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Abstract: Climate and land use changes impact catchment hydrology and water quality (WQ), yet
few studies have investigated the amount of land use changes required to meet specific WQ targets
under future climate projections. The aim of this study was to determine streamflow and nutrient
load responses to future land use change (LUC) and climate change scenarios. We hypothesized
that (1) increasing forest coverage would decrease nutrient loads, (2) climate change, with higher
temperatures and more intense storms, would lead to increased flow and nutrient loads, and (3) LUC
could moderate potential nutrient load increases associated with climate change. We tested these
hypotheses with the Soil and Water Assessment Tool (SWAT), which was applied to a lake catchment
in New Zealand, where LUC strategies with afforestation are employed to address lake WQ objectives.
The model was calibrated from 2002 to 2005 and validated from 2006 to 2010 using measured
streamflow (Q) and total nitrogen (TN), total phosphorus (TP), nitrate (NO3-N), and ammonium (NH4-
N) concentrations of three streams in the catchment. The model performance across the monitored
streams was evaluated using coefficient of determination (R2) and Nash–Sutcliffe efficiency (NSE)
metrics to provide a basis for model projections. Future scenarios incorporated LUC and climate
change (CC) based on the Representative Concentration Pathway 8.5 and were compared to the
baseline streamflow and WQ indicators. Consistent with our hypotheses, Q, TN, and TP loads
were predicted to decrease with afforestation. Specifically, afforestation of 1.32 km2 in one of the
monitored stream sub-catchments (subbasin 3), or 8.8% of the total lake catchment area, would result
in reductions of 11.9, 26.2, and 17.7% in modeled annual mean Q, TN, and TP loads, respectively.
Furthermore, when comparing simulations based on baseline and projected climate, reductions of
13.6, 22.8, and 19.5% were observed for Q, TN, and TP loads, respectively. Notably, the combined
implementation of LUC and CC further decreased Q, TN, and TP loads by 20.2, 36.7, and 28.5%,
respectively. This study provides valuable insights into the utilization of LUC strategies to mitigate
nutrient loads in lakes facing water quality challenges, and our findings could serve as a prototype
for other lake catchments undergoing LUC. Contrary to our initial hypotheses, we found that higher
precipitation and temperatures did not result in increased flow and nutrient loading.

Keywords: land use–climate change; water quality; modelling; Ōkareka; New Zealand

1. Introduction

The quality of lakes and inland waters has been altered through anthropogenic fac-
tors [1]. Land-based sources of nutrients, including diffuse pollution through agricultural
intensification, have resulted in eutrophication as a result of nutrient enrichment; which is
a common cause of WQ impairment in marine and freshwater environments [2] and affects
the ecology of lakes and societal benefit derived from them [3]. The fate and transport of
nutrients generates these types of environmental changes in receiving waters [4]. Tracing
the hydrological connectivity between the catchment area and the receiving water body
is vital for understanding the water-mediated transfer of nutrients from their source to
their impact in the environment [4,5]. Impacts of eutrophication may be evidenced by toxic
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cyanobacteria blooms, excess growth of phytoplankton, and attached algae. To implement
nutrient management, it is thus important to first identify the nutrient(s) that limits primary
productivity. Fate and transport of phosphorus (P) is of particular interest as it is a plant
macronutrient commonly considered to limit primary productivity in lakes, particularly
in oligo-mesotrophic lakes [6,7]. Cases of nitrogen (N) limitation and co-limitation with P
have also been reported [8].

The Central Volcanic Plateau (CVP) of North Island, New Zealand, has a long history
of studies showing nitrogen (N) limitation [7,9] and/or co-limitation with P [8]. There is
increasing evidence that nitrogen is critical for productivity and successions of submerged
macrophytes and phytoplankton [10]. A synergistic effect of P and N nutrient enrichment
on phytoplankton has also been reported [11,12]. Lake Taupō (area = 616 km2) in the CVP
is the largest New Zealand lake, and policies involving ‘capping’ nitrogen loads have been
developed to protect the lake from eutrophication due to land use intensification [13].

Characterizing the major natural and anthropogenic sources and loads of N and P
from lake catchments is fundamental for understanding the relationship between land use
change, climate, and water quality and for developing policies to protect lake health. A
common approach to characterize anthropogenic land use change and implement water
management is to determine where and by how much nutrient loads need to change
to meet WQ targets in receiving lakes. This method provides a technique to aid the
assessment of appropriate source load reductions to achieve WQ targets over broad areas
such as large catchments or whole regions. To this effect, land use management in the
form of afforestation, hereafter referred to as land use change (LUC), is being implemented
widely in New Zealand to address the recent rapid decline of WQ and to mitigate future
hydrological and WQ impacts of climate change on catchments [14,15]. The Rotorua lakes
in the CVP have had action plan targets applied since 2011 that have involved LUC to meet
WQ targets [15].

Elliott et al. [16] used the SPAtially Referenced Regression On Watershed (SPARROW)
model and the National River WQ Network dataset to indicate that only 1.8% of TP and
3.2% of TN loads are from point sources. Nonpoint source pollution (NPS) is one of the
most challenging environmental problems for New Zealand due to extensive pastoral
agriculture and increasing farming intensity [17,18], and declining WQ is the primary
environmental concern of New Zealand people [19]. Declining WQ because of nutrient
losses from agricultural NPS necessitates a focus on ways to mitigate nutrient export to
receiving waters. One method of mitigation includes afforestation, which for Lake Taupo
has been linked to the establishment of market-based environmental policies involving
nitrogen trading [13]. The implementation of strategies to improve WQ ideally requires
quantification of nutrient export rates, which can be challenging where there is a diversity
of land uses, including land use change as well as climate change [20].

