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Abstract: Numerous applications in agriculture, climate, ecology, hydrology, and the environment
are severely constrained by the lack of detailed information on soil texture. The purpose of this
study was to predict soil particle-size fractions (PSF) in the Ri-Bhoi district of Meghalaya state, India,
using a random forest model (RF). For the modeling of soil particle-size fractions, we employed
95 soil profiles (456 depth-wise layers) gathered from a recent national land resource inventory as
well as currently accessible environmental variables. Sand, silt, and clay content were predicted
using the Random Forest model at varied depths of 0–5, 5–15, 30–60, 60–100, and 100–200 cm. Our
results showed the R2 for sand was found to be 0.30 (0–5 cm), 0.28 (5–15 cm), and 0.21 (15–30 cm).
For the sand, silt, and clay fractions, respectively, the concordance correlation coefficient (CCC)
was found to be greater in the 0–30 cm, 0–60 cm, and 0–15 cm depths. When there is a reasonably
close monitoring of the coverage probability with a confidence level along the 1:1 line, prediction
interval coverage probability (PICP) gives a decent indicator of what to anticipate. The most crucial
variables for the prediction of sand and silt were channel network base level (CNBL) and LS-Factor,
whereas Min Temperature of Coldest Month (◦C) (BIO6) was discovered for clay prediction. For
all three soil texture fractions, the range between the 5% lower and 95% higher prediction bounds
was large, indicating that the existing spatial predictions may be improved. The maps of soil texture
were significantly more precise, and they accurately depicted the spatial variations of particle-size
fractions. Additionally, there is still a need to investigate novel methodologies for extensive digital
soil mapping, which will be very advantageous for many international initiatives.

Keywords: digital soil mapping; environmental variables; random forest; uncertainty analysis;
particle-size fractions

1. Introduction

As Digital soil mapping (DSM) is gaining popularity, there is a high need for data
sharing as an outcome. Many digital soil maps are accessible, each with a different
quality concerning resolution, extent, modeling technique, uncertainty, etc. [1,2]. Tra-
ditional soil mapping methods mostly rely on fieldwork and seldom offer details on the
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spatial distribution of soil characteristics at the appropriate resolution throughout the
area [3,4]. Additionally, it is challenging to accurately capture the real status of the dynamic
soil properties when conducting traditional field surveys to map soil spatial variations,
particularly at regional, national, or global scales [5,6]. As a result, reliable techniques
and models are required to forecast soil characteristics at a certain scale or location. With
the use of modern techniques such as digital soil mapping, soil characteristics can now
be precisely predicted due to significant advancements in remote sensing techniques and
machine learning approaches [3,7]. Artificial neural networks, decision trees, and support
vector machines, among other machine learning approaches, have recently been suggested
as alternatives to traditional soil mapping methods [8–10]. Using environmental factors,
DSM approaches have been used to map the characteristics of soil [11]. With the use of
correlations between soil and environmental factors deduced from topographical features
and satellite images, these approaches were created to surpass the drawbacks of the tra-
ditional soil mapping approach [3,5]. A growing need for accurate and useful soil data
led to the founding of the GlobalSoilMap consortium [1,10]. This partnership has taken on
the challenge of creating soil property maps utilizing DSM methods at a fine resolution.
Many nations have an extensive collection of historical soil data, which includes soil maps
at various scales, soil point data gathered over many years, environmental covariate data,
and a network of collaborators who have contributed to developing the soil information
over time.

