninghamia;
Bamboo; crop field

W4 114.17 26.57 750 Woodland of Castanopsis and Schima; woodland of Camellia

W5 114.22 26.42 269 Woodland of Castanopsis and Lophatherum Brongn.; woodland of
Cunninghamia; Bamboo; crop field

W6 114.14 26.44 776 Woodland of Castanopsis and Michelia L.; Bamboo; crop field
W7 114.1 26.45 310 Woodland of Liquidambar and Cyclobalanopsis; Bamboo; grassland
W8 114.21 26.46 340 Woodland of Castanopsis and Schima; Bamboo; crop field
W9 114.08 26.5 1200 Woodland of Castanopsis and Cunninghamia; Bamboo
Y1 114.07 26.29 1076 Woodland of Acer and Rhododendron L.; crop field

3.2. Pollen Analysis

Pollen samples were processed following the standard procedures of [28]. One piece of
marker tablet with exotic Lycopodium (27,560 spores per piece) was added to each sample
for calculation of pollen concentrations. Samples were treated with 10% HCl for carbonate
removal and 10% KOH for humic acid removal. Coarse soil particles and other plant
fragments were removed with a 0.125 mm mesh sieve. Heavy ZnBr2 liquid, 1.9–2.0 g/cm3,
was used for gravity separation and the process was undertaken twice. Residues were
mounted in glycerol on glass slides and sealed with Canada Balsam. Pollen grains were
identified under 400× magnification with a Nikon and ZEISS light microscope and under
1000× magnification for more detailed examination. A minimum of 500 pollen grains were
counted in each sample. Several references were used for pollen identification including
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the Angiosperm Pollen Flora of Tropic and Subtropic China [29], and the pollen floras
by [30,31].

A minimum of 30 grains of each of the main pollen taxa identified in this study were
measured on reference slides for their diameter (round grains) or their long and short axes.
These measurements were used to calculate the fall speed of pollen (FSP) based on Stoke’s
Law of particle settling velocity [32] (Table 2). FSP is used for the application of dispersion
models used in ERV modeling.

Table 2. Constituent plant species and estimates of pollen fall speed for eight selected taxa based on
measurement of 30 grains using Stoke’s law [32].

Plant Species Pollen Taxa Diameter of Long and Short Axes (µm) Fall Speed (m/s)

Liquidambar formosana Hance,
Liquidambar acalycina Chang Liquidambar 31 0.0287

Castanopsis faberi, Castanea henryi (Skan)
Rehd. et Wils., Castanopsis eyrei,
Castanopsis tibetana, Castanopsis lamontii
Hance, Castanopsis sclerophylla,
Lithocarpus glaber (Thunb.) Nakai,
Lithocarpus litseifolius (Hance) Chun

Castanopsis 16, 9 0.0034

Cyclobalanopsis glauca (Thunberg) Oersted,
Cyclobalanopsis multinervis W.C.Cheng and
T.Hong, Cyclobalanopsis gracilis (Rehder et E.
H. Wilson) W. C. Cheng et T. Hong,
Cyclobalanopsis sessilifolia (Blume) Schottky

Cyclobalanopsis 21, 16 0.0091

Camellia sinensis (L.) O. Ktze.,
Camellia japonica L., Camellia oleifera Abel.,
Schima argentea Pritz. ex Diels,
Schima superba

Camelia 34, 25 0.0229

Ilex asprella (Hook. et Arn.) Champ. ex
Benth., Ilex ficoidea Hemsl., Ilex pubescens
Hook. et Arn., Ilex triflora Bl., Ilex chinensis
Sims, Ilex kwangtungensis Merr.

Ilex L. 24, 17 0.0110

Mallotus japonicus (Thunb.) Muell. Arg. Mallotus Lour. 20, 19 0.0109
Symplocos sumuntia Buch.-Ham. ex D. Don,
Symplocos lancifolia Sieb. et Zucc. Symplocos Jacq. 36, 30 0.0390

3.3. Vegetation Analysis

ERV modeling requires vegetation data in concentric rings from the sampling sites to
the maximum distance of the vegetation survey. For each concentric ring, the mean absolute
cover (m2/m2) of the plant taxa was calculated based on land-cover types (vegetation
communities) and taxa composition between 10 m and 1500 m at the sampling sites. Such
data are available for a surveyed 100 m-radius area of every sampling point. Satellite
images within a 1500 m radius from the sampling sites were downloaded from 91WeMap
for each study site. Land-cover maps between 100 m and 1500 m at the study sites were
then generated based on the satellite images and visual interpretation in ArcMap 10.2.
The taxa composition of each land-cover type was assumed to be similar to the vegetation
community surveyed in the field within 100 m at each of the study sites.