Both land use and climate affect the quantity and quality of surface and groundwater,
notably for lakes that are integrators for catchment and climate forcings [21]. In an inte-
grated assessment of the impact of land use change (LUC) and CC on groundwater quality
and quantity in the southwestern Jucar River basin (Albacete province, Spain), Pulido-
Velazquez et al. [22] highlighted the importance of assessing land use and climate stressors
together to support the development of sustainable management strategies. In addition to
affecting temperature, climate change is altering precipitation patterns globally [23] and the
spatiotemporal distribution and availability of water at local and global scales, including
the processes of runoff, infiltration, and evapotranspiration rates [24].

The complex relationships between hydrological variables and nutrient loads can
be difficult to quantify without hydrological models [25]. These models are key tools for
predicting hydrological responses to land use and climate change and for addressing a wide
spectrum of issues in water resources management. They can assist with making informed
policy decisions for planning, design, construction, operation, and management of water
resources. Several hydrological models have therefore been developed to inform predictions
and policies, ranging from simple lumped conceptualizations to fully distributed physically
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based numerical models [26]. These models can also be linked to assess the relationships of
land use and WQ and examine how a future warmer climate might impact nutrient runoff.
However, the selection and application of hydrological models is prone to uncertainty and
prediction errors because of model structure, input data requirements, and parameterization
schemes [27,28]. Model uncertainties are usually handled by selecting an appropriate
hydrological model and carrying out calibration and validation over defined periods using
comparisons with observations [29,30] and with guidance from sensitivity analysis.

In this study, we used the Soil and Water Assessment Tool (SWAT), a small watershed-
to-river basin-scale model used to estimate the quantity and quality of surface and ground
water and predict environmental impact of changes in climate, land use, and management
practices [31]. Some of the key criteria for selecting SWAT included its computational effi-
ciency, its capability to estimate long-term impacts and to account for spatial heterogeneity
and land management practices, and its ability to assess non-point source pollution control,
soil erosion prevention and control, and regional management in watersheds [31–34]. The
capability of the model to estimate effects of land use and climate change (LUC-CC), man-
agement practices, and land disturbances on water quantity and nutrient loads [35], and its
applicability to similar agroclimatic zones [36] to those of our study and globally [35], also
influenced its choice for this study.

Lake Ōkareka is a CVP lake in the temperate Bay of Plenty region. LUC has been
implemented to achieve WQ targets. Our aim in this study was to quantify the individual
and combined impacts of LUC and CC on streamflow and nutrient loads in the Lake
Ōkareka catchment, which is subject to afforestation, and to include a future climate
projection (2094–2099) against a current baseline (2011–2016). We hypothesized that LUC
and CC might act to partly cancel each other out, with flow and nutrient loads increasing
with greater variability of rainfall from CC but decreasing with afforestation. We addressed
these questions by (i) performing a daily time step calibration and model uncertainty
analysis; and (ii) assessing the individual and combined effects of LUC and CC on flow
and nutrient (TN, NH4-N, and TP) fluxes.

2. Materials and Methods
2.1. Study Site

The Ōkareka catchment (Figure 1) is located in the Rotorua District of the North Island
of New Zealand. The geology of the area is characterized by volcanic and sedimentary de-
posits [37] with a series of rhyolitic domes and lava flows flanking the west, south, and east
of the lake [38]. The catchment land area is 15 km2 and drains to monomictic, mesotrophic
Lake Ōkareka (area ~3.5 km2), which is identified as recreationally and culturally signifi-
cant. Recent studies of the lake have classified its trophic state as mesotrophic [39] after it
was previously assessed to be oligotrophic [40]. The catchment is in a volcanic area and has
varying topography, with elevations ranging from 335 to 685 m above mean sea level (amsl).
The mean annual precipitation in the area is about 1300 mm, which varies considerably
from year to year. The catchment is subjected to a warm temperate climate, with average air
temperature, relative humidity, and wind speed of 13.4 ◦C, 82%, and 3.6 m s−1, respectively
(National Climate Database; http://cliflo.niwa.co.nz/ (accessed on 15 June 2023)). Three
streams (Millar, Summit, and Farm) are the main surface water inflows to the lake and
cover 26, 7, and 10% of the total catchment area, respectively. The only surface outflow
from the lake is the Waitangi Stream (mean streamflow 19,400 m3 d−1; Figure 1).

http://cliflo.niwa.co.nz/
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Figure 1. Location map of the study area. Left: location of Lake Ōkareka in New Zealand. Right: Lake
Ōkareka (shaded) and its catchment, showing the major sub-catchments (numbered 1 to 13) including
the gauged surface streams (circles filled green with red boundary) for Millar Road, Summit Road,
and Farm.

2.2. The Soil and Water Assessment Tool Model

The SWAT is a semi-distributed river basin model that uses inputs of both static
landscape and dynamic climate data. Using a digital elevation map, the catchment is
divided into smaller sub-catchments, further split into Hydrologic Response Units (HRUs)
that have similar land use, soil, and slope characteristics [41]. The model simulates nutrient
and sediment transformations and losses for each HRU, and these values are combined
to determine the total for each sub-catchment [42]. The predictions are then routed to
the appropriate reach and catchment outlet via the channel network [41]. To run the
model, daily observed precipitation, temperature, solar radiation, wind speed, and relative
humidity are used as input data. The observed climate data used in the model spans from
2002 to 2021.

