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Abstract: The net primary productivity (NPP) of vegetation is an important indicator reflecting the veg-
etation dynamics and carbon sequestration capacity in a region. In recent years, China has implemented
policies to carry out ecological protection. To understand the changes in the distribution of vegetation
NPP in China and the influence of climate factors, the Carnegie–Ames–Stanford approach (CASA)
model was used to estimate the NPP from 2001 to 2020. In this paper, several sets of measurement
datasets and products were collected to evaluate the effectiveness of the model and suggestions
were provided for the modification of the CASA model based on the evaluation results. In addition
to the correlation analysis, this paper presents a statistical method for analyzing the quantitative
effects in individual climatic factors on NPP changes in large regions. The comparison found that the
model has a better estimation effect on grassland and needleleaf forest. The estimation error for the
evergreen needleleaf forest (ENF) and deciduous broadleaf forest (DBF) decreases with the warming
of the climatic zone, while the evergreen broadleaf forest (EBF) and deciduous needleleaf forest (DNF)
do the opposite. The changes in total CASA NPP were consistent with the trends of other products,
showing a dynamic increasing trend. In terms of the degree of correlation between the NPP changes
and climatic factors, the NPP changes were significantly correlated with temperature in about 10.39%
of the vegetation cover area and with precipitation in about 26.92% of the vegetation cover area. It
was found that the NPP variation had a negative response to the temperature variation in Inner
Mongolia grasslands, while it had a positive but small effect (±10 g C) in the Qinghai–Tibet Plateau
grasslands. Precipitation had a facilitative effect on the grassland NPP variation, while an increase in
the annual precipitation of more than 200 mm had an inhibitory effect in arid and semi-arid regions.
This study can provide data and methodological reference for the ecological assessment of large-scale
regional and climate anomalous environments.

Keywords: NPP; terrestrial vegetation; CASA model; spatiotemporal characteristics; climate change;
remote sensing

1. Introduction

In recent decades, the long-term buildup of carbon dioxide and other greenhouse
gases in the atmosphere has caused global warming [1]. To address global warming and
maintain the natural environment, scientists and policymakers have become interested
in understanding and evaluating the capacity of ecosystems to absorb, sequester, and
re-release carbon [2]. In ecosystems, terrestrial vegetation is an important input to the
carbon sink and assumes an important role in assessing the ecosystem health. Net primary
productivity (NPP), which represents the net accumulation of carbon per unit time and area
of the plant after absorption of CO2 from the atmosphere by photosynthesis and release of
CO2 by autotrophic respiration [3], is an important evaluation indicator in the carbon cycle
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of the ecosphere and global environment [4]. Regional estimates of the terrestrial vegetation
NPP are not only important parameters for describing the physiological and ecological
status of vegetation, but also important indicators for monitoring the dynamics of carbon
cycling in the region and its contribution to global carbon sequestration capacity [5–7],
so the accurate estimation of regional vegetation NPP and effective analysis are greatly
significant for regional ecosystem management and policy formulation [8].

Based on the current technical means, NPP can be obtained by measuring vegetation
in the field, but this method is difficult to achieve for large-scale estimation, and the
estimates and analysis are seriously inhibited by the lack of adequate observational data [9].
In recent decades, remote sensing monitoring technology has developed rapidly, and
various models constructed based on satellite data and actual measurement data have
been widely used in terrestrial vegetation NPP studies [10]. Monteith [11] considered the
effects of environmental stressors such as nutrients, water, and temperature on vegetation
photosynthesis and proposed the concept of using photosynthetically active radiation (PAR)
absorbed by vegetation and vegetation light-use efficiency (LUE) to evaluate terrestrial
NPP for the first time. C. S. Potter [12] proposed the first light-use efficiency model
named the Carnegie–Ames–Stanford approach (CASA) for estimating global vegetation
productivity. Prince and Goward [13] modeled the processes of autotrophic respiration
and photosynthesis in plants and proposed the GLO-PEM model. Yuan [14] proposed the
Eddy Covariance–LUE model (EC-LUE) based on the eddy flux observation technique.
Since the input data can be obtained by remote sensing, which enables large-scale regional
and global estimation, the CASA model has been broadly applied, and has been improved
and optimized in the process of application. In recent years, the CASA model has been
applied to the estimation of different vegetation, such as grassland [15,16], cropland [17,18],
and various types of forests [4,19]. In terms of research regions, in China, for example,
experiments on NPP estimation have been conducted in local research units, such as the
Qinghai–Tibet plateau [20], central China [21], provincial units [22–24], and so on. The
effectiveness of the model for the NPP estimation of different vegetation at the national
scale, and the effect of NPP estimation of the same vegetation type in different regions,
still need to be compared and evaluated, thus providing a reference for model selection by
subsequent researchers.

To improve the ecological situation, the Chinese government adopted the ecological
protection policy represented by the return of farmland to forests in 2000. In 2020, the “dual
carbon target” (carbon peak and carbon neutral target) was proposed, which shows the
necessity of the Chinese government’s work on carbon emission research. In the above
context, it is necessary to obtain the trend of terrestrial vegetation NPP in China from 2001
to 2020. The study of the total amount and distribution as well as the trend of changes in
NPP of terrestrial vegetation in China will be an effective analysis of the effect of policy
implementation. On the other hand, changes in vegetation NPP are directly related to
climatic factors, and the analysis of climate effects on changes in NPP is important for
forestry management and NPP prediction. The current research rarely discusses the effects
of regional climate change on NPP, such as how it changes under different degrees of
temperature growth. To more clearly clarify the dynamic effects of major climatic factors
such as precipitation and temperature on NPP, we should not only analyze the correlation
between climate and NPP [25,26] but also quantify the association between vegetation NPP
changes and the magnitude of climate change in areas with different climate types. We
obtained NPP estimates for a long time series in this study to support the analysis of the
NPP response to climate.

Here we estimated the terrestrial regional land NPP of China from 2001 to 2020
by using remote sensing monitoring data from multiple sources and the CASA model.
The specific objectives and problems addressed in this study were to (1) analyze the
results of the CASA model for estimating NPP in different regions and types of vegetation;
(2) to analyze the spatiotemporal distribution and trends of terrestrial NPP in China over
20 years; and (3) qualitatively analyze the response of vegetation NPP to various types
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of climatic factors and quantitatively analyze the response of grassland NPP to different
levels of variation in temperature and precipitation.