The soil’s soil particle size fractions (PSF) are an essential physical characteristic
that directly affects a variety of soil functions, such as soil fertility and water retention.
Studies have shown that topography plays an important role in explaining differences in
the PSF [8,12]. Soil texture/PSF has traditionally been expressed by polygons, with each
polygon representing a textural class. The textural composition of the region marked within
a polygon, however, may be highly ambiguous due to the existence of intra-polygon texture
heterogeneity intra-polygon [13]. In order to properly measure intra-polygon textural
diversity, a different approach to solving this issue is to numerically map various PSF.
There are several modern techniques to map PSF utilizing a geostatistic-scorpan kriging
strategy [14–16]. McBratney et al. [3] used a Jenny-like formulation [17] to quantitatively
explain the connections between soil and other spatially referenced elements. Seven
criteria are taken into account: s (soil, other properties of the soil at a point); c (climate,
climatic properties of the environment at a point); o (organisms, plants, or animals; human
activity); r (topography, landscape qualities); p (parent material, lithology); a (age, the
time factor); and n (space, spatial location) are the other features of the soil at a point.
Sa = f (s; c; o; r; p; a; n) may thus be represented as the model to predict a soil attribute
Sa at a given place, where the s stands for soil information from a soil map, remote or
proximal sensing, or expert knowledge. These methods described soil formation factors
and management inputs using a range of data mining techniques (i.e., linear models,
regression trees, multivariate adaptive regression splines, and artificial neural networks)
and covariates. The majority of the variables were acquired from remote sensing and
digital elevation models. Hyperspectral remote sensing [18–20], multispectral remote
sensing [21,22], and radar remote sensing [23] have all been used in certain attempts.
Recently, some investigations utilizing DSM approaches have been carried out on the
regional variation of soil parameters [24–26]. Hengl et al. [2,7] used DSM techniques to
predict soil parameters such as organic carbon, pH, particle size fractions, and bulk density
at continental (1 km) and global levels (250 m). Vagen et al. [27] used the DSM approach
to map SOC, pH, sand, and the total of bases throughout Africa. In a low-relief location,
Wang et al. [28] used land surface temperature from MODIS satellite data to estimate soil
texture. Geostatistical techniques were used by Wälder et al. [29] to forecast the contents of
clay, silt, sand, and humus in a German floodplain.

The objectives of this investigation are to (1) model and map soil particle-size fractions
(PSF) for the entire soil profile using the DSM approach, which was adopted from the
GlobalSoilMap project, and (2) identify the key environmental covariates that affect the
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particle-size fractions in the study area. We anticipate that our results will enhance and
update the existing soil texture information system with fresh, high-resolution soil texture
maps that might be beneficial to stakeholders and end users.

2. Materials and Methods
2.1. Study Area

The study was carried out in the Ri-Bhoi district of the northeastern Indian state of
Meghalaya (Figure 1). The district lies between 25◦48′54.36′′ N to 26◦04′40.08′′ N latitude
and 91◦20′40.56′′ E to 92◦16′33.96′′ E longitude and covers an area of about 2359 km2. The
Shillong Plateau physiographic division encompasses the study area.
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Figure 1. Location map and research area soil profile points.

The geography of the region is undulating, with a minimum elevation of 60 m on the
northern side bordering Assam and a maximum elevation of 1400 m on the southern side.
The research region is characterized by cold winters and hot, humid summers typical of a
subtropical climate. Potential evapotranspiration (PET) ranges from 800 to 1300 mm, and
the average annual rainfall ranges from 2000 to 4000 mm. Due to seasonal dry spells that
occur throughout the post-monsoon period, or from November to February, the area has
a water deficit of 250 to 350 mm [30]. There are 176 rainy days on average per year. The
average summer temperature rises to 26 ◦C, and the average winter temperature drops to
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9 ◦C. At higher elevations, the mean annual soil temperature (MAST) is less than 22 ◦C
but more than 15 ◦C, but at lower elevations, it is greater than 22 ◦C. In sub-montane,
valleys, and lower elevation parts of the physiographic unit, the soil temperature regime
is hyperthermic, whereas the soil moisture regime is characterized by udic [31,32]. The
study area forms a part of the stable Meghalaya plateau of northeastern India which is
an extension of the Deccan plateau of southern India. Geomorphologically, Ri-Bhoi is a
hilly district with inter-montane valleys. The lithology of the hills comprises Archaean to
Proterozoic Gneissic complex rocks, which are highly deformed, fractured, and fissured in
nature. The dominant geology of the district is granite gneiss, hornblende biotite gneiss,
migmatite, banded granitoid, and unclassified gneiss with pegmatite and schist, followed
by grey/pink granite.

2.2. Land Resource Inventory

Detailed land resource inventory (LRI) was carried out to study the soils for their field
morphology under the project entitled “LRI of Ri-Bhoi district, Meghalaya for optimal
agricultural land use planning using geospatial techniques” [33]. The soil survey was
carried out by transect approach from higher elevation to lower elevation covering all the
identified landscape ecological units (LEUs). The LEU map was generated by integrating
land use and land cover information with topography (landforms and slope), considering
the climate, relief, flora, and parent material as the most influencing factor compared to
time, whereas the parent material and climate are the constant factors in the recent years as
discussed earlier. A total of 456 soil samples from 95 profiles chosen in selected transects
were studied. In each LEU, at least one soil profile pit (2.5 × 2.5 m and to a depth of
underlying rock or weathered parent material) observation was made. According to soil
survey recommendations, the horizon-wise morphological characteristics, such as depth,
color, texture, structure, consistency, gravel content, the presence of mottles and nodules,
etc., were recorded in the soil profile sheet [32].