The SWAT model has a module for nutrient routing that includes organic nitrogen
(ORGN), ammonium (NH4-N), and nitrate (NO3-N) [35]. TP is regarded as the sum of
mineral phosphorus (MINP) and organic phosphorus (ORGP), and these variables are
routed with the nitrogen components and are typically categorized as the particulate and
dissolved forms of phosphorus, respectively [20].

2.2.1. SWAT Inputs

A 25 m horizontal resolution Digital Elevation Model was used to delineate the basin
and generate stream networks of Lake Ōkareka catchments. Soil type and physicochemical
data were obtained from Manaaki Whenua New Zealand Land Resource Inventory (NZLRI)
and Digital Soil Map (S-map; http://smap.landcareresearch.co.nz/home (accessed on 15
June 2023)) with similar resolution to the DEM. Land use maps were obtained from New
Zealand Land Cover Database v2 (LCDB-2, http://www.lcdb.scinfo.org.nz/about-lcdb
(accessed on 15 June 2023)). The landscape data were collected at 25 m resolution, and

http://smap.landcareresearch.co.nz/home
http://www.lcdb.scinfo.org.nz/about-lcdb
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it provided information on the spatial catchment variation in land use and soil (Table 1).
Land use in the Lake Ōkareka catchment area includes native and pine forest, pasture,
rangeland, medium density residential areas, and water bodies. The dominant land use in
the area is pasture (47%) and forestland (24%) units totaling 71% of the entire area. The
other land cover classes are water body (19%), pine plantation trees (6%), medium density
residential area (2.6%), and range-brush covered nearly (1.4%).

Table 1. Data sources and descriptions used to configure SWAT model.

Data Application Data Use and Description Source

Meteorological data Meteorological forcing

Daily max. and min.
temperature, humidity,
radiation, wind speed, and
precipitation.

Rotorua Airport Automatic Weather
Station, National Climate Database
(available at: http://cliflo.niwa.co.nz/
(accessed on 15 June 2023))

DEM and digitized
stream network Catchment delineation 25 m resolution to define

slope classes.
Bay of Plenty Regional Council
(BoPRC)

Land use To define HRUs 25 m resolution, 6 basic
land-cover classes.

New Zealand Land Cover Database
Version 2; BoPRC

Soil characteristics To define HRUs 25 m resolution, 9 soil types.

New Zealand Land Resource Inventory
and Digital Soil Map
(http://smap.landcareresearch.co.nz
(accessed on 15 June 2023))

Data from the Rotorua Airport Automatic Weather Station, which is a part of the
National Climatic Database for New Zealand (http://cliflo.niwa.co.nz/ (accessed on 15
June 2023)), were used to provide the necessary inputs for the model such as daily rainfall,
temperature, solar radiation, relative humidity, and wind speed. The Bay of Plenty Regional
Council collected instantaneous measurements of streamflow and concentrations of NH4-N,
NO3-N, TN, and TP for three perennial streams (Millar, Summit, and Farm) near where
they enter the lake (Figure 1).

2.2.2. SWAT Model Assessment

To optimize SWAT model parameters, a standalone Calibration and Uncertainty Pro-
gram, SWAT-CUP, was used [43]. Parameter sensitivity analysis describes how model
output varies with changes in parameter value within upper and lower range. Sensitive pa-
rameters were identified using Sequential Uncertainty Fitting 2 (SUFI-2) in SWAT-CUP [44],
known for its computational efficiency in quantifying the effects of changes in input param-
eters on model outputs [45]. Streamflow Q and WQ datasets for three observation streams
were used for calibration (2002–2005) and validation (2006–2010) years. Calibration of Q
and nutrient variables involved parameter sensitivity analysis, following which the model
was run for a defined calibration period. The calibration considered the fit between obser-
vation and model estimates, the shape of the hydrograph, and the timing of peak flow and
nutrient model output. Streamflow was calibrated first followed by water quality variables,
and the calibrated model was applied to the validation period without any adjustment of
parameters. The performance of the model was evaluated by comparing observation and
simulation output of discharge (Q), and NH4-N, NO3-N, TN, and TP concentrations and
loads using coefficient of determination (R2) and Nash–Sutcliffe Efficiency (NSE) [46].

2.3. Design of Scenarios
2.3.1. Land Use Change Scenarios

The scenario analyses were implemented to determine the specific sub-catchments and
proportions of land conversion that would lead to substantial improvements in streamflow
and water quality. Five hydrological simulations were analyzed. The first simulation, which
served as a baseline, was from 2002 to 2016 and did not consider any land use changes
(referred to as LUC0). The other four simulations (LUC1–LUC4) covered the same period

http://cliflo.niwa.co.nz/
http://smap.landcareresearch.co.nz
http://cliflo.niwa.co.nz/
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from 2002 to 2016, but factored in land use changes in pasture to forest that occurred after
2011. Land use change effects on flow and nutrient export post 2011 (LUC1) accounted for
existing land use change. The remaining three simulation scenarios (LUC2-LUC4) were
hypothetical and included: (1) baseline simulation (LUC0), (2) 0.67 km2 existing land use
change (LUC1); (3) a further 0.9 km2 LUC in addition to that of LUC1 (LUC2); (4) a further
2.45 km2 of LUC from LUC1 (LUC3); and (5) an additional 4.15 km2 of LUC from LUC1
(LUC4) (Table 2).

Table 2. Land use change in the Ōkareka subbasin; baseline (LUC0) and four scenarios of land use
change (LUC1–LUC4).