2. Materials and Methods
2.1. The CASA Model

The CASA model was used to generate NPP gridded data with a spatial resolution
of 500 m × 500 m over China for each month from 2001 to 2020 and synthesized annual
data for each year. The inputs to the model included the Normalized Difference Vegetation
Index (NDVI) and climate drivers as well as annual vegetation type data.

In this model, the monthly NPP (gram carbon per square meter per month, gC·m−2·month−1)
is obtained by calculating the amount of PAR (APAR, megajoule per square meter per
month, MJ·m–2·month–1) and LUE (ε, gC·MJ−1) in Equation (1):

NPP(x, t) = APAR(x, t)× ε(x, t) (1)

where x represents a given location of one grid and t represents the month. APAR(x, t) and
ε(x, t) can be estimated by Equations (2) and (7), separately.

APAR(x, t) = 0.5× FPAR(x, t)× SOL(x, t) (2)

where 0.5 is the proportion of PAR to total solar radiation (SOL, MJ·m–2·month–1) [27],
and FPAR is the proportion of PAR absorbed by the vegetation. According to the existing
studies, FPAR has a linear relationship with both the NDVI and simple ratio (SR) within a
certain range, so FPAR can be calculated from the NDVI and SR [28], which were defined
by Equations (3)–(6):

SR(x, t) =
1 + NDVI(x, t)
1−NDVI(x, t)

(3)

FPARNDVI(x, t) =
(NDVI (x, t)−NDVIi,min)× (FPARmax − FPARmin)

NDVIi,max −NDVIi,min
+ FPARmin (4)

FPARSR(x, t) =
(SR (x, t)− SRi,min)× (FPARmax − FPARmin)

SRi,max − SRi,min
+ FPARmin (5)

FPAR(x, t) =
FPARNDVI(x, t)+FPARSR(x, t)

2
(6)

FPARNDVI and FPARSR are estimated from NDVI and SR, respectively. NDVIi,max,
NDVIi,min, SRi,max, and SRi,max represent the maximum value and minimum value of the
NDVI and SR for vegetation type i, respectively, which can be looked up from Table 1 [29].
The values of FPARmax and FPARmin are independent of the vegetation type and are 0.95
and 0.001, respectively [29]. The actual LUE (ε) is mainly constrained by temperature and
soil moisture, so in the model it can be estimated from one soil water stress factor, two
temperature stress factors, and the maximum ε of vegetation as Equation (7) [12,28]:

ε(x, t) =Wε(x, t)× Tε1(x, t)× Tε2(x, t)× εi,max (7)

Tξl(x, t) = 0.8 + 0.02× Topt(x)− 0.0005×
[
Topt(x)

]2 (8)

Tξ2(x,t) = 1.184/{1 + exp[0.2×
(
Topt(x)− 10− T(x, t)

)
]}/
{

1 + exp[0.3× (−Topt(x)− 10 + T(x, t)
)
]
}

(9)

Wε(x, t) is the soil water stress factor [21,30]. Tε1(x, t) and Tε2(x, t) are two temperature
stress factors under two different situations. εi,max was set from 0.389 to 0.985 gC·MJ−1

for different vegetation types [29] and listed in Table 1. All three stress factors combine to
constrain the LUE of plants.
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Table 1. Maximum LUE, NDVImax, NDVImin, SRmax, and SRmin of typical vegetation types (EBF
is the abbreviation for the evergreen broadleaf forest, DBF is the abbreviation for the deciduous
broadleaf forest, ENF is the abbreviation for the evergreen needleleaf forest, DNF is the abbreviation
for the deciduous needleleaf forest).

Vegetation Type εmax (gC·MJ−1) NDVImax NDVImin SRmax SRmin

EBF 0.985 0.676 0.023 5.17 1.05
DBF 0.692 0.747 0.023 6.91 1.05
ENF 0.389 0.647 0.023 4.67 1.05
DNF 0.485 0.738 0.023 6.63 1.05

Grassland 0.542 0.634 0.023 4.46 1.05
Cropland 0.542 0.634 0.023 4.46 1.05

Shrub 0.429 0.636 0.023 4.49 1.05

Tε1(x, t) is the stress factor for the maximum LUE by plants at the optimum temper-
ature, Tε2(x, t) is the stress factor for the maximum LUE by plants at the true ambient
temperature, and Topt(x) is the optimum temperature for plant growth in a year, defined
as the monthly average temperature of the grid x in the month with the highest NDVI in a
year. T(x, t) is the monthly average temperature of grid x in month t.

Wε(x, t) = 0.5 + 0.5× E(x, t)/Ep(x, t) (10)

Ep(x, t) = BT(x)× exp(4.133 + 0.059(Alt/500)1.5) (11)

BT (x) =
12

∑
t=1

T(x, t)/12 (12)

E(x, t) =
r(x, t)× Rn(x, t)×

[
r(x, t)2 + Rn(x, t)2 + r(x, t)× Rn(x, t)

]
[
r(x, t) + Rn(x, t)]× [r(x, t)2 + Rn(x, t)2

] (13)

Rn(x, t) =
(
Ep(x, t)× r(x, t)

)0.5 × (0.369 + 0.598×
(
Ep(x, t)/r(x, t)

)0.5
) (14)

Wε(x, t) reflects the impact of the effective water conditions available to plants on LUE
and is calculated based on the ratio of the actual to potential regional evapotranspiration.
Ep(x, t) is the potential evapotranspiration of the region, which has a correlation with the
biotemperature (BT) and the elevation of the region (Alt), where BT is expressed by the
annual average temperature of the region in a year. E(x, t) is the actual evapotranspiration
of the region, r(x, t) is the total precipitation at month t, and Rn(x, t) is the parameter
expressing the level of hydrothermal balance in grid x, which is related to the potential
evapotranspiration Ep(x, t) and precipitation r(x, t) [31].

After calculating the NPP values for 12 months in a year, the NPP values for each
month were accumulated to obtain the annual NPP (gram carbon per square meter per
year, gC·m−2·a−1) for subsequent analysis.

