
Citation: Li, W.; Geng, J.; Bao, J.; Lin,

W.; Wu, Z.; Fan, S. Spatial and

Temporal Evolution Patterns of

Habitat Quality under Tea Plantation

Expansion and Multi-Scenario

Simulation Study: Anxi County as an

Example. Land 2023, 12, 1308.

https://doi.org/10.3390/

land12071308

Academic Editor: Alejandro Javier

Rescia Perazzo

Received: 19 May 2023

Revised: 17 June 2023

Accepted: 27 June 2023

Published: 28 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Spatial and Temporal Evolution Patterns of Habitat Quality
under Tea Plantation Expansion and Multi-Scenario Simulation
Study: Anxi County as an Example
Wen Li 1,2, Jianwei Geng 3, Jingling Bao 2,4, Wenxiong Lin 5, Zeyan Wu 5 and Shuisheng Fan 2,4,*

1 Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
2 Multifunctional Agricultural Application Research Institute, Fujian Agriculture and Forestry University,

Fuzhou 350002, China
3 College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
4 College of Rural Revitalization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
5 College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
* Correspondence: shuisheng@fafu.edu.cn; Tel.: +86-138-6062-9291

Abstract: The expansion of tea plantations has caused changes in land use structure, which, in
turn, has affected the regional habitat quality. Exploring the characteristics of changes in land use
structure and habitat quality under different development scenarios is important for the formulation
of regional land planning policies and the guarantee of ecological security. This study quantified the
habitat quality of the study area from 2010 to 2020 based on the InVEST habitat quality module and
explored the land use distribution patterns and habitat quality change characteristics under different
scenarios in combination with the PLUS model. The results show that, from 2010 to 2020, the area
of tea plantations expanded by 153.0126 km2, and the mean value of habitat quality increased from
0.6502 to 0.6919; in different development scenarios, the area of tea plantations was from large to
small in the order of scenario 1 (871.2468), scenario 3 (599.4531) and scenario 2 (518.5440), and the
mean value of habitat quality was from high to low in the order of scenario 1 (0.7385), scenario 2
(0.7162) and scenario 3 (0.6919). This study mainly explored the structural changes of land use and
habitat quality evolution characteristics under different development scenarios in the study area, and
the results of the study can provide a reference basis for rational land development and utilization
and habitat conservation in the large-scale tea plantation area.

Keywords: tea plantation expansion; habitat quality; scenario simulation; InVEST model; PLUS model

1. Introduction

With the promotion of rural revitalization, human beings have put forward higher
requirements for land needs for industrial development and ecological environment pro-
tection [1]. In the past decades, with the rise of the tea consumption market and driven by
economic interests, more and more farmers have chosen to grow tea, resulting in more and
more tea gardens replacing high-quality farmland and primitive forests and encroaching
on marginal lands with steeper slopes and higher altitudes [2], resulting in the continuous
expansion of tea gardens and changes in land use structure, which, in turn, lead to biodiver-
sity reduction [3], lower water containment [4], soil erosion [5] and other ecological security
issues. Therefore, a scientific and reasonable assessment of the impact of land use changes
on habitat quality and an analysis of the spatial and temporal evolution patterns and
development trends of habitat quality under different land use development scenarios can
provide a reasonable basis for the rational exploitation of land resources, the optimization
of the layout of land structure and the formulation of ecological protection policies [6–8].

Habitat quality assessment provides a new perspective for exploring the relationship
between anthropogenic disturbance and habitat quality changes [9]. The spatial quantifica-
tion of habitat quality has become a hot topic of academic interest, and the main current
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habitat quality assessment models are the InVEST model [10], the HIS habitat suitability
model [11] and the MAXENT model [12]. Among them, the InVEST model requires less
data, has strong spatial analysis capability and visualization and has unique advantages
in the dynamic assessment of habitat quality and spatial and temporal change analysis,
which is a more mature and widely used model for ecosystem service assessment [13]. The
habitat quality module of the InVEST model is an important tool for quantifying habitat
quality [14], which assesses habitat quality by analyzing the degree of threat to regional
biodiversity from different land types on a land use map [10], enables a dynamic analysis of
the spatial distribution of habitat quality [15] and reveals the degree of ecosystem suitability
through visualization [7,16].

A summary of previous studies found that the Markov model [17], FLUS model [18]
and MCCA model [19] are mainly used to simulate and predict future land use changes.
The PLUS (Patch-generating Land Use Simulation) model applies a new analysis strategy,
which is based on extracting the parts of various types of land use expansion between
two periods of land use changes and samplings from the increased parts and using the
stochastic forest algorithm to mine the factors of each type of land use expansion and
drivers one by one. Obtaining the development probability of each type of land use can
better mine the contribution of the causal factors and drivers of each type of land use
change to the expansion of each type of land use in that time period and can better simulate
the change at the patch level of multiple types of land use [20]. The model combines the
advantages of the existing CA-Markov model and FLUS model, avoiding the analysis
of transformation types that grow exponentially with the number of categories [21], and
retains the ability of the model to analyze the mechanisms of land use change over a
certain time period with better interpretation [22]. Additionally able to be coupled with
multi-objective optimization algorithms, the simulation results can better support planning
policies to achieve sustainable development [23].