Subbasin
Reach Area

(km2)

Areas Converted from Pasture to Forest (km2)

LUC0 LUC1 LUC2 LUC3 LUC4

1 1.34 - 0.03 0.05 0.10 0.10
2 2.27 - 0.16 0.47 0.60 0.70
3 3.84 - 0.13 0.28 0.40 0.50
4 0.60 - 0.00 0.01 0.10 0.20
5 0.86 - 0.16 0.33 0.40 0.50
7 18.42 - 0.20 0.27 1.00 2.00
8 1.11 - 0.00 0.05 0.10 0.20
9 0.67 - 0.00 0.11 0.40 0.60

Total area afforested (km2) - 0.67 1.56 3.10 4.80

The selection of the proportion of land area in the four scenarios LUC1–LUC4 (Table 2)
to achieve water quality targets was based on the interplay between the current land use
condition, topography, and influence of terrain elevation on soil and nutrient erosion.
By carefully assessing the topography and elevation of each specific sub-catchment, we
aimed to determine the optimal proportion of land conversion to forest that would yield
a significant reduction in streamflow and nutrient loading. The technique allowed us to
identify the sub-catchments where afforestation measures would have the most visible
impact, particularly in areas with higher pasture coverage.

2.3.2. Climate Change Scenarios

Climate change projections were derived from a global climate model that has been
regionally downscaled for New Zealand [20,47]. The projected changes are documented
for a set of four representative concentration pathways (RCPs) from the IPCC’s Fifth
Assessment [47]. The Representative Concentration Pathway 8.5 (RCP8.5) scenario was
chosen to represent an additional radiative forcing of 8.5 W m2 and no major policy-driven
climate mitigation actions, leading to high rates of climate change.

The selection of RCP8.5 as a representative concentration pathway was based on
several factors specific to New Zealand. In the New Zealand context, RCP8.5 allows
for an exploration of the potential impacts of the most extreme emission pathway on
various sectors, ecosystems, and communities. It serves as a useful tool for assessing the
potential range of future climate change impacts and vulnerabilities. Moreover, RCP8.5
provides a valuable reference point for policymakers and stakeholders to understand the
potential risks associated with high-emission scenarios and the urgency of taking mitigation
measures.

In terms of relevance and applicability, utilizing RCP8.5 helps us understand the
potential range of future climate change impacts, particularly in scenarios where mitigation
efforts are limited. It allows us to conduct a comprehensive assessment of potential risks
and helps inform adaptation strategies that can be implemented in the face of uncertain
future climate conditions. To further support our choice of RCP8.5, we would like to
reference the New Zealand Climate Change Projections 2018 report published by the
Ministry for the Environment [47], which discusses the use of RCP scenarios, including
RCP8.5, in climate change research specific to New Zealand.
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Monthly median change factors were generated under the RCP8.5 scenario using
linear functions of the global annual mean temperature [20,48]. The projected climate
data derived from the downscaled climate projections (Table 3) were used to modify the
baseline climate data by adding the minimum and maximum air temperature (Tmin, Tmax)
values or by applying a change factor to precipitation (PCP), solar radiation (SLR), and
relative humidity (HMD). The future climate datasets were then used as input to the SWAT
model to predict future changes in the flow and nutrient loading for all four future land
use scenarios.

Table 3. Monthly median values of change increments (+) for minimum (Tmin) and maximum
temperature (Tmax), change factors (*) for precipitation (PCP), solar radiation (SLR), and humidity
(HMD) used to generate the 2094–2099 RCP8.5 climate relative to the 2005 to 2010 baseline climate.
The projected annual precipitation (mm) is also presented.

Variable January February March April May June July August September October November December

PCP (*) 1.05 1.06 1.127 1.069 1.034 1.036 1.022 1.049 0.959 0.922 0.995 0.983
SLR (*) 1.011 1.007 1.007 1.012 1.018 1.022 1.009 1.01 1.024 1.028 1.014 1.01

Tmax (+) 3.1 3.2 3.1 2.8 2.8 2.5 2.8 2.6 2.7 2.6 2.5 2.5
Tmin (+) 3.2 2.9 3.1 2.7 2.6 2.7 2.6 2.7 2.2 2.4 2.3 2.6
HMD (*) 0.993 0.986 1.0 0.993 0.996 0.997 0.997 1.0 0.999 0.994 0.989 0.988

Projected annual precipitation

Year 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099

Rainfall 1137.6 1521.5 1198.9 1465.7 2039.9 1287.9 1210.6 1046.3 1097.4 1296.3

The climate change simulation (CC0, no LUC) reflected the 2094–2099 climate and
considered no land use change, the baseline (LUC0) and the remaining four land use–
climate change simulations used the 2094–2099 projected climate and land use change
(LUC1–LUC4).

Temporal changes in land use and climate on streamflow and nutrient loads were
examined using percentage relative change (Equation (1)) in each variable between a
baseline simulation considering no LUC (LUC0) and one that considers land use change,
climate change, or a combination of both (Si).