2.3. Particle Size Analysis

Each pedological horizon in each profile was sampled independently, and the samples
were then sent to the lab for examination. Before passing through a 2-mm sieve and being
analyzed in the lab for particle size analysis using the international pipette technique,
samples were air-dried at room temperature [34]. In the present study most frequently
used so-called international system (IS) has been considered for particle size limits [35].
Sand (0.02–2 mm), silt (0.002–0.02 mm), and clay (0.002 mm) were analyzed and reported
in percentage mass (g 100 g−1). As the GlobalSoilMap project guidelines specified, these
values were multiplied by 10 to convert the unit into g kg−1.

2.4. Data Harmonization

To align the soil depth interval with the GlobalSoilMap depth criteria [1], the particle
size of the profile datasets was preprocessed using equal-area spline functions [36]. For
easier comparison of profile properties, the GobalSoilMap program uses six standard depth
horizons: 0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm [1,37]. The mpspline2 R-package’s
equal-area spline functions were used for this [38]. It was noticed that at least two horizons
of soil data must be present for spline fitting. Although the soils of the study area were
described as being from deep to very deep [33], all 95 soil profiles in the current study had
at least two horizons, making it possible to harmonize the data into the six standard soil
depths used in the GlobalSoilMap program. Particle size contents were determined during
spline fitting in increments of 1 cm from the top surface of the soil to 200 cm below it.

2.5. Environmental Covariates

SRTM data were used to create a digital elevation model (DEM) with a 30m resolution,
which was then processed using the ArcGIS 10 data management toolbox. Over the past
ten years, many attempts have been made to choose and provide effective environmental
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covariates in line with the desired soil properties and landscapes. In DSM, climate and
terrain factors have been extensively used. Elevation, slope (Slp), aspect (Asp), convergence
index (CI), valley depth (VD), channel network base level (CNBL), relative slope position
(RSP), slope curvatures [downslope (DC), local (LC), local downslope (LDC), local upslope
(LUC), and upslope (USC)], topographic wetness index (TWI), topographic ruggedness
index (TRI), topographic position index (TPI), LS factor (LSF), Multi Normalized Difference
Vegetation Index for Rabi Season (NDVI_R), Summer Season (NDVI_S), and Kharif Season
(NDVI_K) (MOD13Q1) were utilized as covariates in addition to DEM features to forecast
the characteristics of the soil (Table 1). The world’s grids for the research region were
derived from the raster data on bioclimatic variables at 30 arc seconds resolution that
was downloaded from http://worldclim.org/current; accessed on 25 May 2023 for the
whole globe. In research on digital soil mapping, all 19 bioclimatic variables were used as
covariates [39]. In the current study, the Scorpan factor included 18 relief, 3 species, and
19 climate elements (Figure 2).

Table 1. Covariates related to the environment are utilized to predict soil texture components.

Soil Forming
Factors Predictor Abbreviation Resolution Min. Max. Mean

Relief Elevation (m) Elevation

30 m

76.0 1092.0 637.2
Slope Slope 0.0 0.5 0.1

Aspect Aspect 0.0 6.2 3.1
Topographic Positioning Index TPI 4.4 88.5 26.1

Topographic Wetness index TWI 6.2 18.2 10.6
LS-factor LSF 0.0 16.2 2.2

Channel Network Base Level CNBL 76.0 845.7 545.5
Multi-resolution Index of Valley Bottom

Flatness MRVBF 0.0 3.4 1.2

Multi-resolution Ridge Top Flatness MRRTF 0.0 3.7 0.4
Relative slope position RSP 0.0 1.0 0.4

Valley Depth VD 0.0 417.6 137.8
Vertical Distance to Channel VDC 0.0 303.2 99.5

Local Curvature LC −1.2 1.2 −0.2
Downslope Curvature DC −1.1 0.2 −0.4

Upslope Curvature USC 0.1 1.2 0.2
Convergence Index CI −58.2 70.6 −5.4

Local Downslope Curvature LDC −0.8 1.3 0.1
Local Upslope Curvature LUC −1.3 −0.1 −0.5

Vegetation Normalized Difference Vegetation
Index—Rabi NDVI_R

250 m _16 days

3919.5 7188.8 5880.7

Normalized Difference Vegetation
Index—Summer NDVI_S 4246.7 6722.1 5773.7

Normalized Difference Vegetation
Index—Kharif NDVI_K 5706.1 7933.0 6983.3

Climate Annual Mean Temperature (◦C) BIO1

1 km

18.5 23.8 20.9
Mean Diurnal Range (Mean of monthly (max

temp −min temp)) (◦C) BIO2 −0.4 8.9 8.3

Isothermality (Bio_2/Bio_7) (× 100) BIO3 −1.3 46.5 44.5
Temperature Seasonality (standard deviation

× 100) (◦C) BIO4 −0.8 382.9 364.5

Max Temperature of Warmest Month (◦C) BIO5 0.0 32.6 29.2
Min Temperature of Coldest Month (◦C) BIO6 −4.2 13.6 10.5

http://worldclim.org/current
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Table 1. Cont.