2.2. Data

The input data for the model are shown in Table 2. The temperature data were based
on the ERA5-Land dataset from the European Centre for Medium-Range Weather Forecasts
(ECMWF) (https://cds.climate.copernicus.eu, accessed on 31 March 2022) with a resolution
of 0.1◦. The solar radiation data were based on the Climate Forecast System (CFS) dataset
with a resolution of 0.2◦ provided by the National Centers for Environmental Prediction
(NCEP) [32]. The monthly solar radiation was synthesized with the downward short-wave
radiation band. The precipitation data were based on the 0.1◦ × 0.1◦ Month’s Global Precip-
itation Measurement (GPM) (https://disc.gsfc.nasa.gov, accessed on 31 March 2022) [33,34].
The NDVI data were obtained from the MOD13A1 product provided by the NASA Earth
Observation System. The MOD13A1 dataset has spatial and temporal resolutions of 500 m

https://cds.climate.copernicus.eu
https://disc.gsfc.nasa.gov
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and 16 days, respectively. We generated the monthly NDVI data using the Maximum
Value Composites method. Another NDVI source, namely GIMMS, generated from several
of NOAA’s AVHRR sensors [35], was used to estimate the NPP from 1993 to 1996 and
validate against a dataset of NPP sites for the corresponding years. Given that the two
NDVI data have different sensors and temporal resolutions, we used a general regression
method to adjust the GIMMS NDVI data [36]. The vegetation type data were based on the
500 × 500 m MODIS land cover type product (MCD12Q1 V6) (https://lpdaac.usgs.gov/,
accessed on 15 April 2022). The land cover type in 2020 can be seen in Figure 1a. The
climatic region data were provided by the Data Center for Resources and Environmental
Sciences (https://www.resdc.cn, accessed on 22 May 2022). Based on the heat index, the
land area of China is divided into seven climate zones and a highland climate zone shown
in Figure 1b.

Table 2. Data sources needed for the model.

Inputs Spatial
Resolution

Time
Resolution Source

Temperature 0.1◦ 1 month The ERA5-Land dataset provided by (ECMWF)
Solar radiation 0.2◦ 6 h Climate Forecast System (CFS) dataset provided by (NCEP)
Precipitation 0.1◦ 1 month Global Precipitation Measurement (GPM)
NDVI 500 m 16 days The MOD13A1 V6 product
Vegetation type 500 m 1 year The MCD12Q1 V6 product
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Figure 1. Spatial distribution of (a) the ecosystem types and (b) the climatic regions of China and
spatial distribution of sites of multi-source observation datasets.

In addition, as a validation of the CASA model, two remote sensing datasets and
four observation site datasets were obtained. One remote sensing dataset was the MODIS
annual NPP product (https://doi.org/10.5067/MODIS/MOD17A3HGF.006, accessed on
22 May 2022) (MOD17) from 2001 to 2020 with a spatial resolution of 500 m, another was
the GLO-PEM model product [13,37] from 2001 to 2010 with a spatial resolution of 1 km
provided by the Data Center for Resources and Environmental Sciences.

The four observation site datasets were FLUXNET2015 [38], SRDB [39], EMDI [40],
and the Reference dataset for the carbon cycle study of typical forest ecosystems in China
(abbreviated in this paper as the carbon cycle dataset) [41]. The observation site NPP datasets
were carefully screened by eliminating the missing and duplicate records. The distribution
of the observation sites is shown in Figure 1b. The EMDI and SRDB were obtained from the
Oak Ridge National Laboratory (ORNL) (https://daac.ornl.gov/, accessed on 23 May 2022).

https://lpdaac.usgs.gov/
https://www.resdc.cn
https://doi.org/10.5067/MODIS/MOD17A3HGF.006
https://daac.ornl.gov/
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Most of the EMDI dataset’s site data in China were distributed from 1993 to 1996, while
FLUXNET2015, SRDB, and the carbon cycle dataset have observation data after 2000.

2.3. Evaluation Methods for Model Estimation Results
2.3.1. Uncertainty Evaluation

Uncertainty analysis of the CASA model prediction results was performed in combi-
nation with the measured data of the terrestrial vegetation NPP. The uncertainty validation
metrics used in this paper include the mean absolute error (MAE), root mean square error
(RMSE), and relative bias (BIAS) [42]:

MAE =
∑n

i=1|xi − x̂i|
n

(15)

RMSE =

√
1
n∑n

i=1 (xi − x̂i)
2 (16)

BIAS =
∑n

i=1 (xi − x̂i)

∑n
i=1 xi

× 100% (17)

where n is the number of measured samples, xi is the value of the measured samples, and
x̂i is the value estimated by the model. The error of model estimation was evaluated by the
above metrics, and the error of MOD17 NPP with measured data was also calculated to
compare the advantages of the two models.

2.3.2. Correlation Analysis

The product data from other models were used for trend consistency analysis and the
correlation evaluation of the CASA model prediction results. We used Pearson’s correlation
coefficient (r) [42] to evaluate the degree of correlation between the two model products
as follows:

r = ∑n
i=1 (xi−x)(yi − y)√

∑n
i=1 (xi−x)2

√
∑n

i=1 (yi−y)2
(18)

where xi and yi are the CASA NPP value and the MOD17 NPP value raster in the ith grid
belonging to the vegetation type, separately, x and y are the mean value of CASA NPP
andMOD17 NPP, separately.

A linear regression of the interannual changes in the total NPP values of the three
model products was performed to evaluate the consistency of the interannual trends in the
estimated NPP changes of the three model products.

2.4. Data Analysis
2.4.1. Trend Analysis

Based on the ordinary least squares method, we used linear trend regression analysis
to study the time trend of NPP from 2001 to 2020 [43,44]:

θtrend =
n∑n

i=1 iXi −∑n
i=1 i∑n

i=1 Xi

n∑n
i=1 i2 − (∑n

i=1 i)2 (19)

where θtrend is the slope of the trend of NPP, i is the order of years, n is the total number of
years, Xi is the NPP value of year i. It indicates an increasing trend if the θtrend is greater
than zero, conversely, it indicates a decreasing trend. To screen out the regions with reliable
trends, the Mann–Kendall test was applied to evaluate the significance of the trend [45].