In summary, with the promotion of rural revitalization and ecological civilization,
habitat quality, as one of the important indicators for measuring biodiversity [24], habitat
environment [25] and ecosystem structural stability [26], is concerned with regional sus-
tainable development and ecological security [27]. How to quantitatively assess habitat
quality under different land use impacts, especially the impact of tea plantation changes on
habitat quality [28], is the focus of this study. Therefore, Anxi County, a typical leading tea
production county in the southern hilly region of China, was selected as the study area,
and the research process was (1) to analyze the land use change pattern of the study area
from 2010 to 2020 and (2) to apply the PLUS model to simulate and predict the land use
of the study area under different development scenarios in 2030. (3) The InVEST model
was used to assess and quantify the spatial and temporal evolution of habitat quality in the
study area from 2010 to 2020 and under different development scenarios.

2. Materials and Methods
2.1. Study Area

Anxi County is located in Southeastern Fujian Province (117◦36′–118◦17′ E,
24◦50′–25◦26′ N), with a total area of 3057.28 square kilometers and a total population of
over 1.2 million. Anxi County is part of the southeastern extension of the Daiyun Moun-
tains and is dominated by hilly mountainous terrain, with an average altitude of over 700
m and a peak of 1600 m. With an average annual temperature of 16–21 ◦C and an annual
precipitation of 1800 mm, it is an excellent area for growing oolong tea and is the first of
the key tea-producing counties in China, known as the “Tea Capital of China”. The tea
plantation area in Anxi County is about 60,000 hectares, accounting for about 1/3 of the
total tea plantation area in Fujian Province, with a tea output of 62,000 tons and a total
output value of 32 billion yuan (Figure 1).
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Figure 1. Location map of the study area.

2.2. Data Source and Pre-Processing

The remote sensing image data of the study area were mainly obtained from Land-
sat/TM/TIRS/OLI published by Geospatial Data Cloud (http://www.gscloud.cn). As
the scope of the remote sensing imagery does not encompass the entire study area, the
image data were used for three time periods of 2010, 2015 and 2020, with a total of nine
image data (Table 1). The image data of each time period were processed by image mo-
saic, cropping, radiation correction and atmospheric correction [29] and converted to a
true color display by waveband combination and then compared with Google Earth Pro
high-precision historical image data, and after visual interpretation and combined with
field validation and calibration, according to the national standard of “Land Use Status
Classification” (GB/721010-2017), combined with the research needs, the maximum like-
lihood method [30] was used to classify the study area into a total of nine land classes,
including forest land; shrubs; grassland; arable land; tea gardens; orchards; construction
land (residential, industrial and mining lands and towns); mudflats and water bodies.
The overall accuracy of the classification of each of these periods was 87.63%, 86.92% and
88.32%, respectively, to meet the needs of the study. Among them, the data of tea-related
population density and gross tea product in Anxi County were unified by GIS kriging
interpolation, cropping, resampling and other operations with projection coordinates and a
spatial resolution of 30 m. The data sources required for land use simulation are as follows
(Tables 1 and 2).

Table 1. Remote sensing image information data.

Year Image Source Image Date Path Row Cloud Volume

2010 Landsat/TM
3 August 2010 120 42

<5%

9 December 2010 120 43
18 December 2010 119 43

2015 Landsat/TIRS/OLI
14 January 2015 119 43
21 January 2015 120 43

13 May 2015 120 42

2020 Landsat/TIRS/OLI
20 February 2020 120 42
20 February 2020 120 43

16 March 2020 119 43

http://www.gscloud.cn
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Table 2. Data required to simulate the projected study area for 2030 land use.

Data Type Data Name Data Source Format

Land Use Data Land Use Type http://www.gscloud.cn/

.tif

Socio-economic data
Tea-related population density http://www.fjax.gov.cn/

The total value of tea production http://www.fjax.gov.cn/
Road data https://www.openstreetmap.org

Topographical and climatic data

Average annual temperature http://cdc.nmic.cn/
Average annual precipitation http://cdc.nmic.cn/

DEM http://www.gscloud.cn/
Slope Calculated by DEM

2.3. Methods
2.3.1. InVEST Habitat Quality Model

In this study, the InVEST model was applied to quantitatively assess habitat quality in
the study area [31], which requires the input of land use data and combines the sensitivity
of different land use types and the distance and mode of impact of threat sources of stress
to map habitat quality [32]. Habitat quality depends on the proximity of habitats to threat
sources and the ecological suitability of these habitats, and usually, habitat quality increases
as the intensity of nearby land use decreases [33]. The equations are as follows:

Dxj = ∑R
i=1 ∑

yr
y=1

(
Wr

∑R
r=1 Wr

)
ryirxyβxSjr (1)

irxy = 1−
(

dxy
drmax

)
(Linear decline) (2)

irxy = exp
(
−
(

2.99
drmax

)
dxy

)
(Index decline) (3)

where Dxj, R, Wr, yr and ry denote the habitat degradation index, the number of threat
factors, the weight of threat factor r, the number of threat factor grids and the value of
threat factor on the grids, respectively; irxy denotes the distance between the habitat and
the threat source and the spatial impact of the threat; β is the factor to mitigate the impact
of the threat on the habitat through various conservation policies (i.e., the degree of legal
protection, with the area protected by law being 0 and the rest being 1); Sjr is the sensitivity
of habitat type j to threat factor r; dxy is the linear distance between grids x and y; drmax
is the maximum distance of the threat source r and drmax is the sensitivity of the threat
source r to threat factor r. Sjr is the sensitivity of habitat type j to threat factor r, dxy is the
linear distance between raster x and raster y and drmax is the maximum threat distance
of threat source r. The higher the calculated score, the greater the threat of the threat
factor to the habitat and the higher the degree of habitat degradation. The threat sources,
maximum impact distance and weights of this study were obtained by referring to the
relevant literature combined with the actual study area (Table 3) [31,34–36].