The distance increment from the sampling sites to 1500 m was set as follows: 0–0.5 m,
0.5–1.5 m, 1.5–3 m, 3–6 m, 6–10 m, and 100 m increments between 10 and 1500 m.

3.4. ERV Modeling

We used the ERV model as implemented in the ERV-Analysis software v 2.5.2 (Sugita,
unpublished program) to calculate the RPPs of plant taxa with their standard errors (SEs)
and the RSAP of the pollen sample sites. A summary of the theory behind the ERV model
can be found in, e.g., [33]. Three ERV sub-models were developed which differ in the
definition of the background pollen in the model equation relating pollen loading with
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vegetation [8]. The ERV sub-models 1 and 2 assume and estimate a species-specific constant
background in pollen proportion and in the proportion of pollen loading to total plant
abundance of all the taxa involved, respectively [8]. In addition, the relative cover (in
percentage or proportion) of each plant taxon (harmonized with a pollen morphological
type) is used in both sub-models. The ERV sub-model 3 does not have any additional
assumption on the background pollen and utilizes the absolute cover of each plant taxon
(in m2/m2). The three sub-models generally provide similar results. However, many
cases have shown that one sub-model is more appropriate than the others, e.g., [34,35].
It might reflect that the vegetation data violate the assumption of the sub-models. In
theory, pollen loading is linearly related to the distance-weighted plant abundance for
each taxon [10]. Several methods have been developed to calculate the distance-weighted
plant abundance, for example, the inverse distance (1/d), Prentice’s model [36], and the
Lagrangian stochastic dispersal model (LSM) [37]. The LSM was suggested to be more
powerful for the description of pollen dispersal when entomophilous plants dominate the
vegetation [38]. However, it was not the case when the LSM was applied in the tropical
Hainan Island [22]. Generally, different combinations of ERV sub-models and distance-
weighting methods are used and their results are compared in one study to obtain the most
suitable combination and most reliable estimates of the RPP dataset and RSAP.

For running the ERV model, plant taxa were first harmonized with pollen types
(Table 2). The plant/pollen taxa were then selected for RPP estimates. The basic criterion
for the selection is that the vegetation and pollen data exhibit a good spread of values from
low to high in one taxon. A reference taxon (RPP = 1) was used to calculate the RPPs of all
other taxa. Poaceae is commonly used as a reference taxon as it occurs frequently in the
vegetation and pollen in temperate regions (e.g., [11,33,39]). In our study region, Poaceae
occurs in different forms and is not appropriate for ERV modeling (see discussion). We
finally chose Castanopsis as the reference taxon because it is abundant in both pollen and
vegetation data.

Three datasets are required for ERV modeling, i.e., pollen counts, fall speed of pollen,
and vegetation data. Apart from these, several parameters were set as follows: basin size
(0.5 m), and wind speed (3 m/s). The ERV model was first run with the selected taxa
(Table 2) and 32 sites. The ERV-adjusted pollen values and distance-weighted vegetation
cover were plotted to select the taxa with the most linear pollen-vegetation relationships
and remove some outlier sites. This procedure was repeated several times with a reduced
number in taxa and sites (i.e., seven taxa and 23 sites in the final run) until the log-likelihood
curve reached the theoretically best shape, i.e., increased with distance and reached an
asymptote within the area of vegetation survey (1500 m).

4. Results and Discussion
4.1. Modern Vegetation and Surface Pollen Assemblages

The 32 sites are classified as evergreen woodland (EW) and mixed woodland (MW)
(Figure 2), based on surveyed plant taxa from 93 families and 219 genera. The principal
arboreal taxa in EW are Castanopsis, Cyclobalanopsis, Lauraceae Juss. (comprising mainly
Machilus, Cinnamomum, and Sassafras), and Theaceae Mirb. (e.g., Eurya, Schima, and
Camellia). The vegetation in MW comprises a mix of evergreen taxa similar to EW and
coniferous and deciduous broadleaved trees and shrubs, such as Taxodiaceae Warming
(comprising mainly Cunninghamia), Pinus, Liquidambar, Ericaceae Juss. (e.g., Rhodo-
dendron), Acer, and Fagus. Bamboo (e.g., Phyllostachys Siebold and Zucc., Indocalamus
Nakai) also frequently occurs in these sites with high coverage. Herbs including mainly
Poaceae are not abundant in our studied sites.