2.4.2. Correlation between the NPP and Climatic Factors

Climatic factors such as temperature, precipitation, and solar radiation have significant
effects on the vegetation NPP [36]. To analyze the correlation between NPP and these three
climatic factors, we used Pearson’s correlation coefficient (r) [42] as shown in Equation (18).
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xi and yi are the NPP value and the value of climatic factors in the ith year, separately,
x and y are the mean NPP and mean value of climatic factors from 2001 to 2020, separately.

2.4.3. Quantitative Relationship Analysis of Climatic Factors and NPP

In regions with different climatic environments, changes in temperature and precip-
itation have different perturbations on the NPP, for example, a 1 ◦C increase in annual
mean temperature may have different effects on the NPP in Inner Mongolia grassland and
Qinghai–Tibet Plateau grassland regions. The effect on the NPP is also different between
a 1 ◦C and 2 ◦C change in the annual mean temperature in the same region. The NPP
may increase when the precipitation increases in a region, but if the precipitation increases
excessively, will it suppress NPP instead? To further analyze the relationship between the
climate factors and NPP changes in typical regions, this paper proposes a statistical method
to quantitatively analyze the response of NPP to changes in temperature and precipitation.

We selected grassland areas in two regions, Inner Mongolia and the Qinghai–Tibet
Plateau, and for each grid in each region the mean values of temperature, precipitation,
and NPP were calculated for each year. For a grid, if the temperature is within ±0.5 ◦C
of the 20-year average temperature for at least 10 years, that temperature is defined as
the “conventional temperature” for that grid, and the temperature for years above that
range is considered “unconventional temperature”. The average of the NPP for all years
in the conventional temperature range is defined as the conventional NPP value for this
grid. The difference between the conventional and unconventional temperatures and
the difference between the conventional NPP values and the NPP corresponding to the
unconventional temperatures are calculated. With the above processing, the magnitude
of the increase or decrease in the NPP for a grid when the temperature fluctuates in
different degrees can be obtained. Similarly, if the precipitation is within ±50 mm of
the 20-year average precipitation for at least 10 years, this precipitation value was the
“conventional precipitation”, and the precipitation in the remaining years was considered
as “unconventional precipitation”. The difference between the conventional NPP and NPP
corresponding to unconventional precipitation was calculated.

The conventional temperature of the whole region was graded, for example, by
dividing the subregions with conventional temperatures in the range of 1–2 ◦C and 2–3 ◦C,
and the mean value of the NPP change when the temperature was unconventional was
counted for grids in each subregion. By grading the whole region into subregions with
different temperature levels, it is possible to analyze how the NPP varies with temperature
within the different levels. Similarly, the conventional precipitation was graded and the
mean value of changes in NPP when the precipitation changes were counted for each level
of the conventional precipitation.

3. Results
3.1. Validation and Consistency Analysis of Estimated NPP
3.1.1. Consistency Analysis with MOD17 and GLO-PEM NPP

Because of the same spatial resolution, MOD17 NPP was selected for correlation
analysis with CASA NPP. The correlation values were calculated for each year and the
results were approximate. Figure 2a shows the results for 2001, where the black dashed line
is the reference line with equal values of the horizontal and vertical coordinates and the
red line is the fitted line for the regression analysis, which shows that the average value of
CASA NPP is higher than that of MOD17 NPP. In 2001, the correlation coefficient r was 0.83,
which reveals the NPP estimated by the CASA model is relatively reliable. As shown in
Figure 2b, r was approximate over the 20 years and was above 0.8 in most years.
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Figure 2. (a) The correlation (r) of MOD17 NPP and CASA NPP in 2001. (b) We calculated the
correlation between CASA NPP and MOD17 NPP for 2001–2020 and (c) compared the consistency of
the trend in total NPP for GLO-PEM NPP, MOD17 NPP, and CASA NPP.

The total and trend changes of GLO-PEM NPP (from 2001 to 2010), MOD17 NPP (from
2001 to 2020), and CASA NPP (from 2001 to 2020) were calculated and shown in Figure 2c.
We calculated the correlation of the CASA model with the GLO-PEM model and the MOD17
product in total annual NPP, where the correlation coefficients were 0.87 (p < 0.001) with
GLO-PEM NPP and 0.97 (p < 0.0001) with MOD17 NPP, both of which showed strong
positive correlation.

For the three models, we found that in each year, the annual total of the CASA NPP
was higher than the MOD17 NPP and lower than the GLO-PEM NPP. Limited by the
measured data and statistics data, it is difficult to judge which model is closer to the real
situation. The MAE of the CASA NPP and GLO-PEM NPP was 0.083 PgC·a−1, the RMSE
was 0.105 PgC·a−1, and the BIAS was −2.282%. The MAE with the MOD17 NPP was
0.201 PgC·a−1, the RMSE was 0.217 PgC·a−1, and the BIAS was 5.538% (minimum BIAS
was 2%, maximum BIAS was 11%). From 2001 to 2010, the trends in the estimation results
of the three models were almost consistent. From 2001 to 2020, the slope of the fitting
results (dashed line) of the trend of the MOD17 NPP and CASA NPP were 0.048 and 0.043,
respectively, which represented a very close trend of change. However, the estimated
trends were not consistent for several years, such as in 2015, 2016, and 2019.

3.1.2. Validation with Observation Site Dataset

The measured data in the EMDI dataset were obtained before 2000 and were only used
as a validation dataset for the CASA NPP. To ensure temporal consistency when validating
with this dataset, we estimated the NPP for 1993–1996 using the land cover data in 2001
(the earliest MODIS landcover product) and the climate data for 1993–1996. Due to the
inaccuracy of the landcover data, this estimation result was only used for the validation
of the CASA NPP corresponding to the location of EMDI data. The MAE varied widely
among different vegetation types. As shown in Table 3, the MAE of DNFs was the lowest
(~70.1 gC·m−2·a−1), followed by the MAE of ENFs (~92.6 gC·m−2·a−1).
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Table 3. We compared the mean absolute error (MAE) between the CASA NPP and observed NPP,
and the MAE between the MOD17 NPP and observed NPP on different datasets (Unit: gC·m−2·a−1).