Table 3. Threat sources and their maximum impact distances, weights and attenuation types.

Threat Factor Maximum Impact
Distance/km Weights Attenuation Type

Construction Land 10 1 Index
Cropland 5 0.7 Linear

Tea Garden 3 0.4 Linear
Orchard 2 0.3 Linear

http://www.gscloud.cn/
http://www.fjax.gov.cn/
http://www.fjax.gov.cn/
https://www.openstreetmap.org
http://cdc.nmic.cn/
http://cdc.nmic.cn/
http://www.gscloud.cn/
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Based on the above habitat degradation degree results, the habitat quality assessment
equation is

Qxj = Hj

(
1−

(
Dz

xj

Dz
xj + kz

))
(4)

where Qxj is the habitat quality index of raster x in land use j; Hj is the habitat suitability
of habitat type j, ranging from 0 to 1; k is the half-saturation constant, usually 1/2 of the
maximum value of habitat degradation and z is the normalization constant, usually set to
2.5. The data to be entered into this module include land use, major threat factors, threat
source factor weights and impact distances, land use sensitivity to each threat source and
sensitivity to each threat source, etc. This study refers to the InVEST model user’s guide
manual and previous research results for the settings [37,38]. The sensitivity table for the
different land use types is a required parameter setting in the Habitat Quality module of
the InVEST model. It reflects the threat level of each threat source to each existing land
type and the suitability of the existing land type and takes values in the range [0, 1]. The
better the habitat of the species, the higher the degree of suitability. The coefficient of the
threat source is the degree of impact of the threat source on each species (Table 4).

Table 4. Sensitivity of different land use types to threat sources.

Land Use Type Habitat
Suitability Cropland Construction

Land Tea Garden Orchard

Forest land 1 0.6 0.9 0.6 0.2
Shrubland 0.6 0.2 0.8 0.3 0.3
Grassland 0.5 0.5 0.8 0.6 0.5
Cropland 0.1 0 0.6 0.8 0.2

Tea Garden 0.3 0.8 0.5 0 0.1
Orchard 0.2 0.2 0.3 0.1 0

Construction Land 0 0 0 0 0
Mudflats 0.7 0.2 0.2 0.1 0.1

Water bodies 0.8 0.1 0.1 0.1 0.1

2.3.2. Space Autocorrelation

Spatial autocorrelation is an important indicator to test whether an element is cor-
related with its neighboring spatial elements [39]. A spatial autocorrelation analysis can
be used to describe the distribution of spatial homogeneity of habitat quality within the
study area [40–42]. In this study, global spatial autocorrelation (Global Moran’s I) and
local spatial autocorrelation (Local Moran’s I) were used to measure the aggregation and
divergence characteristics of spatial variation in habitat quality and to explore whether
spatial variation has the phenomenon of high-value clustering and low-value clustering,
through which the analysis can determine the habitat quality. The analysis can determine
the locations where high or low value areas are clustered in a space.

Global Moran’s I is used to measure the interrelationship of spatial elements, and
its value is between [−1, 1], and the larger the absolute value, the stronger the spatial
autocorrelation. The calculation formula is:

I =
n
S0

∑n
i=1 ∑n

j=1 W(i, j)(Xi − X)(Xj − X)

∑n
i=1 (Xi − X)

2
i

(5)

S0 = ∑n
i=1 ∑n

j=1 W(i, j) (6)

where n denotes the number of study objects, Xi is the observed value and
−
X is the mean

value of Xi. S0 is the sum of all weights. W(i, j) is the spatial connection matrix between
study objects i and j.
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The results of the Moran indices were tested for significance with the following equation:

Z(I) =
1− E(I)√

var(I)
(7)

where E(I) = −1/(n− 1) and var(I) is the variance of I. |Z(I)| > 1.96 indicates significant
spatial autocorrelation. When −1.96 < Z(I) < 1.96, it means the spatial autocorrelation is
not significant.

Local Moran’s I is the decomposition of Moran’s I into individual regional units. That
is, the LISA (Local Indicators of Spatial Association) clustering map has five types of local
spatial aggregation, which are high–high (HH), low–low (LL), low–high (LH), high–low
(HL) and insignificant. For a certain spatial unit i:

Ii =
Xi − X

S3
∑n

j=1 W(i, j)(Xj − X) (8)

S3 =

(
∑n

j=1,j 6=i X2
j

)
(n−1)−X2

(9)

where n, Xi,
−
X and W(i, j) have the same meanings as Equations (5) and (6).