Soil Forming
Factors Predictor Abbreviation Resolution Min. Max. Mean

Temperature Annual Range (BIO5-BIO6) (◦C) BIO7 18.0 87.0 19.6
Mean Temperature of Wettest Quarter (◦C) BIO8 21.8 6310.7 91.2
Mean Temperature of Driest Quarter (◦C) BIO9 13.3 5958.4 78.7

Mean Temperature of Warmest Quarter (◦C) BIO10 21.8 7090.0 99.5
Mean Temperature of Coldest Quarter (◦C) BIO11 13.3 91.5 16.3

Annual Precipitation (mm) BIO12 25.9 4559.0 3392.9
Precipitation of Wettest Month (mm) BIO13 460.0 1177.0 848.7
Precipitation of Driest Month (mm) BIO14 6.0 9.0 7.1

Precipitation Seasonality (Coefficient of
Variation) (mm) BIO15 90.3 106.2 101.8

Precipitation of Wettest Quarter (mm) BIO16 1173.0 2914.0 2137.8
Precipitation of Driest Quarter (mm) BIO17 35.0 45.0 40.7

Precipitation of Warmest Quarter (mm) BIO18 1030.0 2914.0 2130.2
Precipitation of Coldest Quarter (mm) BIO19 35.0 45.0 40.7
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2.6. Modeling

The regression tree ensemble known as the random forest (RF) modeling creates a
large number of regression trees before aggregating them to obtain a final prediction. The
RF uses Out-Of-Bag (OOB) data to estimate errors. The word “mtry” refers to the number
of environmental variables in each random subset, while “ntree” refers to the number of
trees in the forest. By iterating mtry values from 1 to the complete number of significant
variables and ntree values from 100 to 5000 by increments of 100, it was determined which
values returned the lowest OOB error. The significance of every variable was likewise
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estimated using RF. The values of the other variables remain the same while the values
of each variable are randomly permuted in the OOB data. The changed OOB data were
forecasted, and a variable importance metric was produced by comparing the MSE of the
permuted and original OOB data. All environmental factors were first employed in the
modeling process, and then, based on the relative importance, which has a range of 0
to 100%, variables with importance values less than 7% were deemed insignificant and
eliminated from the models. The final models made use of the remaining variables. The
‘randomForest’ package of R 3.2.5 software [40] was used for all models [41].

2.7. Model Evaluation

The calibration dataset made up 80% of the total soil profiles, and the remaining soil
profiles constituted validation data. The calibration and validation set samples were divided
by using the caret package (Classification and REgression Training). In the current study,
we calculated four generally used error metrics, including Lin’s concordance correlation
coefficient (CCC), mean error (ME), root mean square error (RMSE), and coefficient of
determination (R2). The following equations were provided:

Coefficient of determination (R2) = 1− ∑n
i=1(pi − oi)

2

∑n
i=1( p̂i − ôi)

2 (1)

Mean error (ME) =
1
n ∑n

i=1(pi − oi) (2)

Root mean squared error (RMSE) =

√
1
n ∑n

i=1(pi − oi)
2 (3)

where, pi and oi are predicted and observed values, p̂i and ôi are means of predicted and
observed values.

Lin′s concordance correlation coefficient (CCC) =
2ρσ0σp

σ02 + σp2 +
(
µ0 − µp

)2 (4)

µ0 and µp are the means of observed and predicted values and σ0
2 and σp

2 are corre-
sponding variance ρ is the Pearson correlation coefficient.

2.8. Uncertainty Assessment

It is very obvious that any machine learning techniques generate estimates which have
errors. To measure uncertainties in our study, we deployed the popular non-parametric
approach called Bootstrap to quantify prediction uncertainties. More simply, one repeated
sampling technique that uses replacement samples chosen at random is the bootstrap.
The old dataset and the new bootstrapped dataset both have the same sample size and
probability distribution. For the calibration datasets, we produced 50 bootstrapped datasets
at each depth. The final assessment indicator and the projected outcome, respectively, were
thought to be the average accuracy in validation datasets and the average PSF prediction.
Maps of the 0.05 and 0.95 quantiles for each fraction and depth were created by the
projection. This means that levels of uncertainty for the predicted percentages of clay, silt,
and sand were present for each pixel position in the research region and for each depth.