% Relative change =
(

1 − Si
/

S0

)
× 100 (1)

3. Results
3.1. SWAT Model Calibration and Performance

A sensitivity analysis was conducted for SWAT model parameters and inputs data.
Table 4 summarizes the sensitive flow and nutrient related parameters which included
average slope (HRU_SLP), initial Soil Conservation Service (SCS) runoff curve number
for moisture condition II (CNII), groundwater delay (GW_DELAY), groundwater “revap”
coefficient (GW_REVAP), saturated hydraulic conductivity (SOL_K), effective hydraulic
conductivity in the main channel (CH_K2), and threshold depth of water in the shallow
aquifer required for return flow to occur (GWQMN). Some of these parameters, such
as lateral flow travel time (LAT_TTIME) and slope length for lateral subsurface flow
(SLSOIL), determined the amount of lateral flow entering the stream reach during quick
flow. Catchment slope (HRU_SLP) and available water capacity of the soil layer (SOL_AWC)
were sensitive to the base flow simulation as they affect lateral flow within the kinematic
storage in the SWAT model [49]. HRU_SLP, a terrain parameter, varies with elevation in
the catchment and affects lateral flow within the kinematic storage model in SWAT.
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Table 4. Sensitive SWAT model parameters for streamflow (Q), total nitrogen (TN), and total phos-
phorus (TP) as indicated in SWAT-CUP. The ‘v’ before the parameter indicates replacement of default
value by the calibrated values, the ‘a’ denotes addition of the calibrated value to the model default,
and ‘r’ is for relative change.

Q TN TP

v__LAT_TTIME.hru v__LAT_ORGN.gw v__LAT_ORGP.gw
v__GWQMN.gw v__ERORGN.hru v__GWSOLP.gw
a__SLSOIL.hru v__SHALLST_N.gw V_ERORGP.hru

a__CANMX.hru v__BC3.swq
r__HRU_SLP.hru

v__ALPHA_BF.gw
v__RCHRG_DP.gw

v__CH_K2.rte

The catchment base flow response was further influenced by the base flow alpha
factor (ALPHA_BF) and aquifer percolation coefficient (RCHRG_DP) [50]. Other sensitive
parameters included threshold depth of water in the shallow aquifer for “revap” to occur
(REVAPMN) and Manning’s “n” value for the main channel (CH_N2). Parameters that con-
trol overland processes, such as subbasin average slope length (SLSUBBSN) and Manning’s
n value for overland flow (OV_N) were found to be sensitive to varying degrees.

The sensitive TP parameters were organic phosphorus in the base flow (LAT_ORGP),
concentration of soluble phosphorus in groundwater contribution to streamflow from the
subbasin (GWSOLP), and organic P enrichment ratio (ERORGP).

The most sensitive TN and NO3-N parameters were organic nitrogen in the base flow
(LAT_ORGN), rate constant for hydrolysis of organic nitrogen to ammonium–nitrogen
in the reach (BC3), nitrate–nitrogen concentration in the shallow aquifer (SHALLST_N),
and organic N enrichment ratio (ERORGN). Some parameters tended to influence TN
constituent variables more than others. For example, NH4-N was highly sensitive to
benthic (sediment) source rate for ammonium–nitrogen in the reach (RS3) and changes in
the value of flow parameters.

Observed and simulated streamflow and nutrient load data are indicated in Table 5.
Based on R2 values [46], the goodness-of-fit varied from very good (Q) to acceptable and
unsatisfactory during calibration (NO3-N, TN, and TP) and validation (NH4-N, NO3-N,
TN, and TP), although R2 values for nutrient constituents are in the upper range of values
summarized for a number of studies by Arhonditsis and Brett [51]. Model prediction
uncertainty was further quantified by NSE values.

Table 5. Model performance statistics (R2 and NSE) for calibration (2002–2005) and validation
(2006–2010) for streamflow (Q), nitrate (NO3-N), ammonium (NH4-N), total nitrogen (TN), and total
phosphorus (TP).

Calibration

Streams Millar Summit Farm

Variable Q NO3 NH4 TN TP Q NO3 NH4 TP Q NO3 NH4 TN TP
Unit ML d−1 g d−1 g d−1 g d−1 g d−1 ML d−1 g d−1 g d−1 g d−1 ML d−1 g d−1 g d−1 g d−1 g d−1

Mean (obs) 1.57 1390 60 1860 60 0.43 53.46 3.22 8.14 0.82 165.31 12.91 309.27 26.13
Mean (sim) 1.92 1100 30 1830 130 0.38 83.56 2.01 5.83 0.75 169.87 1.68 211.33 12.24
R2 0.77 0.59 0.53 0.44 0.30 0.73 0.63 0.26 0.14 0.48 0.51 0.03 0.36 0.26
NSE 0.50 0.36 0.20 0.40 −21.63 0.62 0.47 0.16 −0.44 −0.1 0.47 −0.32 0.09 −0.49

Validation

Streams Millar Summit Farm

Variable Q NO3 NH4 TN TP Q NO3 NH4 TP Q NO3 NH4 TN TP
Unit ML d−1 g d−1 g d−1 g d−1 g d−1 ML d−1 g d−1 g d−1 g d−1 ML d−1 g d−1 g d−1 g d−1 g d−1

Mean (obs) 1.42 1840 40 2390 60 0.47 101.56 3.58 7.15 0.69 141.25 18.48 224.71 23.26
Mean (sim) 1.73 1240 30 1990 30 0.51 108.52 2.39 5.99 1.02 177.25 1.63 224.96 16.07
R2 0.73 0.30 0.20 0.42 0.51 0.67 0.51 0.03 0.03 0.46 0.34 0.01 0.58 0.47
NSE 0.58 0.02 −0.34 0.34 0.14 0.58 0.5 −0.2 −0.21 −1.17 0.21 −0.14 0.57 −0.21
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The time series plots (Figure 2) represent predicted daily flow and nutrient loads
for baseline land use (LUC0, 2002–2016) and baseline climate change simulations (CC0,
2094–2099). A comparison of observed and simulated streamflow for Millar, Summit, and
Farm is shown in Figure 2a–c.