2.3.3. PLUS Model

The PLUS model is a new land use simulation model based on metacellular automata,
which has advantages in studying the causes of land use change and dynamically sim-
ulating changes in multiple land uses, especially forest and grassland patches [43]. By
extracting samples of the inter-transformation of various types of land use between two
periods of land use data for training, the future land use is simulated based on the trans-
formation probability, and the random forest algorithm is used to calculate the expansion
of various types of land use and the driving factors to obtain the development probability
of various types of land use and the contribution of the driving factors to the expansion
of various types of land use during that time period, which is then combined with the
generation of random patches and the setting of the transfer transition matrix to determine
the PLUS model mainly consists of the following modules:

(1) Land Expansion Analysis Strategy (LEAS) module

The LEAS is an analysis of land use data for two dates, and the growth patches of each
changing land use type are used to obtain the change pattern of land use types, which can
be used to characterize land use changes in a specific time interval, and the Random Forest
Classification (RFC) algorithm is used to explore the relationship between the growth of
different land use types and multiple drivers and to obtain the development probability of
each land use type, calculated as [19]:

Pd
i,k(X) =

∑M
n=1 I[hn(X) = d]

M
(10)

where X is a vector consisting of the driving factors, M is the number of decision trees;
d takes the value of 0 or 1—1 means other land use types can be transformed into land use
type k, and 0 means other land types cannot be transformed into land type k, hn(X) is the
predicted land use type calculated at the decision tree of n, hn(X) = d is the exponential
function of the decision tree and Pd

i,k(X)
is the probability of the growth of land use type k

at spatial unit i.
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(2) CA model based on multi-class random patch seeding (CARS)

CARS is a scenario-driven land use simulation model based on metacellular automata
that simulates the land use distribution pattern mainly by obtaining the development
probabilities of various types of land uses. The total probability of conversion of land use
type k, Pd=1,t

O,i,k , is formulated as [19]:

Pd=1,t
O,i,k = Pd=1

i,k ×Ωt
i,k × Dt

k (11)

where Pd=1,t
O,i,k is the probability of growth of land use type k on cell i, Ωt

i,k is the domain
effect of cell i and Dt

k is the effect of the future land use k demand, calculated as [44]:

Ωt
i,k =

con
(

ct−1
i = k

)
n× n− 1

× wk (12)

Dt
k =


Dt−1

K

(∣∣∣Gt−1
k

∣∣∣ ≤ ∣∣∣Gt−2
k

∣∣∣)
Dt−1

k × Gt−2
k

Gt−1
k

(
Gt−1

k < Gt−2
k < 0

)
Dt−1

k × Gt−1
k

Gt−2
k

(
0 < Gt−2

k < Gt−1
k

) (13)

where con is the total number of grid cells occupied by the kth land use type in the last
iteration in the nth × nth window; w is the weight between different land use types with a
default value of 1 and D is the difference between the current demand and future demand
of land use type k at the t− 1st and t− 2nd iterations, respectively.

(3) Related parameter setting

The LEAS parameters are set as follows: the value of the decision tree is set to 20, the
sampling rate is 0.01 by default, mTry does not exceed the number of driving factors and is
set to 9 and the number of parallel threads is set to 1.

The CARS parameters are set as follows: the neighborhood range is set to the default
value of 3, Thread is set to 1, the decreasing threshold coefficient is 0.5, the diffusion
coefficient is 0.1 and the random patch seed probability is 0.0001.

Three development scenarios are set: Different development strategies lead to changes
in the structure of land use types, which, in turn, affect the quality of regional habitats [45].
Exploring land use types under different development scenarios in the study area is
important to guide land planning and sustainable regional development [46]. To this
end, in this study, three scenarios of natural development, arable land conservation and
integrated development were used to simulate and predict land use in the study area under
three development scenarios by changing the transfer rules of different land use types.
In the natural development scenario (scenario 1), the development of each land use type
continues the current development trend without adjustment; in the arable land protection
scenario (scenario 2), arable land is protected and conversion of arable land to other land
uses is restricted; in the integrated development scenario (scenario 3), the transfer rules
of each land use type are proposed by considering food security, ecological protection,
urbanization development and high-quality development of the tea industry in the study
area [47–49]. The land use type transfer rules for different scenarios are shown in Table 5.
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Table 5. Different scenario transfer matrix settings.

Natural Development Scenarios
(Scenario 1)

Cropland Conservation Scenarios
(Scenario 2)

Integrated Development Scenario
(Scenario 3)

a b e d e f g h i a b c d e f g h i a b c d e f g h i

a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
b 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1
c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1
d 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0
e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0
f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0
h 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1
i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1

a, b, c, d, e, f, g, h and i denote nine types of land types: forest land, shrubland, grassland, cropland, tea garden,
orchard, construction land, mudflat and water body. 1 means the land type can be converted, and 0 means the
land type cannot be converted.

(4) Land use simulation prediction drivers

In this paper, drawing on the established research results on the drivers of land use
change [50–52] and considering the actual situation of the study area, a total of nine drivers
were finally selected from both socioeconomic and natural climatic aspects, including
tea-related population density in the study area, total tea production value in the study
area, average annual temperature, average annual precipitation, DEM, slope, distance from
the highway, distance from the railroad and distance from the main road (Figure 2).
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(5) Accuracy test

The land use map of 2010–2015 and the suitability raster atlas were input into the
CARS module, and the land use structure in 2020 predicted by the Markov chain model
was simulated to obtain the predicted land use map of the study area in 2020. The Kappa
coefficient of the 2020 prediction map was 0.742, with an overall accuracy of 83.72%, which
met the needs of the study. The Kappa coefficient for 2020 was 0.742, with an overall
accuracy of 83.72%, which met the needs of the study. Then, based on this, we simulated
the land use changes under different scenarios for 2030 with the relevant parameter settings.