A total of 83 pollen types were identified at the genus-to-family levels in the
32 surface soil samples. Dominant pollen taxa in EW sites include arboreal types
Castanopsis-Lithocarpus, Cyclobalanopsis, Camelia, Pinus, Ilex, Eurya, and non-arboreal
Poaceae (Figure 2). Pollen assemblages of MW sites are similar to EW sites with differences
in higher percentages of Pinus and Liquidambar.



Land 2023, 12, 1337 7 of 13

Land 2023, 12, x FOR PEER REVIEW  7  of  14 
 

 

and coniferous and deciduous broadleaved trees and shrubs, such as Taxodiaceae Warm-

ing (comprising mainly Cunninghamia), Pinus, Liquidambar, Ericaceae Juss. (e.g., Rho-

dodendron), Acer, and Fagus. Bamboo (e.g., Phyllostachys Siebold and Zucc., Indocala-

mus Nakai)  also  frequently occurs  in  these  sites with high  coverage. Herbs  including 

mainly Poaceae are not abundant in our studied sites. 

A total of 83 pollen types were identified at the genus-to-family levels in the 32 sur-

face soil samples. Dominant pollen taxa in EW sites  include arboreal types Castanopsis‐

Lithocarpus, Cyclobalanopsis, Camelia, Pinus, Ilex, Eurya, and non-arboreal Poaceae (Figure 

2). Pollen assemblages of MW sites are similar to EW sites with differences in higher per-

centages of Pinus and Liquidambar. 

Figure 2. Pollen percentage diagram of the major pollen taxa found in the 32 surface soil samples. 

Comparing percentages of vegetation cover and pollen, most evergreen broadleaved 

taxa have good pollen representation (e.g., Castanopsis, Cyclobalanopsis, Camelia, and Ilex); 

whereas, few or no pollen were found in the Lauraceae community. Deciduous taxa tend 

to be under-represented in surface pollen (Liquidambar as an exception). The coniferous 

tree Pinus is over-represented in surface pollen while Taxodiaceae is significantly under-

represented. Considering this, seven taxa (Table 1) that have good spread values in both 

vegetation cover and pollen were selected for the final ERV analysis: Castanopsis, Liquid‐

ambar, Cyclobalanopsis, Camelia, Ilex, Mallotus, and Symplocos.   

4.2. Relevant Source Area of Pollen and Affecting Factors 

Figure 3 shows the log-likelihood curves of the nine combinations of ERV sub-models 

and distance-weighting models. For a given distance-weighting model, ERV sub-model 1 

tends to have the poorest performance in terms of the lowest log-likelihood values among 

the three ERV sub-models and the increasing trend of the log-likelihood curve in compar-

ison with an expected pattern, i.e., gradually increasing to reach an asymptote. The poor 

performance of ERV sub-model 1 is expected because ERV sub-model 1 assumes that the 

background pollen loading is a constant proportion of the total pollen loading [8]. Such 

assumption can be easily violated by variations in among-site vegetation composition and 

among-taxa pollen productivity as commonly observed  in previous studies  (e.g.,  [40]). 

ERV sub-models 2 and 3 have similar equations to linearize the pollen-vegetation relation-

ship, but they differ in the way of expressing the vegetation (as percentages and projection 

area per unit area utilized by ERV sub-models 2 and 3, respectively) [10]. When non-pol-

len-producing areas (rocks, roads, water, etc.) are not included in the analysis, the input 

vegetation data are the same  in both sub-models. As our study area is a fine mosaic of 

Figure 2. Pollen percentage diagram of the major pollen taxa found in the 32 surface soil samples.

Comparing percentages of vegetation cover and pollen, most evergreen broadleaved
taxa have good pollen representation (e.g., Castanopsis, Cyclobalanopsis, Camelia, and
Ilex); whereas, few or no pollen were found in the Lauraceae community. Deciduous
taxa tend to be under-represented in surface pollen (Liquidambar as an exception). The
coniferous tree Pinus is over-represented in surface pollen while Taxodiaceae is significantly
under-represented. Considering this, seven taxa (Table 1) that have good spread values
in both vegetation cover and pollen were selected for the final ERV analysis: Castanopsis,
Liquidambar, Cyclobalanopsis, Camelia, Ilex, Mallotus, and Symplocos.