CASA NPP and Observed NPP MOD17 NPP and Observed NPP

Vegetation
Type EMDI Carbon Cycle

Dataset
FLUX
NET2015 SRDB Carbon Cycle

Dataset FLUXNET2015 SRDB

ENF 92.6 77.35 46.9 35.5 122.6
EBF 238.9 336.2 443.5 470.2 276.3 508.9 504.9
DNF 70.1 125.0 178.9
DBF 138.4 146.6 229.3 282.4 94.10 132.3 317.9
Shrub 42.2 74.9
Grassland 46.3 95.4 56.4 98.9

Since the MOD17 NPP is only available after 2001, the MOD17 NPP and CASA NPP
were involved in the comparison with SRDB dataset, carbon cycle dataset, and FLUX
NET2015 dataset. The comparison results of the two datasets are shown in Table 3. The
MAE of the CASA NPP for ENFs was 77.35 and 46.90 gC·m−2·a−1 for the two datasets,
respectively, with lower estimation errors than the MOD17 NPP. The MAE of the CASA
NPP for EBFs showed greater than 300 gC·m−2·a−1 in all three datasets, and the estimation
results were better than the MOD17 in the two datasets except for the carbon cycle dataset.
In addition, the CASA NPP has a lower estimation error than the MOD17 NPP for DNFs
and a higher estimation error than the MOD17 NPP for DBFs. The FLUXNET2015 dataset
had five grassland observation sites and the MAE between the site value and CASA NPP
was lower than the MOD17 NPP. The MAE of shrubs and cropland was less convincing
due to the few measured data.

Most of the existing LUE models, including the CASA model, use the same parameters
in different study areas, which can lead to errors. In this regard, we consider it necessary to
evaluate the applicability of the model in different regions. The EMDI observed dataset
includes the various types of typical vegetation and relatively uniform distribution, so it
was used to evaluate the applicability of the model in different climatic zones.

As shown in Figure 3, the four types of forest were not estimated equally in different
climatic zones. The order of the climate zones in the figure was arranged from north to
south, from cold to warm. It was found that the MAE of each kind of forest exhibited
increasing/decreasing changes with the change of climate zones. The MAE of ENFs and
DBFs decreased with the warming of climate zones, while the MAE of EBFs and DNFs
increased with the warming of climate zones. Table 4 shows the concrete value of the mean
values of station data, the mean values of CASA NPP, and the errors of comparison such as
the MAE and RMSE [46–48].

The MAE in the estimation results of ENFs was less than 110 gC·m−2·a−1 in all the
temperate climate zones, with the smallest error (60 gC·m−2·a−1) in the northern temperate
zone. EBFs in tropical and subtropical regions had relatively high NPP values and a wide
range of fluctuations due to high temperatures and humid environments.

By comparing the mean values of the CASA NPP and observed NPP, it is found that
from south region to north region, the mean value of the CASA NPP changed from higher
than the observed NPP to lower than the observed NPP.

The maximum LUE parameter of the DNFs is relatively low, which is more suitable
for NPP estimation in cold northern temperate regions. The estimation error of DBFs in the
northern temperate zone is significantly higher than that in the southern temperate zone.

The above conclusions were obtained in comparison with the EMDI dataset. The
scarcity of measured data in some climatic zones leads to less convincing conclusions in
these areas, and a larger number and more evenly distributed measurements are needed to
refine the conclusions.
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Figure 3. The MAE of CASA NPP and EMDI NPP in different climate zones (the climatic zones are
abbreviated in the figure, as follows: “N Tem”: northern temperate zone, “Tem”: temperate zone,
“S Tem”: southern temperate zone, “N Sub”: northern subtropical zone, “Sub”: subtropical zone,
“S Sub”: southern subtropical zone, “Tro”: tropical zone, “High”: highland climatic zone).

Table 4. Errors of the CASA model and EMDI dataset for various vegetation types and various
climate zones (the unit of NPP and the unit of error are gC·m−2·a−1).

Forest Type Climatic Region Number of Sites Mean Observed NPP Mean CASA NPP MAE RMSE

EBF

Tropical 3 1186.6 1351.00 394.64 430.88
Southern subtropical 25 848.40 1084.00 405.36 461.49

Subtropical 180 915.44 900.93 218.34 274.10
Northern subtropical 32 674.53 597.60 186.48 238.82
Southern temperate 5 636.00 595.90 132.10 162.74

Highland 9 751.11 423.23 348.09 412.26

DBF
Southern temperate 12 567.91 569.64 109.27 147.93

Temperate 29 638.79 553.03 135.68 175.15
Northern temperate 5 494.00 526.50 224.1 229.71

ENF
Southern temperate 4 452.50 471.25 60.00 83.76

Temperate 6 480.00 503.02 96.89 120.15
Northern temperate 5 320.00 427.00 109.00 127.89

DNF
Temperate 4 422.50 538.25 124.68 177.38

Northern temperate 9 452.77 485.27 49.88 70.46

3.2. Distribution of NPP

The spatial distribution of the mean NPP from 2001 to 2020 is shown in Figure 4a. The
NPP increased roughly from northwest to southeast. The NPP of forests in the southern
region was higher than that in the northern region, and the NPP of ENFs in the northeast
was higher than that of DNFs. The NPP in Xinjiang and the Qinghai–Tibet Plateau was low
due to the dominance of alpine grasslands. It is worth noting that the NPP of cropland in
the northeast was lower than that in the southern area.
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Figure 4. (a) Spatial distribution of the mean NPP from 2001 to 2020. (b) Total NPP of different
terrestrial vegetation in 2020. (c) The distribution of NPP of different vegetation in 2020. The data
were logged due to the excessive difference in the total NPP values of different types of vegetation.
(d) The mean NPP in different elevation and temperature areas.

Different vegetation has different photosynthetic and carbon sequestration capacities
as well as different coverage areas, and thus the total amount of NPP produced dur-
ing the year varied. As shown in Figure 4b, the EBF contributed the highest total NPP
(~1708.4 Tg C), followed by grasslands (~879.4 Tg C), croplands (~781.8 Tg C), and DBFs
(~736.5 Tg C), where Tg is 1012 g. The NPP in EBFs was mainly from the subtropical zone,
while grassland, cropland, and DBFs were mainly from the temperate zone. Shrubs had
the lowest total NPP value due to the low coverage area.