3. Results
3.1. Spatial and Temporal Evolution of Land Use
3.1.1. Spatial Change Pattern of Land Use from 2010 to 2020

From 2010 to 2020, the main land use types in the study area are forest land, tea
plantation, arable land and construction land. Among them, forest land is the dominant
land use type, accounting for more than 50% of the total area of the study area; tea plantation
has been the largest land use type in the study area for economic crops, now accounting
for 25.59% of the total area, and the area of tea plantation has increased by 145.5606 km2

during the last 10 years. In the past 10 years, the area of each land use type has changed
to different degrees, among which is the land use type with the largest change, arable
land, which has decreased by 269.8209 km2 during the 10 years. The area decreased by
269.8209 km2, though the proportion of construction land area increased from 5.60% in
2010 to 8.26% in 2020, showing an increasing trend (Figure 3 and Table 6).
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Table 6. Land use area and share of the study area by period, 2010–2020.

2010 2015 2020 2010–2020
Area Change

Land Use
Type Area (km2) Ratio (%) Area (km2) Ratio (%) Area (km2) Ratio (%) Area

(km2)

Forestland 1588.3137 53.14% 1579.4694 52.84% 1741.3263 58.26% 153.0126
Shrubland 1.7514 0.06% 2.4687 0.08% 10.2924 0.34% 8.541
Grassland 138.1437 4.62% 144.9783 4.85% 6.5853 0.22% −131.5584
Cropland 372.4713 12.46% 386.6526 12.94% 102.6504 3.43% −269.8209

Tea Garden 619.4484 20.72% 574.8597 19.23% 765.0090 25.59% 145.5606
Orchard 21.0501 0.70% 19.7406 0.66% 19.3905 0.65% −1.6596

Construction
land 167.2875 5.60% 238.3848 7.98% 246.8025 8.26% 79.515

Mudflats 0.4257 0.01% 0.5022 0.02% 0.2430 0.01% −0.1827
Water bodies 80.1819 2.68% 42.0174 1.41% 96.7743 3.24% 16.5924
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3.1.2. Land Use Simulation under Different Scenarios

From the results of different simulations (Figure 4 and Table 7), it can be seen that
the areas of three major land categories, namely forest land, grassland and tea planta-
tion, in Scenario 1 have further expanded, increasing by 120.5514 km2, 13.2246 km2 and
106.2405 km2, respectively, compared to 2020, with the largest increase in grassland area
(200.82%). The areas of the remaining six land types show different magnitudes of decreases;
among which, the areas of construction land and arable land decrease most significantly by
157.6107 km2 and 56.3940 km2, respectively, compared to 2020.
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Table 7. Area and percentage changes of different scenario land use types in the study area.

Scenario 1 Scenario 2 Scenario 3

Land Use Type Area
(km2)

Percentage Change
Compared to the
Area in 2020 (%)

Area
(km2)

Percentage Change
Compared to the
Area in 2020 (%)

Area
(km2)

Percentage Change
Compared to the
Area in 2020 (%)

Forestland 1861.8777 6.92% 1861.9362 6.93% 1533.8448 −11.92%
Shrubland 0.1647 −98.40% 0.1638 −98.41% 0.6102 −94.07%
Grassland 19.8099 200.82% 17.7183 169.06% 113.2884 1620.32%
Cropland 46.2564 −54.94% 375.561 265.86% 385.6806 275.72%

Tea Garden 871.2495 13.89% 518.5440 −32.22% 599.4531 −21.64%
Orchard 17.298 −10.79% 17.298 −10.79% 18.7011 −3.56%

Construction land 89.1918 −63.86% 100.0206 −59.47% 256.8879 4.09%
Mudflats 0.1125 −53.70% 0.1125 −53.70% 0.4878 100.74%

Water bodie 83.1132 −14.12% 97.7193 0.98% 80.1198 −17.21%

The areas of forest land, grassland, arable land and water bodies in Scenario 2 further
expand compared to 2020, increasing by 120.6099 km2, 11.133 km2, 272.9106 km2 and
0.945 km2, respectively, with the largest expansion being arable land (265.86%). The areas
of the remaining five land types show different magnitudes of decrease, and the area of tea
plantations decreases the most (246.465 km2).

The areas of the four major land categories of grassland, arable land, construc-
tion land and mudflats in Scenario 3 further expand compared to 2020, increasing by
106.7031 km2, 283.0302 km2, 10.0854 km2 and 0.2448 km2, respectively, with the largest
increase in the area of arable land (283.0302 km2). The remaining five land types show
different magnitudes of decrease in areas, with the largest decrease in forest land area
(207.4815 km2), followed by tea plantations (165.5559 km2).
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3.2. Spatial and Temporal Characteristics of Habitat Quality

Habitat quality refers to the ability of the ecological environment to provide suitable
conditions for the survival of organisms and is one of the important indicators for the
sustainable development and ecosystem service functions of the region, while land is the
most basic carrier for biological habitats and the operation of various ecosystems. Therefore,
it is important to explore the spatial and temporal evolution of habitat quality in the study
area and the characteristics of changes in different scenarios to guide the formulation
of land policies and achieve the high-quality development of the tea industry in the
study area.