4.2. Relevant Source Area of Pollen and Affecting Factors

Figure 3 shows the log-likelihood curves of the nine combinations of ERV sub-models
and distance-weighting models. For a given distance-weighting model, ERV sub-model
1 tends to have the poorest performance in terms of the lowest log-likelihood values
among the three ERV sub-models and the increasing trend of the log-likelihood curve in
comparison with an expected pattern, i.e., gradually increasing to reach an asymptote. The
poor performance of ERV sub-model 1 is expected because ERV sub-model 1 assumes that
the background pollen loading is a constant proportion of the total pollen loading [8]. Such
assumption can be easily violated by variations in among-site vegetation composition and
among-taxa pollen productivity as commonly observed in previous studies (e.g., [40]). ERV
sub-models 2 and 3 have similar equations to linearize the pollen-vegetation relationship,
but they differ in the way of expressing the vegetation (as percentages and projection
area per unit area utilized by ERV sub-models 2 and 3, respectively) [10]. When non-
pollen-producing areas (rocks, roads, water, etc.) are not included in the analysis, the input
vegetation data are the same in both sub-models. As our study area is a fine mosaic of
forests and croplands, there is a negligible proportion of non-pollen-producing areas. This
could explain the similar log-likelihood values of ERV sub-models 2 and 3 with the latter
being closer to an expected pattern of the log-likelihood curve. The combinations of ERV
sub-model 3 with Prentice’s and 1/d vegetation distance-weighting methods show very
similar values and trends of the log-likelihood. The combination of ERV sub-model 3 and
LSM distance-weighting produces the highest log-likelihood values with a high variation.
In general, ERV sub-model 3 with Prentice’s or 1/d vegetation distance-weighting method
produces the most expected log-likelihood curve (i.e., gradually increasing to reach an
asymptote), and thus is considered the best result in this study.
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Figure 3. Plots of the log-likelihood values with distance for nine combinations of three ERV sub-
models and three distance-weighting methods (Prentice’s model, inverse distance (1/d), and La-
grangian Stochastic Model (LSM)), using pollen data from modern surface soil samples at 23 random
sites and related vegetation data within 1500 m radius around each sample. (a) nine combinations of
the models; (b) a combination of Prentice’s distance weighting method and three ERV sub-models;
(c) a combination of ERV sub-model 3 and three distance-weighting methods.

For the best combination of models (ERV sub-model 3 with Prentice’s or 1/d vegetation
distance weighting method), the log-likelihood curve reaches an asymptote with relatively
constant values beyond ca. 500 m (Figure 3c). Thus, the estimated RSAP is 500 m. This
value is slightly higher than other values estimated in a subtropical forest landscape in
China (e.g., 340 m in Ta-pieh Mountains [20], 360 m in Daba Mountains [21]), but the same
as the value estimated in the tropical Hainan Forest landscape (i.e., 500 m [22]). RSAP
might be influenced by many factors such as size and type of sediment basin and vegetation
structure (e.g., patch size, the spatial distribution of patches, and plant taxa in the landscape).
Previous studies have demonstrated that when the basin size was constant, the size of the
vegetation patch would have a very significant effect on the RSAP [33]. In this study, the
land-cover maps were created based on visual interpretation instead of the typically used
supervision and non-supervision classification methods. As a result, the resolution of our
land-cover maps is lower compared to previous studies. Thus, we expected a higher RSAP
than previous studies because of the large vegetation patches being extracted. In addition,
the pollen samples were collected from surface soil in both Hainan [22] and this study,
while moss polster samples were studied in the two mentioned subtropical works [20,21].
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It is suggested that soil pollen assemblages contain a larger background pollen component
than the moss assemblages [41]. This could result in a higher RSAP when estimated with
soil pollen samples compared to moss samples. Therefore, the higher RSAP estimate in this
study might be influenced by both the resolution of the land cover maps and the basin type.
It would be worth testing the contributions of the two factors to the estimation of RSAP.