We utilized the prediction interval coverage probability (PICP) criteria, which involve
estimating the percentage of observations in the overall dataset that are contained within the
prediction interval at a specific confidence level for that data point to assess the prediction
uncertainties. In this investigation, the following confidence intervals were used: 99, 97.5,
95, 90, 80, 60, 40, 20, 10, and 5%. To assess if the defined uncertainties have been successfully
calculated, one should anticipate the PICP value or proportion to be near the associated
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confidence level [42,43]. The PICP is only the percentage of observations that are contained
within the associated prediction interval for each depth [19,44].

PICP =
1
v

count i (5)

i = Cll
i ≤ obs ≤ Clu

i (6)

‘v’ is the number of observations in the validation dataset, and CIl
i and Clu

i are the
lower (5%) and the upper limits (95%) of the confidence interval, respectively. When the
PICP value is near 100 (1 − a)%, such as the 90% confidence interval, the uncertainty is
considered to be at its lowest level. When using the PICP, an estimate of 90% for a 90%
prediction interval should be produced if the uncertainty estimates have been accurately
defined. Additionally, the accuracy measurements’ standard deviations (R2, RMSE, and
ME) derived from 50 bootstrapped datasets were also utilized to reflect, to some extent, the
predictability of uncertainty.

3. Results and Discussion
3.1. Descriptive Statistics

Table 2 provides statistical information about the proportions of sand, silt, and clay
fitted using equal-area quadratic splines at various depths based on the soil profiles.

Table 2. The depth-wise statistical description of the spline-fitted sand, silt, and clay percentages.

Depth (cm) Min (%) Max (%) Mean (%) Median (%) SD (%) CV (%) Skewness Kurtosis

Sand

0–5 2.93 72.29 28.81 25.32 14.73 51.14 0.96 0.54
5–15 3.01 70.73 28.67 25.40 14.55 50.74 0.96 0.58

15–30 8.28 70.04 27.98 24.85 13.94 49.83 0.96 0.56
30–60 3.90 72.65 27.68 25.73 14.93 53.94 1.09 0.98
60–100 1.94 87.22 32.32 26.65 19.48 60.28 1.09 0.62

100–200 1.57 95.03 35.56 28.36 22.85 64.24 0.94 −0.04

Silt

0–5 7.13 67.26 32.11 30.32 11.44 35.64 0.20 −0.04
5–15 7.23 67.32 32.06 31.37 11.32 35.32 0.23 0.06

15–30 6.97 67.76 30.66 30.61 11.19 36.49 0.53 0.57
30–60 7.48 65.62 28.69 27.60 11.33 39.49 0.64 0.62
60–100 2.48 57.46 25.83 24.60 10.78 41.72 0.32 0.02

100–200 0.80 58.53 24.46 23.98 11.43 46.74 0.00 −0.04

Clay

0–5 18.51 55.05 39.08 39.50 9.06 23.18 −0.24 −0.70
5–15 18.47 54.89 39.27 39.73 8.84 22.52 −0.28 −0.60

15–30 18.41 57.86 41.35 42.90 9.17 22.18 −0.47 −0.40
30–60 17.09 63.73 43.62 45.23 10.64 24.40 −0.56 −0.29
60–100 7.91 62.48 41.89 44.40 12.94 30.89 −0.82 0.02

100–200 3.46 69.67 39.99 43.86 14.84 37.10 −0.67 −0.43

In this study, spline functions were used to estimate the amounts of sand, silt, and clay
for each of the six depth intervals. The estimates were then rounded up to ensure that the
PSF total was 100%. At every depth layer, the mean silt and clay contents were noticeably
higher than the mean sand contents. Although the mean silt and sand contents both slightly
decreased as depth increased, the mean clay content slightly increased. The average sand
content was 28.81 ± 14.73, 28.67 ± 14.55, 27.98 ± 13.94, 27.68 ± 14.93, 32.32 ± 19.48, and
35.56 ± 22.85%, and the average silt content was 32.11 ± 11.44, 32.06 ± 11.32, 30.66 ± 11.19,
28.69 ± 11.33, 25.83 ± 10.78, and 24.46 ± 11.43% for 0–5, 5–15, 15–30, 30–60, 60–100, and
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100–200 cm, respectively. With increasing depth, the clay fraction’s standard deviation
(SD) showed an upward trend. All depth layers’ sand and silt contents varied more,
with coefficients of variation (CV%) ranging from 49.83 to 64.24% and 35.32 to 46.74%,
respectively. Conversely, clay content had lower variability, with the CVs between 22.18
and 37.10%.