3.2.1. Spatial and Temporal Evolution of Habitat Quality from 2010 to 2020

The mean values of habitat quality in the study area in 2010, 2015 and 2020 were
0.6502, 0.6334 and 0.6919, respectively, and the overall habitat quality in the study area
was at a high level, with an overall increase in the study area from 2010 to 2020, with an
increment of 0.0417. The habitat quality results were classified into five classes: low (0–0.2),
low (0.2–0.4), medium (0.4–0.6), high (0.6–0.8) and high (0.8–1). The results showed that
the areas of habitat quality in the high, high and low classes showed trends of decreasing
and then increasing, while the areas of habitat quality in the medium and low classes
showed trends of increasing and then decreasing during the 10-year period. Overall,
the study area was dominated by high habitat quality classes, with an area increase of
152.9766 km2, while the area of low habitat quality areas decreased by 192.7053 km2 (Table 8
and Figure 5). Habitat quality showed a more obvious spatial autocorrelation with Moran’s
I values of 0.6347, 0.6374 and 0.6478 during 2010–2020, respectively. In terms of spatial
distribution, the low–low agglomeration area gradually decreased in the northwestern and
southern regions of the study area over time, which was mainly due to the expansion of tea
plantations in the northwestern and southern regions (Table 9 and Figure 6).

Table 8. Area and percentage of habitat quality in each class.

2010 2015 2020

Area
(km2) Ratio (%) Area

(km2) Ratio (%) Area
(km2) Ratio (%)

High 1587.2247 53.10% 1578.6657 52.81% 1740.2013 58.22%
Higher 80.6859 2.70% 42.8769 1.43% 97.9803 3.28%

Moderate 139.9599 4.68% 147.5118 4.94% 16.8795 0.56%
lower 619.6131 20.73% 575.0568 19.24% 765.1278 25.60%
low 561.5901 18.79% 644.9625 21.58% 368.8848 12.34%
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Table 9. The 2010–2020 habitat quality in the study area of Moran’s I.

2010 2015 2020

Moran’s I 0.6347 0.6374 0.6478
z-score 50.1010 50.2980 51.1400
p-value 0.0000 0.0000 0.0000
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3.2.2. Habitat Quality Simulation Prediction Analysis under Different Scenarios 

Figure 6. The 2010–2020 LISA maps of habitat quality in the study area. (a) 2010; (b) 2015; (c) 2020.

To further explore the spatial and temporal dynamics of habitat quality in the study
area, the habitat quality changes were calculated for each image element and classified
as strongly degraded (−1 to −0.5), slightly degraded (−0.5 to −0.1), remained stable
(−0.1–0.1), slight improvement (0.1–0.5) and strong improvement (0.5–1), for a total of
five classes. The results of the study showed (Figure 7 and Table 10) that the habitat
quality remained stable in most areas of the study area during the 10-year period, with
an area of 2232.9036 km2, accounting for 74.70% of the total area of the study area, but
the improved areas were always larger than the degraded areas, the strongly improved
areas were concentrated in the western part of the study area and the strongly degraded
areas were concentrated in the southern part of the study area. During 2010–2015, the
overall habitat quality in the study area remained stable, accounting for 91.35% of the total
area of the study area, while, during 2015–2020, the area and proportion of both improved
and degraded areas in the study area increased, especially the proportions of the slightly
improved and strongly improved areas in the study area, which increased by 6.64% and
9.07%, respectively.
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Table 10. Area and percentage of habitat quality changes in the study area from 2010 to 2020.

2010–2015 2015–2020 2010–2020

Area (km2) Ratio (%) Area (km2) Ratio (%) Area (km2) Ratio (%)

Strongly degraded 93.8565 3.14% 129.4119 4.33% 145.6281 4.87%
Slight degradation 64.4859 2.16% 86.2776 2.89% 85.4505 2.86%

Stay stable 2730.5010 91.35% 2203.6122 73.72% 2232.9036 74.70%
Slight improvement 52.5555 1.76% 251.0073 8.40% 265.2705 8.87%
Strongly improved 47.6748 1.59% 318.7647 10.66% 259.8210 8.69%

3.2.2. Habitat Quality Simulation Prediction Analysis under Different Scenarios

As shown in the prediction analysis (Table 11 and Figure 8), the mean habitat quality
values of scenario 1 and scenario 2 were 0.7385 and 0.7162, respectively, compared with
0.6919 in 2020, and the mean habitat quality value of Scenario 3 was reduced to 0.6249, but
their habitat quality was mainly of high grade, with an area share of more than 50%. Habitat
quality under different scenarios showed more obvious spatial autocorrelation (Table 12
and Figure 9), with Moran’s I values of 0.6981, 0.6443 and 0.6676, respectively; in terms of
spatial distribution, compared with 2020, the high–high agglomeration area of scenario 1
decreased in the northwest and southwest of the study area, which was mainly due to the
expansion of tea plantations, and the low–low agglomeration area decreased in the east,
which was mainly due to the high–high agglomeration area of scenario 2 decreasing in the
southwest and central parts of the study area, which was mainly due to the expansion of
tea plantations; the low–low agglomeration area of scenario 3 increased in the southeast,
which was mainly due to the increase of construction land.