The distribution of the NPP values for the same vegetation type varies greatly due
to the differences in climate in different regions. As shown in Figure 4c, EBFs had the
highest NPP, with a national mean value of 1051.1 gC·m−2·a−1 and a maximum of over
2600 gC·m−2·a−1 in the tropics. DBFs had a mean NPP of 538.5 gC·m−2·a−1. The mean NPP
of ENFs was 412.8 gC·m−2·a−1 and that of DNFs was 362.9 gC·m−2·a−1. Cropland also
showed a significant difference in NPP distribution due to the differences in crop varieties
and manual management. The mean NPP value for grassland was 230 gC·m−2·a−1, with
lower NPP values in highland climate zone and higher NPP values in humid environments.
The lowest mean NPP value was found for shrubs, which was about 170 gC·m−2·a−1.

The distribution also showed differences in elevation and temperature. As shown
in Figure 4d, the distribution in general showed a trend of gradually decreasing with
increasing elevation and gradually increasing with increasing temperature. The NPP was
significantly higher in areas with temperatures of 20–30 ◦C and elevations of 0.5–2 km.
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3.3. Trends of NPP

Figure 5a–c shows the NPP distribution in 2001, 2010, and 2020. Observing the changes
in NPP distribution over 3 years, it can be found that the NPP in several typical vegetation
cover regions changed obviously. The NPP in some regions increased, such as Shaanxi
province, Shanxi province, and southeast coastal areas. The NPP in some regions decreased
obviously, such as in forest areas in the southeast of the Qinghai–Tibet Plateau, and forest
areas in Changbai Mountain in northeast China. By slope calculation and MK test, the
20-year NPP trends of all grids were analyzed, and Figure 5d shows the trends of all grids
with a significance level of less than 0.05 after the MK test. The decreasing trend of NPP was
the largest in the forest area of the southeastern Qinghai–Tibet Plateau (>20 gC·m−2·a−1).
The grassland in Inner Mongolia and the DBF in northeast China also showed a decreasing
trend (0–20 gC·m−2·a−1). The increasing trend of NPP was most obvious in EBF in southern
Yunnan, Guangdong, and Hainan (>20 gC·m−2·a−1). The increasing trend of NPP was also
observed in needleleaf forests in northeastern China, croplands in central China, and most
grassland areas in Xinjiang (0–20 gC·m−2·a−1).
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Land cover changes significantly affect NPP changes. The area of land cover change
was derived by comparing the land cover data for 2020 and 2001. Figure 5e shows the
changes between forest/grass and cropland, and the transformation of vegetation and
non-vegetation. Some bare land or construction land in Inner Mongolia, Gansu, Xinjiang,
and Qinghai had been changed to vegetation [49], which improved the vegetation carbon
sequestration capacity. Some areas in the northeast and central plains had been converted
from grassland to cropland, which has a higher carbon sequestration capacity.

The mean values of NPP of vegetation in different years also showed dynamic changes.
Figure 5f shows the trends of the mean NPP of each vegetation type for 20 years. In 2008
the NPP increased for all vegetation types, and on the contrary, 2010, 2014, and 2017 were
the years when NPP decreased for most vegetation types. EBFs had the highest increas-
ing trend (~6.98 gC·m−2·a−1), followed by cropland (~3.83 gC·m−2·a−1) and grassland
(~1.61 gC·m−2·a−1), and no significant change in DNF.

3.4. Response of NPP to Climate Factors

In this paper, the correlation between the 20-year climate parameters and 20-year
NPP values of each vegetation grid was analyzed from the grid scale by the correlation
coefficient analysis method, and only the regions with a significance level p-value < 0.05
were retained by the significance test. In Figure 6a, the NPP of grassland in central Inner
Mongolia had a strong negative correlation with the temperature. Most of the forest areas
in the southeastern coastal region showed a positive correlation with the temperature. The
relationship between the grassland NPP and temperature in the Qinghai–Tibet Plateau
region was more complex without obvious regional aggregation.

As shown in Figure 6b, the grassland NPP in Inner Mongolia and Gansu Province
each had a strong positive correlation with precipitation. Grassland NPP in the northern
Qinghai–Tibet Plateau was positively correlated with precipitation. The cropland NPP
in northern region showed a positive correlation with precipitation, while showing the
opposite relationship in southern region. The correlation between the broadleaf forest land
NPP and precipitation was not significant.

In Figure 6c, the NPP of most terrestrial areas was positively correlated with solar
radiation. Especially, the forest NPP in the northeastern, southwestern, and southeast
coasts showed a strong positive correlation with solar radiation. In contrast, the grassland
NPP in the north showed a weakly negative correlation with the solar radiation variation.
Solar radiation, as a direct source of energy for photosynthesis by vegetation, is obviously
an important factor impacting NPP, and from Equation (2), even with constant solar
radiation, the magnitude of NPP is influenced by LUE, which is regulated by environmental
factors such as temperature and precipitation. Therefore, it is more valuable to mainly
analyze the intensity of the correlation between the temperature and precipitation and NPP
variation. Figure 6d compares the magnitude of correlation between the temperature and
precipitation with NPP variation in different regions. Figure 6d showed that the higher
correlation between NPP and temperature was mainly concentrated in the EBFs in the south,
and the grassland in the Qinghai–Tibet Plateau, all of which were positively correlated.
Most grassland NPP was more correlated with precipitation, including grassland in Inner
Mongolia, the Qinghai–Tibet Plateau, and Gansu, all of which were positively correlated.
Cropland in the southern region, on the other hand, had a negative correlation with
precipitation. In terms of the distribution area, NPP changes were significantly correlated
with temperature in about 10.39% of the vegetation cover area and with precipitation
in about 26.92% of the vegetation cover area. The correlation between precipitation and
NPP was higher in most regions, accounting for about 26.23% of the total vegetation
coverage area, and the correlation with temperature was higher in 8% of the total vegetation
coverage area.
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3.5. Perturbations of Temperature and Precipitation Changes on Grassland NPP

We focused on the grasslands of Inner Mongolia and the Qinghai–Tibet Plateau and
quantitatively analyzed the impact of different degrees of temperature and precipitation
changes on the NPP changes of grasslands.