Figure 3 shows the texture triangle for observed values where we could observe that
the dominant soil textural classes were clay and clay loam across all the soil depths, which
was about 75% of the samples under the study, followed by silty clay loam, sandy clay
loam, and silty clay spread over different landforms, e.g., denudational high and low hills,
upper and lower plateaus. In some valleys, heavy textured soils were observed because
clay illuviation processes were prominent in this region as the lateral, as well as the surface
flow of water, is more.
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Correlation analysis between sand fraction and covariates used in the model (Table 3)
showed that BIO2, BIO9, BIO17, BIO19, CNBL, LUC, and TWI have a significant correlation
with sand fraction in the surface soil, whereas slope, NDVI_R, TWI, and elevation have a
significant correlation with silt fraction. BIO2, BIO3, BIO6, BIO17, BIO19, LUC, and MRVBF
have a significant correlation with clay fraction.
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Table 3. Correlation analysis between covariates and surface soil textural fractions.

Covariates Sand Silt Clay

Aspect 0.156 −0.064 −0.173
BIO1 0.181 −0.101 −0.169
BIO2 −0.204 * 0.004 0.332 **
BIO3 −0.198 0.056 0.256 *
BIO4 −0.011 −0.044 0.074
BIO5 0.154 −0.088 −0.141
BIO6 0.200 −0.092 −0.212 *
BIO7 −0.021 −0.051 0.099
BIO8 0.164 −0.094 −0.150
BIO9 0.195 −0.101 −0.192
BIO10 0.163 −0.093 −0.149
BIO11 0.195 −0.101 −0.192
BIO12 −0.059 0.085 −0.011
BIO13 −0.043 0.072 −0.021
BIO14 0.025 0.116 −0.190
BIO15 −0.096 0.033 0.118
BIO16 −0.076 0.087 0.014
BIO17 0.243 * −0.103 −0.267 **
BIO18 −0.068 0.078 0.013
BIO19 0.243 * −0.103 −0.267 **

CI 0.021 −0.047 0.026
CNBL −0.222 * 0.156 0.167

DC −0.051 0.016 0.064
Elevation −0.167 0.113 0.131

LC −0.084 0.054 0.069
LDC −0.083 0.037 0.089
LSF 0.026 0.066 −0.128
LUC −0.234 * 0.113 0.240 *

MRRTF −0.008 −0.005 0.020
MRVBF −0.042 −0.111 0.212 *
NDVI_K 0.155 −0.149 −0.063
NDVI_R 0.157 −0.236 * 0.045
NDVI_S 0.163 −0.144 −0.083

RSP 0.161 −0.108 −0.125
Slope −0.112 0.228 * −0.108
TPI −0.041 0.149 −0.124
TWI 0.245 * −0.238 * −0.098
USC −0.078 0.085 0.020
VD −0.119 0.102 0.064

VDC 0.178 −0.137 −0.115
** Correlation is significant (0.01 level); * Correlation is significant (0.05 level).

3.2. Performance of Model Prediction and Uncertainty Estimation

To determine the model’s accuracy, the average values of the four evaluation indices
(R2, RMSE, CCC, and ME) in the validation dataset were chosen (Table 4). To account for
dimensional effects, we determined the relative RMSE (RRMSE) by dividing the RMSE
by the mean measured values. The explanatory power of the prediction findings to the
measured values is represented by the R2 statistic. Our results showed the R2 of RF for sand
was 0.30 (0–5 cm depth), 0.28 (5–15 cm depth), 0.21 (15–30 cm depth), 0.02 (30–60 cm depth),
0.02 (60–100 cm depth), and 0.14 (100–200 cm depth). We found that the top two depths,
0–5 cm and 5–15 cm, had obvious improvement; below these depths, the accuracy of the RF
model was inconsistent. In the case of sand and clay fractions, the accuracy decreased with
depth, but prediction accuracy was better in the case of silt fraction across all the six depths,
i.e., 11.3, 11.2, 11.7, 11.5, 13.6, and 9.9%. The CCC was found higher on the surface three
layers (0.29–0.35), four layers (0.26–0.29), and two layers (0.33–0.34) in the case of sand, silt,
and clay fractions, respectively. In three different sites in Kentucky, Thompson et al. [45]
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predicted the surface sand and clay contents and discovered RMSE values of 1.92 to 50.89
for sand and values of 2.61 to 22.73 for silt. The intricacy of soil property fluctuations
and soil formation circumstances in the particular topography is demonstrated by the
comparatively high RMSE values in this study. Wang et al. [28] utilized DSM to forecast
soil parameters and found that for sand, clay, and physical clay, the RMSE values were
10.69, 4.57, and 12.99, respectively.