Table 11. Area and proportion of each class of habitat quality for different scenarios in the study area
in 2030.

Scenario 1 Scenario 2 Scenario 3

Area
(km2) Ratio (%) Area

(km2) Ratio (%) Area
(km2) Ratio (%)

High 1861.8957 62.29% 1860.9021 62.26% 1532.7558 51.28%
Higher 82.2618 2.75% 97.8732 3.27% 80.6859 2.70%

Moderate 20.0232 0.67% 17.9325 0.60% 113.9634 3.81%
lower 871.434 29.15% 518.7051 17.35% 599.6178 20.06%
low 153.459 5.13% 493.6608 16.52% 662.0508 22.15%
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Table 12. Habitat quality under different scenarios in the study area in 2030 with Moran’s I.

Scenario 1 Scenario 2 Scenario 3

Moran’s I 0.6347 0.6374 0.6478
Z score 50.1010 50.2980 51.1400
p value 0.0000 0.0000 0.0000
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(b) scenario 2; (c) scenario 3.

To further clarify the spatial variation characteristics of habitat quality under different
scenarios in the study area in 2030, the ArcGIS raster calculator was used to calculate the
difference between the habitat quality of different development scenarios and the habitat
quality in 2020. The results show (Figure 10 and Table 13) that the habitat quality in the
study area remains stable in most areas under each scenario in 2030, and they all account
for more than 70% of the total area of the study area. The improved area is higher than
that of the degraded area in scenario 1, and the improved area is mainly concentrated in
the eastern region, mostly because the construction land in the eastern region is converted
into woodland; the improved area and the degraded area in scenario 2 is about the same,
the improved area is more concentrated in the southern region, mainly because the tea
plantation is converted into woodland, the degraded area is mainly concentrated in the
western region and the woodland and water bodies are converted into grassland and
cropland; the degraded area in scenario 3 is larger than that of the improved area. The
degraded area is larger than that of the improved area, and the degraded area is mainly
concentrated in the west and southeast of the study area, which is mostly due to the
conversion of forest land to grassland and construction land in the west and southeast,
respectively. The improvement area is mainly concentrated in the south, and the main
reason is that the tea plantation is transformed into forest land.
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Table 13. Area and percentage of habitat quality changes in the study area in 2030 for different
scenarios.

2020 Scenario 1 2020 Scenario 2 2020 Scenario 3

Area (km2) Ratio (%) Area (km2) Ratio (%) Area (km2) Ratio (%)

Strongly degraded 198.8055 6.65% 189.2268 6.33% 342.9378 11.47%
Slight degradation 55.0818 1.84% 196.1406 6.56% 244.3131 8.17%

Stay stable 2286.8406 76.51% 2207.9331 73.87% 2186.4699 73.15%
Slight improvement 131.4837 4.40% 86.6565 2.90% 77.7708 2.60%
Strongly improved 316.8621 10.60% 309.1167 10.34% 137.5821 4.60%

4. Discussion

The PLUS model and InVEST model are used to predict the land use distribution
pattern of the study area in 2030 under different scenarios based on the current land use
situation; analyze the spatial and temporal evolution characteristics of habitat quality in the
study area and explore the characteristics of habitat quality changes under different land
use scenarios, which are important for improving the ecological environment of the study
area, guiding the formulation of land policies and realizing the high-quality development
of the tea industry in the study area.

(1) Impact of land use change on habitat quality

During 2010–2015, the habitat quality of the study area showed a decreasing trend,
and in response to the accelerated pace of new rural construction during this period, the
area of construction land grew more rapidly during this period, with the expansion of the
threat source area, which, in turn, reduced the habitat quality of the study area. During
2015–2020, the habitat quality of the study area showed an increasing trend due to the fact
that the study area came from the tea pesticide residue incident during this period, the tea
recovery of the consumer market, the influence of the tea industry policy and the influx of
a large number of tea production operators, resulting in the reclamation of a large amount
of arable land into tea gardens, and although tea gardens were also one of the sources of
habitat quality threats, the degree of threat impact was lower compared to arable land,
and the expansion of the construction land area in this period was weakened, which, in
turn, improved the habitat quality in the study area. Compared to 2020, the habitat quality
of scenario 1 was improved, and the construction habitat quality in scenario 1 improved
compared to 2020 because the area of land under construction was significantly reduced,
which led to the improvement in habitat quality; scenario 2 improved the habitat quality
mainly because the area of land under construction was significantly reduced and scenario
3 decreased the habitat quality mainly because the area of forest land was reduced and the
area of cropland increased.