4.3. Pollen-Vegetation Relationships

The scatter plots of ERV-adjusted pollen and vegetation values using ERV sub-model 3
and Prentice’s vegetation distance-weighting method at the RSAP of 500 m are shown
in Figure 4. The pollen-vegetation relationship of Castanopsis shows a very good linear
trend. For Cyclobalanopsis, Liquidambar, and Ilex, the spread of pollen and vegetation values
are more or less close to a linear trend. Camelia and Symplocos exhibit a large spread of
values with high plant cover that may correspond to low pollen value while low plant
cover corresponds to high pollen value. There is a single high value in the pollen and
vegetation data of Mallotus. In most cases, extremely low values of plant covers correspond
to a range of pollen loading. Similar findings were obtained in a tropical study which is
ascribed to entomophily for Mallotus [22]. This could also explain the poor relationships
between pollen and vegetation observed in Camelia and Symplocos in this study. ERV model
assumes pollen anemophily [8–10]. The violation of the basic assumption of the model
already indicates that it is difficult to perform pollen-vegetation calibration for such taxa.
Thus, the resulting RPPs for these taxa should be treated and evaluated with care.
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4.4. Relative Pollen Productivity Estimates

We estimated RPPs for seven plant/pollen taxa, among which the RPPs for four taxa
were first estimated, i.e., Cyclobalanopsis, Camelia, Ilex, and Symplocos. The nine combinations
of the models yield some variation in the estimated RPPs which differ mainly from the
applied pollen dispersal models (Table 3). Previous studies have also found a larger impact
of the distance-weighting method on the estimated RPPs than the selection of ERV sub-
models (e.g., [12]). In this study, the values (using Castanopsis as the reference) produced
with Prentice’s model are consistently lower than those produced with 1/d and LSM model
irrespective of the plant taxon and ERV models used. The 1/d and LSM models tend
to produce similar values of RPPs. Similar result between the 1/d and LSM model is
reasonable because the impact of taxon-specific fall speed is nearly negligible for fall speeds
smaller than 0.04 m/s in the LSM [37] and 1/d does not consider the inter-taxonomic
differences in pollen dispersal. However, the fall speed of pollen has a much larger impact
on Prentice’s model which uses a Gaussian plume diffusion model (GPM) which was
suggested to predict higher RPPs for taxa with large pollen with high fall speed [12,42,43].
In the case of this study, Castanopsis has the lowest FSP (0.0034 m/s). The resulting RPPs
with the GPM (i.e., higher RPP for Castanopsis and lower for the other taxa compared to the
result of 1/d) do not follow but rather contradict the suggested trend, i.e., higher RPPs for
large pollen while lower RPPs for small pollen [42]. A similar result in this study was also
obtained in other studies [14,38]. For example, in the study of [14], the 1/d method always
produced lower RPPs for Castanea (a sister lineage to Castanopsis and usually used for
comparison) than with Prentice’s distance-weighting method. The disagreement between
the studies regarding the relationships between pollen size and RPP might be largely due
to the Gaussian formulation-based calculation of the distance-weighted plant abundance
(DWPA) in Prentice’s model. Such calculation can lead to a lower DWPA (thus a higher
RPP) for a taxon with both too high and too low fall speed.

Table 3. Relative pollen productivity (RPP) with standard error for eight taxa estimated with the ERV
sub-models and three vegetation distance-weighting methods, i.e., Prentice’s taxon-specific model,
the inverse distance (1/d), and the Lagrangian stochastic model (LSM).

Taxa ERV 1 Prentice ERV 2 Prentice ERV 3 Prentice ERV 1
1/d

ERV 2
1/d

ERV 3
1/d

ERV 1
LSM

ERV2
LSM

ERV 3
LSM

Castanopsis 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Ilex 0.354 ± 0.03 0.324 ± 0.028 0.352 ± 0.031 0.936 ± 0.079 0.827 ± 0.071 0.861 ± 0.076 1.204 ± 0.104 1.096 ± 0.098 1.159 ± 0.101
Mallotus 0.558 ± 0.088 0.532 ± 0.085 0.221 ± 0.028 1.166 ± 0.201 0.762 ± 0.109 0.615 ± 0.092 1.377 ± 0.228 1.104 ± 0.191 1.578 ± 0.283
Liquidambar 0.116 ± 0.006 0.106 ± 0.006 0.115 ± 0.007 0.421 ± 0.023 0.388 ± 0.022 0.398 ± 0.023 0.855 ± 0.042 0.823 ± 0.044 0.815 ± 0.042
Cyclobalanopsis 0.124 ± 0.007 0.109 ± 0.006 0.107 ± 0.006 0.263 ± 0.014 0.243 ± 0.014 0.227 ± 0.013 0.843 ± 0.046 0.797 ± 0.045 0.7 ± 0.039
Camelia 0.034 ± 0.001 0.032 ± 0.001 0.033 ± 0.001 0.12 ± 0.005 0.114 ± 0.005 0.113 ± 0.005 0.214 ± 0.009 0.207 ± 0.008 0.205 ± 0.008
Symplocos 0.011 ± 0.002 0.009 ± 0.002 0.01 ± 0.002 0.044 ± 0.006 0.038 ± 0.006 0.04 ± 0.006 0.052 ± 0.008 0.043 ± 0.008 0.036 ± 0.006