Table 4. Prediction accuracy (Investigation of 50 bootstrap iterations for various soil texture fractions).

Depth (cm) R2 CCC RMSE ME RRMSE

Sand

0–5 0.30 ± 0.02 0.35 ± 0.01 11.20 ± 0.07 7.51 ± 0.14 0.39
5–15 0.28 ± 0.02 0.34 ± 0.01 11.10 ± 0.14 7.23 ± 0.13 0.38
15–30 0.21 ± 0.01 0.29 ± 0.01 10.70 ± 0.12 7.06 ± 0.09 0.38
30–60 0.02 ± 0.01 0.06 ± 0.01 15.20 ± 0.17 9.62 ± 0.19 0.55

60–100 0.02 ± 0.01 0.01 ± 0.01 21.50 ± 0.05 10.26 ± 0.13 0.66
100–200 0.14 ± 0.02 0.12 ± 0.02 20.80 ± 0.26 4.18 ± 0.34 0.58

Silt

0–5 0.28 ± 0.02 0.29 ± 0.01 11.30 ± 0.11 −5.17 ± 0.05 0.35
5–15 0.28 ± 0.02 0.29 ± 0.01 11.20 ± 0.14 −5.17 ± 0.08 0.35
15–30 0.22 ± 0.02 0.28 ± 0.02 11.70 ± 0.19 −4.23 ± 0.18 0.38
30–60 0.26 ± 0.01 0.26 ± 0.01 11.50 ± 0.07 −5.99 ± 0.05 0.40

60–100 0.03 ± 0.01 0.09 ± 0.01 13.60 ± 0.08 −6.86 ± 0.11 0.52
100–200 0.01 ± 0.00 −0.02 ± 0.01 9.90 ± 0.08 1.62 ± 0.14 0.40

Clay

0–5 0.25 ± 0.02 0.34 ± 0.01 7.80 ± 0.09 −1.42 ± 0.12 0.20
5–15 0.26 ± 0.02 0.33 ± 0.01 7.80 ± 0.08 −1.44 ± 0.06 0.19
15–30 0.11 ± 0.01 0.17 ± 0.01 9.30 ± 0.03 −2.04 ± 0.07 0.22
30–60 0.05 ± 0.01 0.11 ± 0.02 10.70 ± 0.13 −3.03 ± 0.1 0.24

60–100 0.01 ± 0.00 0.02 ± 0.01 12.50 ± 0.14 −2.59 ± 0.21 0.29
100–200 0.04 ± 0.01 −0.09 ± 0.01 15.30 ± 0.08 −6.82 ± 0.09 0.38

R2: coefficient of determination; CCC: concordance correlation coefficient; RMSE: root mean square error;
ME: mean error; RRMSE: Relative RMSE.

A way to evaluate how well the predicted uncertainties perform during testing is
the PICP approach. Uncertainty representation is a crucial aspect of DSM. DSM models
are not only expected to deliver accurate soil predictions at a given location, but their
suitability to deliver maps should encompass the ability to predict uncertainty. PICP was
used to evaluate the uncertainty of the prediction. The PICP is simply the proportion of
observations at each depth that are encapsulated by the corresponding prediction interval.
This is accomplished simply by evaluating the prediction intervals’ coverage at various
levels of confidence around an observed value. The plots in Figure 4 give a clear picture of
what to anticipate when the coverage probability and confidence level are tracked along
the 1:1 line relatively close. In the case of silt, the prediction interval was closer to the
1:1 line as compared to sand and clay fractions. The probabilities above the 1:1 line indicate
mild overprediction of the uncertainty range, which may be due to the uncertainty method
itself [46].
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3.3. Importance of Environmental Variables