(2) Strengths of the model used in this study

The InVEST model used in this study is widely used due to the use of fewer parameters
and stronger visualization, and the model is relatively mature and has some advantages
over other traditional methods in spatial representation and dynamic studies. In this study,
the PLUS model integrates a new land use expansion analysis strategy, which can better
explore the contribution of the causal factors and drivers of various types of land use
changes to the expansion of various types of land uses in that time period and can better
simulate the changes at the patch level of multiple types of land uses. Compared with
other models, such as FLUS, the PLUS model has a higher accuracy in land use simulation,
which can overcome the problem of accuracy of simulation data in large-scale research
areas. The combined application of the two models better reveals the evolution of the
land use structure and habitat quality under current land development conditions in the
study area.
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(3) Limitations of the study

In this study, the dynamics of habitat quality in the study area from 2010 to 2020
were explored first, followed by the prediction of land use distribution patterns under
three scenarios in the study area in 2030 using the PLUS model, and the spatial and
temporal characteristics of habitat quality under different development scenarios were
assessed using the InVEST model. However, this study has some limitations. First, in
the InVEST model habitat quality assessment, the model still has some shortcomings. On
the one hand, the simple accumulation of the effects of each threat factor of the model
is not equal to the combined effect of each threat factor on habitat quality, and in some
cases, the collective effect of multiple threat factors may be much larger than the sum
of individual threat factors, which is not considered in the InVEST model, and further
improvement of the model is needed. Secondly, in the selection of driving factors for the
land use simulation, some of the data were difficult to obtain, so the driving factors were
not considered comprehensively, but only natural, economic and traffic location factors
were involved, and the future planning of the study area was not considered enough, such
as permanent basic agricultural land and ecological protection red lines, which should be
further improved in the follow-up study to make the simulation results more scientific.

(4) Strategies for optimizing land use in tea plantations

Our study shows that the expansion of tea plantations has a negative impact on the
quality of regional habitats. Therefore, in order to balance the economic development of
tea in Anxi County with the regional habitat quality and biodiversity supply, we suggest
implementing the policy of “returning tea to forest” and “returning tea to farming” in some
areas of tea plantations. For example, the policy of “returning tea to forest” should be
implemented in the northwestern part of the study area, mainly because the slope of the
area is high, the area of tea plantations is small and scattered and the excessive cultivation
of tea plantations leads to the reduction of biodiversity. In contrast, the habitat quality in the
southcentral region is generally lower and the slope gentler compared with the suitability of
cultivated land compared to tea plantations. Therefore, the implementation of the “return
of tea to cultivation” policy in this area is conducive to ensuring food production in the
study area. This is also in line with the food security policy of Anxi County.

5. Conclusions

This study analyzed the spatial and temporal evolutions of land use in the study area
from 2010 to 2020, used the PLUS model to simulate and predict land use changes in the
study area for different development scenarios in 2030 and used the InVEST model to
assess and predict the spatial and temporal evolution patterns of habitat quality in the
study area, with the following conclusions:

(1) From 2010 to 2020, the areas of forest land, tea plantations and water bodies in
the study area decreased and then increased, the areas of irrigated grassland and
arable land increased and then decreased, the areas of shrubs and construction land
continued to increase and the area of orchards continued to decrease. Among them,
forest land area increased the most, mainly in the northwestern part of the study
area, followed by tea plantations, mainly in the northern and southern regions of the
study area; arable land area decreased the most, with a large reduction in the study
area, followed by grassland, mainly in the western and southwestern regions of the
study area.

(2) The prediction results of the PLUS model show that the land use distribution patterns
under different scenarios in 2030 will change significantly. Compared with 2020, the
areas of woodland, grassland and tea plantations in scenario 1 continue to increase,
while the rest of the land use continues to decrease; the areas of woodland, grassland,
cropland and water bodies in scenario 2 continue to increase, while the rest of the land
use continues to decrease; the areas of grassland, cropland, construction land and



Land 2023, 12, 1308 17 of 19

mudflats in scenario 3 continue to increase, while the rest of the land use continues
to decrease.

(3) Habitat quality in the study area from 2010 to 2020 was generally at a high level
with an upward trend. Ten years later, the study area was dominated by high-grade
habitat quality, and the areas of low habitat quality were decreasing, but the areas
of lower habitat quality were increasing. Habitat quality showed a more obvious
spatial autocorrelation, and with the expansion of the tea plantation area, the low–low
concentration area gradually decreased in the northwestern and southern regions of
the study area. The changes in the spatial characteristics of habitat quality showed
that the area maintaining a stable grade was the largest, the improved area was always
larger than that of the degraded area, the strongly improved area was concentrated in
the western part of the study area and the strongly degraded area was concentrated
in the southern part of the study area.

(4) Habitat quality in 2030 changed under different scenarios, except for scenario 3; the
mean values of habitat quality in scenario 1 and scenario 2 were higher than that in
2020, while the proportion of high-grade area of habitat quality was greater than 50%.
Habitat quality under different scenarios showed a more obvious spatial autocorrela-
tion compared to 2020. Scenario 1 showed a decrease in high–high concentration areas
in the northwestern and southwestern parts of the study area with the expansion of tea
plantations and low–low concentration areas in the eastern part of the study area with
the reduction in construction land area; scenario 2 showed a decrease in high–high
concentration areas in the southwestern and central parts of the study area, with the
expansion of tea plantations; scenario 3 showed a decrease in low–low concentration.
The habitat quality of the study area remained stable in most areas of the study area
in 2030 under all scenarios, accounting for more than 70% of the total study area. The
improved area was higher than that of the degraded area in scenario 1, which was
mainly due to the conversion of construction land to forest land in the eastern region;
the improved area and degraded area in scenario 2 were approximately the same,
with the improved area concentrated in the southern region and the degraded area
concentrated in the western region; the degraded area was larger than that of the
improved area in scenario 3, which was mainly due to the conversion of forest land to
grassland and construction land in the western and southeastern regions, respectively.
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