The graphical comparison of observed and predicted TN loads (Figure 2d–f) showed
a reasonable model fit. Modeled TP (Figure 2g–i) and NH4-N (Figure 2j–l) load predictions
aligned well with the seasonal pattern related to high and low flow seasons. NH4-N model
estimate for Millar and Summit (Figure 2j–k) showed a good fit during the dry season.
While missing the peak for some observations, predictions of NH4-N for Farm catchment
(Figure 2l) were stable, with few major over and under predictions.
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load with land use change (LUC), an increase in forest cover (Figure 3). Columns LUC1 
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(LUC1–LUC4) and CC scenarios. Considering subbasins 1, for example, in the LUC2 sce-
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TN, and TP by, respectively (column LUC2).  

Figure 2. Comparison of observed and predicted daily streamflow for three surface streams: Millar (a),
Summit (b), and Farm (c). TN load for Millar (d), Summit (e), and Farm (f) and TP load for Millar (g),
Summit (h), and farm (i). Daily NH4-N load for Millar (j), Summit (k), and farm (l) streams. The
schematic comparison between daily observed and simulated values are indicated by red circles for
calibration (2002–2005), black circles for validation (2006–2010), and black hollow circles for periods
where there has been land use change (2011–2016) and predicted climate change effects (2094–2099).
LUC0 and CCo denote baseline simulation and climate change alone simulations, respectively, and
obs., cal., and val. represent observation, calibration, and validation, respectively.

3.2. Modelling Streamflow and Nutrient Loads: Land Use Change Effects

Our model simulations revealed a reduction in stream flow and NH4, TN, and TP
load with land use change (LUC), an increase in forest cover (Figure 3). Columns LUC1
through LUC4 show relative changes between baseline simulation (LUC0) and LUC (LUC1–
LUC4) and CC scenarios. Considering subbasins 1, for example, in the LUC2 scenario (i.e.,
relative change in annual average flow and nutrient load between baseline, LUC0 and
LUC2 simulations), there was a 2.7, 4.0, 5.7, and 5.1% decrease in Q, NH4-N, TN, and TP by,
respectively (column LUC2).
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Figure 3. Distribution maps of annual average relative difference in streamflow: (a) NH4-N, (b) TN
(c), and TP (d). Column LUC0 (a–d) shows percent relative changes in the predicted annual average
flow and nutrient load between baseline (LUC0) and climate change alone (CC0) simulations. Relative
change between baseline (LUC0) and LUC simulations (LUC1–LUC4) is indicated by columns LUC1–
LUC4. Bold underlined values in the map (values after comma) show percent relative difference
between climate change alone (CC0) and land use-CC simulations. Relative change computation is as
presented in Equation (1) and subbasin numbers are presented in bold red, column LUC0. Subbasins
that were not influenced by any land use change scenario are left unlabeled.

Land use and climate change effects on flow and nutrient loads for other subbasins are
also presented. For instance, in subbasin 3, converting 1.1 and 1.32 km2 of pasture to forest
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during the third (LUC3) and fourth (LUC4) land use change scenario led to a reduction of
NH4-N by 11.6% and 14.2%, respectively. Similarly, compared to the baseline simulation,
LUC simulations (LUC1–LUC4, column LUC1–LUC4) showed a significant decrease in
TP load, with reductions of 4.1%, 10.7%, 14.8%, and 17.7%, respectively, when converting
pasture to forest.

3.3. Modelling Streamflow and Nutrient Loads: Land Use–Climate Change Effects

Scenario of flow and nutrient loads for land use–climate change are shown in Figure 3.
Figure 3a–d show percent relative change in the predicted annual average flow and nutrient
loads between the baseline (LUC0) and climate change-only simulation (CC0) (column
LUC0). For example, relative change between LUC0 and CC0 in annual average flow and
nutrient loads for subbasin 3 showed a 13.6, 5.9, 22.8, and 19.5% decrease in Q, NH4-N, TN,
and TP, respectively (column LUC0, Figure 3a–d).

Bold underlined values in the map (column LUC1–LUC4, Figure 3a–d) show percent
relative difference between climate change alone (CC0) and coupled land use and climate
change simulations. For subbasin 1, for example, percent relative difference in flow between
CC0 and land use–climate change simulations (LU-C1-LUC4) showed 8.9, 9.5, 10.7, and
11.1% reductions, respectively. Streamflow responses for the combined land use–climate
change (LU-CC1-LUCC4) compared with CC0 in subbasin 2 showed a 13.9, 17.8, 19.8, and
21.2% reduction, respectively.

Figure 4 displays histograms of the outcomes of applying the relative difference
analysis of Equation (1), with the impact of alterations in stream-flow and nutrient loads
extending the results presented in Figure 3.

The histogram value above the Cartesian coordinate point (0, 0) indicates a decrease
in values of any of the simulated variables. The results revealed a reduction in streamflow
and TN and TP loads for all catchments that have undergone land use change. There has
been a noticeable change in NH4-N load between the individual and combined simulations.
For instance, in subbasin 3, a 5.9% reduction in NH4-N load was observed when comparing
the baseline, LUC0, and climate change alone, CC0 simulation. Furthermore, when com-
paring the four land use climate change scenarios (from LU-CC1 to LU-CC4) with the CC0
results, there was a substantial decrease in NH4-N loads of 7.4%, 9.9%, 11.8%, and 12.9%,
respectively. The findings also reveal changes in NH4-N load across some subbasins. For
example, in subbasins 8 and 9, a comparison of the LUC-CC and CC0 simulations revealed
an increase in NH4-N loads.