Slope, CNBL, TWI, LSF and elevation in terrain and relief factor, NDVI_S and NDVI_R
in vegetation factor, bioclimatic factors such as BIO18, BIO16, BIO15, BIO12, BIO6, and BIO3
were important variables in this study. Figure 5 depicts the importance of the variable for
the 0–5 cm of soil depth. CNBL and LSF was the most important variable for the prediction
of sand and silt, while BIO6 was found in clay prediction. The aspect and CNBL were
also identified by Rudiyanto et al. [47] as significant variables for predicting sand and silt
with RF. The channel network base level (CNBL), BIO6, BIO3, and NDVI_S were the most
important variable for the prediction of clay across all depths. In lower depths, topographic
factors such as downslope curvature, aspect, and convergence index played a vital role over
bioclimatic variables in the prediction of clays. Similar findings were observed in the case of
sand fractions below 15 cm depth of soil. These results suggest that flood depositions of the
low-lying area and channel networks have an important role in driving clay variations in
the study area. Higher values of clay were located closer to streams compared to areas that
are far away from water bodies, a result which implies the influence of topography and the
regulation of water and sediment redistribution. Temperature-derived bioclimatic variables
were the most important bioclimatic variable for clay in the surface and subsurface layers,
whereas in the lowest horizon, precipitation-related bio variables played an important role
(BIO14 and BIO15).
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The dominance of bioclimatic variables coupled with channel networks is a sign
of how terrain and climate interact at agricultural locations, resulting in hydrology and
topo-sequences of soil characteristics. Under tropical rains, gravitational potential energy
gradients in the landscape cause water and sediment to move and accumulate in lower-
slope areas. Transport of sediments from upper slope regions to lower slope areas, which are
often characterized by more fine particles, is caused by these topography-driven erosional
processes [48,49]. As a result, deeper soils with a high clay percentage are found on
these low slopes. The key covariates among the terrain and relief variables were CNBL,
aspect, VDC, and DC across all the soil depths. In the case of precipitation-related bio
variables such as annual precipitation (BIO12), precipitation of wettest month (BIO13), and
precipitation of wettest quarter (mm) (BIO16) played significant roles for the prediction
of sand up to 60cm of soil depth, whereas temperature related bio variables dominated in
the lower horizons (annual mean temperature (◦C)—BIO1, Isothermality (◦C)—BIO3 and
min temperature of the coldest month (◦C)—BIO6). For silt fraction, CNBL, LSF, and slope
played a significant role among all the terrain variables. The effects of bioclimatic variables
were similar to the sand fraction. Considering vegetation as one of the important factors in
the present study, it was found that NDVI_S had a major impact on all spatial distribution
of all these PSF across all depths, followed by NDVI_R. These indicators relate to either
water availability or water stress conditions, and both have an impact on the prediction of
particle size fraction throughout all sampled soil depths.
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3.4. Spatial Predictions and Their Uncertainty

The distribution of the sand, silt, and clay fractions in space for each of the six-depth
intervals is shown in Figures 6–8, along with the quantified uncertainties that are shown as
upper and lower prediction limits.
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Lower and upper prediction limits with a 90% confidence interval were used to
indicate the uncertainty. For all three soil texture fractions, the range between the 5% lower
and 95% higher prediction limits was large, indicating that the existing spatial predictions
may be improved. The textural variance in the expected values is seen in Figure 9. Most
of the outcomes in the clay loam and clay classes have similar patterns. The clay loam
and clay classes have higher projected values. If we look closely at the sand, silt, and clay
fraction spatial patterns, we can see that the expected mean map values are restricted to
the center of the legends. For the sand and clay fractions, the extremely lower and higher
limits were seen in the lower horizons. The research area’s center and southwest regions
had the greatest sand prediction rates. This area presumably has a significant concentration
of sand because, during rainy episodes, sand quickly settles out of suspension. The middle
and southwestern regions of the research area were expected to have minimal silt content.
The northern, northeastern, and southern regions have higher silt values. Clay composition
predominates in the research area’s northern region. Since this part of the study area is far
from the river, likely, the slower settling time of silt and clay from runoff deposits is the
cause of the higher clay concentration in these soils.
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4. Conclusions

The research demonstrates that geographic variation in soil particle-size fractions may
be accurately predicted both on a national scale and a detailed level using RF approaches in
conjunction with currently known high-resolution soil formative environmental variables.
In the Ri-Bhoi district of Meghalaya, we presented the initial edition of 30 m resolution
maps of soil texture fractions. Compared to the current soil texture maps, results were
significantly more precise and detailed and effectively represented the spatial variations of
particle-size fractions. Additionally, there is still a need to investigate novel methodologies
for extensive digital soil mapping, which will be very advantageous for many international
initiatives. We observed that the topography had a significant determining factor in the
spatial patterns of particle-size fractions. The physical and chemical weathering caused
by the water has fueled erosion processes, which are principally responsible for shaping
the clay content pattern. The results offer suggestions for creating mechanistic models
of soil evolution to replicate the spatiotemporal evolution of soil texture on a regional
scale. The simulation can aid in national soil management to guarantee the soil’s long-term
security. This is especially crucial in light of the accelerating effects of climate change and
the intensification of human activity.
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