By observing the large difference in the estimated RPPs using different distance-
weighting methods, a majority of studies preferred to use the GPM for RPP calculation [12].
Others demonstrated that the LSM is more realistic [38,42]. In this study, Prentice’s model
apparently increases the RPP for Castanopsis and decreases the RPPs for the others com-
pared to the other distance-weighting methods. Further study is needed to evaluate the
appropriateness of these models.

Many studies use Poaceae as a reference taxon to estimate RPPs because it is one of
the most common pollen types in the open and semi-open vegetation in the temperate
zone. However, in the subtropical zone of China, Poaceae mainly occurs as bamboo in the
mountainside. Different from other Poaceae herbs, most species of bamboo bloom only
once in their lifetime and were demonstrated to have a significant effect on the estimated
RPPs [20]. Our test runs with Poaceae included illustrate a similar result. Therefore, Poaceae
was not included in our RPP estimates. Pinus was neither included in this study although it
has large spread values in both vegetation and pollen data. The reason is that the average
plant abundance of Pinus among sites shows a continuously increasing trend as distance
increases, which violates the assumption of the ERV model of stationary vegetation (results
not shown) [10].
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There are two available subtropical works, one tropical work, and one synthesized
temperate dataset from China that can be compared with the RPPs obtained in this study.
All RPPs were converted to values relative to Castanopsis/Castanea (Table 4). Overall, our
estimated RPPs based on ERV sub-model 3 and Prentice’s or 1/d vegetation distance-
weighting method are generally comparable with other published values obtained in
China. The RPP estimates for Liquidambar and Cyclobalanopsis produced with 1/d distance-
weighting are more similar to previous studies than Prentice’s model whereas the RPP for
Mallotus estimated with Prentice’s model is closer to the one published value than the 1/d
method. Given that few RPP estimates are available for comparison, a further validation of
these values using a REVEALS model-based method (see the application of this method
in [44]) would enable a more meaningful comparison between studies.

Table 4. Comparison of relative pollen productivity (RPP) estimates between this study and other
values obtained in China.

Study Area Jinggangshan
Mountains

Temperate
China Ta-Pieh Mountains Daba Mountains Hainan Cultural

Landscapes

Model combinations ERV3_Prentice/1/d Alt-1 ERV1_Prentice ERV2_Prentice ERV2_Prentice
Castanopsis/Castanea 1 1 1 1 1
Liquidambar 0.12/0.40 0.28
Cyclobalanopsis/Quercus 0.11/0.23 0.38 1.89 2.70
Mallotus 0.22/0.62 0.11

Reference This study Li et al.
(2018) [39]

Chen et al.
(2019) [20] Jiang et al. (2020) [21] Wan et al.

(2020) [22]

The RPPs from other studies were all converted to values relative to Castanopsis/Castanea.

5. Conclusions

A new RPP dataset from middle subtropical China was obtained which adds the
first RPPs from several dominant elements in the evergreen broadleaved forest including
Cyclobalanopsis, Camelia, Ilex, and Symplocos. The most important finding is that the applica-
tion of different pollen dispersal models results in large different RPPs. Prentice’s model
uses a Gaussian plume diffusion model apparently increases the RPP for Castanopsis with a
very low fall speed as compared to 1/d and the LSM model. This result seems to contradict
previous studies showing that the GPM would overestimate the RPPs for pollen with a high
fall speed while underestimating for pollen with a low fall speed. Indeed, the Gaussian
formulation-based Prentice’s model can lead to lower DWPA (thus a higher RPP) for a
taxon with both too high and too low fall speed. By demonstrating the significant effect of
pollen dispersal models on the RPP estimates and in view of a majority of studies relying
on Prentice’s model to estimate RPPs, we suggest validating the different RPP datasets
produced with different dispersal models in a real case, e.g., comparing the observed
vegetation with an RPP dataset and REVEALS model-based land cover reconstruction.
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