The annual average temperature in the Inner Mongolia grassland region is between
about 0 ◦C and 4 ◦C, and we divided Inner Mongolia grassland into four temperature
zones: 0~1 ◦C, 1~2 ◦C, 2~3 ◦C, and 3~4 ◦C. The range of temperature change of each zone
was set to −3~3 ◦C and divided into 1 ◦C intervals. After statistics, the effect of different
temperature changes on the NPP changes in each temperature zone is shown in Figure 7a.
We found that the temperature changes in Inner Mongolia grassland showed a negative
effect on NPP changes. In each temperature zone, when the temperature in a particular
year decreased, the mean NPP value instead increased, for example, in the regions with
mean annual temperatures of 2~3 ◦C and 3~4 ◦C, when the temperature in a particular
year increased by 1~2 ◦C, the NPP decreased by about 20 gC·m−2·a−1 compared with
the conventional years. When the temperature in a particular year decreased by 1~2 ◦C
degrees, the NPP increased by more than 20 gC·m−2·a−1 on average.
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Figure 7. Quantitative analysis of the effects of (a) temperature and (b) precipitation changes on NPP
changes in the Inner Mongolia grassland region, effects of (c,d) temperature and (e,f) precipitation
changes on NPP changes in the Qinghai–Tibet Plateau grassland region. The points between the two
scales in the horizontal coordinate indicate the change in NPP when the temperature or precipitation
changes within this range.

The precipitation distribution data showed that the annual average precipitation in
the Inner Mongolia grassland region was about 100 mm–400 mm, and we divided the
Inner Mongolia grassland area into three precipitation zones according to 100 mm intervals.
We set the range of precipitation variation from −300 mm to 300 mm and divided the
precipitation variation into 100 mm intervals. The effect of different precipitation changes
on the NPP changes in each precipitation zone is shown in Figure 7b. The NPP changes
in Inner Mongolia grassland showed a significant positive correlation with precipitation
changes. In all precipitation zones, when the precipitation in a particular year decreased,
the mean NPP value also decreased. The NPP is more sensitive to changes in precipitation
in regions with higher conventional precipitation. In the region with 300~400 mm annual
precipitation, when precipitation decreased by more than 100 mm in a year, NPP decreased
by more than 40 gC·m−2·a−1 on average, while the NPP increased by 40 gC·m−2·a−1 on
average when the precipitation increased by 200~300 mm. It was noteworthy that when
precipitation increased by more than 200 mm, the effect of precipitation on NPP was no
longer positive but played an inhibitory role.

In the Qinghai–Tibet Plateau, the effects of temperature and precipitation on grassland
NPP were analyzed using the same method. We divided the temperature analysis results
of the Tibetan Plateau into two parts: subzero temperature (Figure 7c) and above-zero
temperature (Figure 7d), and precipitation into two parts: below 400 mm (Figure 7e) and
above 400 mm (Figure 7f), according to the difference between dry and wet.
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In the region of the subzero temperature zone, NPP was positively correlated with
temperature, which was in contrast to the response in the Inner Mongolia region. When
the temperature fluctuated within 2 ◦C, the average change in NPP was not significant,
within 10 gC·m−2·a−1. In regions where the temperature was below −6 ◦C, the mean
NPP increased significantly when the temperature increased greater than 2 ◦C, which
was greater than 20 gC·m−2·a−1. Not all grassland regions of the Tibetan Plateau were
positively influenced by the temperature in terms of NPP variation, and we found that the
mean NPP variation was the opposite of the temperature variation in the region of 0~4 ◦C.

The Qinghai–Tibet Plateau is a complex terrain and has an alpine snow and ice
environment, so the precipitation varies greatly in different regions. The response of NPP
to precipitation in arid and semi-arid regions was positive but did not change significantly
(within 10 gC·m−2·a−1), and the positive response of NPP to precipitation gradually
weakened when the increase in precipitation was greater than 100 mm, and the response to
precipitation became negative in some regions.

In the humid and semi-humid regions, precipitation and NPP showed a significantly
positive relationship. Especially when the precipitation increased more than 200 mm, the
average NPP value increased more than 20 gC·m−2·a−1.

We used the same method to analyze the NPP of DBFs in the northeast region and
EBFs in the southeast region, but could not reach similar conclusions, probably because that
forest land NPP is mainly influenced by solar radiation, while the effects of temperature
and precipitation on NPP is more complex.

4. Discussion
4.1. Applicability and Limitations of the CASA Model

Due to the complex climatic environment, diverse vegetation types, and uncertainties
of model parameters [50], it is difficult for the CASA model to adapt to various scenarios.
Based on the results of the estimation error of the CASA model combined with the measured
data (mainly Figure 3 and Table 4), we analyzed the applicability of the CASA model in
different regions and different vegetation, as well as the ideas for possible improvement.

The actual NPP of EBFs in the tropics is much higher than the results derived from
the CASA model due to the high temperature and humid environment, while the closer to
the north, the better the model estimation results will be. When the model is applied to
the tropical region, it can be optimized from the perspective of improving the maximum
LUE. In addition, the NDVI tends to saturate in tropical regions and cannot distinguish the
density of forest further, using the Enhanced Vegetation Index (EVI) to replace the NDVI
added to the model is also an improved perspective.

In contrast, to reduce the apparently high estimation error of the DBFs in the northern
temperate zone, the enhancement of the CASA model in reducing the maximum LUE
parameter of the DBFs in this region can be considered.

If we consider optimizing the CASA model, we also need to further control the water
and heat stress factors in subtropical and tropical regions, and more measured values are
needed to fit the temperature and moisture stress factors for tropical forest areas. The NPP
estimation error of DNFs in temperate regions is relatively larger, which is caused by the
fact that the temperature and precipitation in temperate regions are higher than those in
the northern temperate regions, and the vegetation photosynthetic capacity estimated by
the model through the temperature and moisture is higher than the actual photosynthetic
capacity of DNF.

The existing difficulty is the lack of a large amount of measured data for different tree
species in different regions, which if available would allow the fitting of parameters for
different scenarios and thus optimize the use of CASA models in local areas. In addition,
the effects of extreme natural conditions such as persistent high temperatures, droughts,
and floods are ignored when scaled to monthly time scales, so obtaining higher temporal
resolution environmental data for estimation is also a way to improve the accuracy of
the estimates.
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4.2. Limitations of Quantitative Statistical Method

In this paper, a statistical method was designed to analyze the changes in NPP when
the regional NPP varied with different degrees of temperature/precipitation, and differ-
ent responses of NPP to temperature/precipitation changes were obtained for the Inner
Mongolia grassland and Qinghai–Tibet Plateau grassland. However, there are still some
limitations of this method at present, mainly the selection of some thresholds.