3.4. Combined Effects of Land Use and Projected Climate

Four land use and climate change (LU-CC) scenarios, i.e., LU-CC1 for the first, LU-CC2
for the second, LU-CC3 for the third, and LU-CC4 for the fourth scenario, were used to
assess land use change and climate change effects. Figure 5 shows such a case for subbasin
3 with LUC only represented by LUC1–LUC4 and climate change included as LU-CC1,
LU-CC2, LU-CC3, and LU-CC4, respectively.

We used change factor (CF) to examine the interactions between LUC and climate for
the scenarios compared with the base case (Figure 5). The slope of the line for streamflow
(Q), NH4-N, TN, and TP showed relatively small changes between consecutive scenarios.
For example, a slope (S21 = −0.02) for streamflow between change factors (LUC1 and
LUC2), indicated that land use and climate change are not strongly synergistic, meaning
that LU-CC simulations do not significantly enhance the reduction in streamflow and
nutrient loads. Based on the change factors (LUC0 to LUC4), it can be concluded that
although there has been a reduction in flow and nutrient loads, the combined effects are not
noticeably different from the individual LUC effects, indicated by CFs of 1.0 to 1.3. LUC1
through LUC4 showed the existence of co-benefits of LU-CC, but the effect was weaker in
the LU-CC than that of LUC alone.
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Figure 4. Effect of LU and LU-CC on streamflow (Q) (a), TN (b), NH4-N (c), and TP (d) load under
LUC alone past (solid) and future (hatched) simulations (LUC1–LUC4). The value of the histogram
above (0, 0) in the Cartesian coordinate denotes a reduction in prediction of any of the simulated
variables (streamflow, NH4-N, TN, and TP) and the table represents percentage of pasture area
converted to forest.
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Figure 5. Feedback between land use and climate change for subbasin 3 in the Lake Ōkareka
catchments. Y-axis is a change factor (CF); ratio of land use change alone (LUC1–LUC4) predictions
to land use–climate change model outputs (LU-CC1–LU-CC4) is indicated by LUC1 to LUC4; and
ratio of baseline simulation to climate change alone simulation (LUC0:CC0) is indicated by LUC0 for
streamflow, NH4-N, TN, and TP. X-axis shows the trend of feedback as represented by the slope (s) of
the line for each variable.

4. Discussion
4.1. Land Use and Climate Change Effects on Streamflow

The impacts of climate and land use changes on catchment hydrology and water qual-
ity are significant and well documented [52]. A crucial task in land and water management
is identifying the areas where source loadings need to be modified to meet water quality
standards in the receiving environment. One potential solution is converting pasture to
forest, but it is important to evaluate the effects of these changes on streamflow and WQ.
We used high-resolution land use information to identify existing land use changes, and
then we assessed the individual and combined impacts of climate and land use change on
streamflow and WQ.

Comparing baseline (LUC0) and climate change alone (CC0) simulations in subbasin 3
(Figure 2a, column LUC0), the predicted runoff during CC0 showed a 13.6% decrease that
may be attributed mostly to an increase in temperature leading to an increase in evaporation.
These results align with IPCC reports [53]. A study in the Ōkāreka region [20] indicated
a 2.8% and 1.4% increase in annual mean precipitation and solar radiation. According to
their finding, the effect of increased precipitation may have been combated by the reported
0.6% reduction in humidity and 2.7 ◦C increase in temperature [53]. Our model results
can also be linked to statistical relationships of land use and WQ to examine how a future
warmer climate might impact nutrient runoff. Other modeling studies assessing simulated
climate change impacts on streamflow in the Lake Michigan Basin [54] reported a projected
1.8% decrease in total annual runoff following a 5.1% and 2.6 ◦C projected increase in total
average annual precipitation and average annual air temperature, respectively.

The last four simulation scenarios represented both land use (LUC1–LUC4) and
climate change effects. For example, compared to the climate change alone (CC0) and
LUC simulations (LUC1–LUC4) in subbasin 3, model results showed a decrease in runoff
with increasing rates of land use change, ranging from 15% in LUC1 to 20.2% during
LUC4 (Figure 2a, column LUC1–LUC4). The reduction in runoff may be related to one or a
combination of the following factors. Canopy effects resulted from the conversion of pasture
to forest, which may delay runoff and increase infiltration; the effect of increased rainfall
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towards producing higher runoff could be counter-balanced by the increased temperature
(increase in evapotranspiration), or considering scale issues, land use change effects are
more dominant in small, groundwater flow-dominated catchments [55–59]. Other previous
studies also support our finding. A study conducted in the northeast edge of the Tibetan
Plateau found a 11.28% reduction runoff with climate change [60].

4.2. Modelling Nutrient Flux: Land Use–Climate Change Effects

Comparison of climate and land use–climate change (LU-CC) simulations showed a
decrease in TN load. This could be attributed to canopy effects for the land use change and
global warming and corresponding increase in temperature for climate change, resulting a
reduction in streamflow. The particular SWAT model parameter related to canopy effects
is CANMX, the maximum amount of water that can be trapped in the canopy when the
canopy is fully developed, which potentially exhibits a strong control of the predicted
flow with changes in land use. A modelling study covering 325 km2, of which 63% was
agricultural land, reported a 4% decrease in TN load under increased temperature induced
by global warming [61].

A comparison of baseline (LUC0) and climate change (CC0) model results in sub-
basin 3 showed a 22.8% reduction in TN. Combined land use–climate change simulations
demonstrated a noticeable reduction in TN load compared to CC0, a value ranging from
26 to 36.7%. This could be attributed to a climate change-induced increase in temperature,
resulting in reduced runoff and greater plant uptake capacity with an increase in forest
cover. Other studies in the Rotorua catchment reported a 7.6% decrease in TN load under
the 2090 climate change [20]. A reduction in TN load was observed in other subbasins that
underwent land use change. Thus, the decrease in TN load during the LU-CC simulations
may be related to the effect of an increase in temperature. Warming causes an increase in
soil temperature, thereby enhancing the plant uptake and denitrification processes. This in
turn causes a decrease in major component of TN loads (e.g., NO3–N) and leaching from
the catchment. Nguyen et al. [62] highlighted a 21.2% annual average reduction in TN
loads with RCP8.5 climate change. Afforestation enhances plant uptake and denitrification
processes resulting in a reduction in NO3-N load as a major constituent of TN [63]. A study
focusing on climate change impacts on nutrient loads [64] highlighted that a decrease in
NO3-N response was evident with the projected changes in climate.

A 19.5% reduction in TP load was observed between LUC0 and CC0. A reduction in
TP load with projected climate change has been highlighted by other similar studies. One
of this application in a modeling study demonstrated by Robertson et al. [54], indicated
simulated climate change impacts on phosphorus loading in the Lake Michigan Basin. They
found a projected 3.1% decrease in TP loads to Lake Michigan following a 5.1% and 2.6 ◦C
projected increase in total average annual precipitation and average annual air temperature,
respectively. Nguyen et al. [62] highlighted a 28.9.2% average annual reduction in TP loads
with climate change during the RCP8.5 climate.

Simulations showed considerable changes in NH4-N load with individual and com-
bined simulations of LUC and CC. For subbasin 3, for example, a 5.9% reduction in NH4-N
load occurred with LUC0 and climate change alone and a 7.4 to 12.9% reduction for LU-CC1
and LU-CC4, respectively. The changes in NH4-N may relate to changes in catchment
hydrological properties and uncertainty in transferring gauged catchment SWAT model
parameter optimal values to ungauged ones. In such a case, biological oxidation of NH4 to
NO2 (BC1) and NH4 to NO3 (BC2), and hydrolysis of organic N to NH4 (BC3) were found
to influence NH4-N outputs. In addition, NH4-N was highly sensitive to benthic (sediment)
source rate for ammonium–nitrogen in the reach (RS3).

For example, subbasins 8 and 9 produced higher NH4-N loads in the CC scenarios,
which may relate to changes in catchment hydrological responses of the specific soil
dominating the area [65]. An evaluation of the dynamics of NH4-N with a projected
increase in precipitation and temperature in the RCP8.5 scenario showed an increase in
NH4-N loading associated with increases in temperature. A study by Juang [66] highlighted
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that increases in temperature can trigger an increase in NH4 fixation that tends to increase
the NH4-N flux, reinforced by dehydration and reduced water content in the interlayer
of the soil minerals, with more fixed NH4 in the clay fraction. Other studies noted that
NH4 fixation could increase with temperature [65,67]. It could also be associated with
co-occurrence of hydrological extremes and soil responses [68], and intermittent flash floods
may increase NH4+ fixation, which in turn increases NH4-N loading.

4.3. Combined Effects of Land Use and Projected Climate

A reduction in flow and nutrient loads was simulated in both LUC alone and LU-
CC model results. In a scenario with substantial LU alteration through afforestation and
RCP8.5 climate change, projected streamflow and nutrient loads showed a comparable
reduction. Land use change simulations showed a reduction in streamflow and nutrient
load, which may have been the result of afforestation and canopy effects that delays runoff
and increases infiltration. The decrease in streamflow and nutrient loads can be explained
by the combined influence of afforestation and projected increase in temperature. The
scenario of an increase in the area of afforestation influences the canopy storage parameter,
CANMX, in the SWAT model, which identifies the maximum amount of water that can be
trapped when the canopy is fully developed. On the other hand, the rate of reduction in
annual average estimates of streamflow and nutrient loads during LU-CC scenarios was
not synergistic, although the responses to LUC and CC were somewhat synergistic.

These results also highlight the potential for a reduction in streamflow and nutrient
load if recent afforestation regional policies are paired with global efforts to mitigate
climate change.

5. Conclusions

Lake Ōkareka is a mesotrophic lake in the temperate Bay of Plenty region in New
Zealand, which had previously been in an oligotrophic state. Land use change involving
the conversion of pasture to pine plantation has been undertaken to meet nutrient load
targets congruent with an oligotrophic state trophic state for the lake. This study therefore
represents an important validation for the extent of land use change (LUC) required to meet
water quality targets for receiving waters. Our hypothesis was that while increasing forest
surface area will reduce nutrient loads, climate change would cause higher precipitation
and temperature, leading to increased flow and nutrient loading. We also hypothesized
that the effect of LUC may be able to offset climate change. A comparison of simulations
based on current and projected climate indicated a reduction in streamflow and nutrient
loads using the projected RCP8.5 climate. Further reductions in nutrient loads occurred in
simulations that included both land use and climate change effects. Our analyses revealed
that the combined impacts of land use and climate change have a greater influence than
each individual impact. This study has significant implications as it demonstrates the
potential of land use change strategies in mitigating nutrient loads in lakes with water
quality issues. Our findings not only offer valuable insights into this specific context but
also present a prototype that can be applied to other lake catchments experiencing LUC.
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