When filtering the conventional temperature, we chose “10 years” as the number of
years threshold, when at least 10 years of temperature are in the range of conventional
temperature, this conventional temperature can represent the temperature level of this
grid. If the number of years is set too small, the conventional NPP does not represent
the average of most years in this raster and has no reference value; if the number of
years is set too large, the number of years used to calculate the difference of NPP under
unconventional temperature is very small and the research significance is lost. The range
given to the conventional temperature was determined using a 20-year temperature average
of ±0.5 ◦C, which was also a subjectively chosen value to ensure that the change in NPP
could be analyzed for changes in temperature within 1 ◦C (greater than 0.5 ◦C and less
than 1 ◦C). To further control the uncertainty factor of subjective thresholds, subsequent
studies need to design methods that can automatically extract the conventional levels of
temperature/precipitation/NPP in the region as a benchmark for quantitative analysis
of NPP changes with environment. In addition, the impact of synergistic changes in
temperature/precipitation on NPP changes also needs to be further analyzed.

4.3. Impacts of Land Use Change and Phenology on NPP

The change in land cover is one of the important reasons for the changes in NPP. The
land cover of China has produced significant changes in the last 20 years, which include
the reasons for natural environment changes, afforestation, and accelerated urbanization.
From Figure 5d,e, some forest areas in the northeastern region had been reclaimed as
cropland, and the overall NPP in these areas still showed an increasing trend, so the carbon
sequestration capacity of deciduous broadleaf forests and crops in the northeast may be
similar. Since crops will be harvested and part of them will be released into the atmosphere
as a carbon source, the overall carbon sequestration capacity of the areas bordering the four
provinces in the northeast region should be reduced due to the reduction in forest land.

In the areas bordering Gansu and Shaanxi, some areas had been implemented to return
farmland to forest and grass, causing a rise of NPP in the last 20 years. The afforestation
and grass planting activities in most areas of Xinjiang had an obvious effect on improving
the carbon sequestration capacity. The southeastern regions were mainly lush evergreen
broadleaved forests with relatively little land cover changes, so the NPP changes were
mainly determined by the natural climate. In the Qinghai–Tibet Plateau, little vegetation
had been turned into bare land due to the influence of the natural environment or grazing,
which directly led to the reduction in NPP in these areas.

Even for the same vegetation type, the NPP can vary greatly due to its phenological
factors. From north to south, the forest has more adequate hydrothermal conditions,
which will result in higher NPP values due to its longer growing period, even for the
similar growth rates. The increase in NPP from north to south forests indicates a higher
productivity of vegetation adapted to higher temperature conditions. The increase in
forest NPP from west to east indicates a higher productivity of vegetation with more
humid conditions.

4.4. Impact of Temperature and Precipitation on the Trend of NPP

The relationship and intensity of the impact of temperature and precipitation on NPP
changes in the different regions and vegetation types are different. In the woodland areas,
the increase in temperature can bring forward the initial period of vegetation growth in
the year and makes the growing season longer, thus increasing the NPP in the year. The
increase in precipitation has a positive impact on the increase in the NPP in the forest in
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most cases, especially in the drier western region, where the increase in precipitation can
alleviate the soil water stress and increase the soil moisture, which is conducive to the
accumulation of vegetation dry matter.

The response of the grassland NPP and cropland NPP to the temperature varied
significantly in different regions, where the cause of cropland may be due to human
management factors. Our analytical experiments found that the impact of temperature and
precipitation on grassland NPP was related to the level of temperature and the level of
wetness at which the grassland was located.

As shown in Figure 7b,e,f, precipitation has a greater effect on the NPP changes in
grasslands in humid and semi-humid regions, and the extent of NPP growth is greater with
increasing precipitation, whereas in semi-arid regions, the promoting effect has been signif-
icantly reduced and even an inhibiting effect occurs if the annual precipitation increases by
more than 200 mm.

Most of the grasslands in Inner Mongolia belong to arid and semi-arid areas, and the
forage grass is negatively affected by the temperature [51]. In this region, the increasing
summer temperature brings the temperature to the threshold for the meadow steppe vege-
tation growth, which affects physiological activities such as photosynthesis and respiration.
In contrast, forage growth is positive feedback to precipitation [44,51], and increased pre-
cipitation improves the soil water supply conditions and enhances the photosynthetic rate.
If the effect of temperature is greater than that of precipitation, the combined effect will
decrease the productivity of grass in the Inner Mongolia region.

As water-limited grasslands are greatly sensitive to precipitation [52], the precipitation
in Qinghai–Tibet Plateau is mostly positively correlated with NPP, and water replenishment
of grasslands during the water-scarce season can be very effective in improving the carbon
sequestration capacity.

In the above analysis, the coupling relationship of the two climatic factors has not
been further discovered, which is the focus of subsequent studies, which requires the
further refinement of the temporal resolution and analysis of the effects of temperature
and precipitation factors on the NPP during the different growth periods, as well as the
consideration of the problem of the intensity of the impact of extreme weather in certain
days of the year or month.

5. Conclusions

Using the CASA model, we estimated the NPP distribution of terrestrial vegetation
in China from 2001 to 2020. We collected MOD17 NPP and GLO-PEM NPP data and
compared the consistency of the overall national trend of NPP with the CASA NPP. We
collected several measured datasets to verify the applicability of the CASA model. We
found that the NPP errors of EBFs and DNFs estimated by the CASA model gradually
increased with the climate zone from north to south, while the NPP errors of DBFs and
ENFs gradually decreased. We analyzed the reasons for the differences in the estimation
results of the CASA model for various types of vegetation in different areas and analyzed
the possible effective methods for effect enhancement. We initially designed a method
to quantify the impact of temperature and precipitation on NPP in the Inner Mongolia
and Qinghai–Tibet Plateau grasslands and found that the increase in temperature has
an inhibitory effect on Inner Mongolia grassland and a positive effect on Qinghai–Tibet
grassland, and the precipitation had a positive effect on the Inner Mongolia grassland and
Qinghai–Tibet grassland.

Our conclusions from the validation of the CASA model can support researchers in
choosing whether to use the CASA model or how to improve the model in different study
areas. Our analysis of the distribution and changes of NPP in the past 20 years confirms the
effect of the national emphasis on the natural environment in recent years. The quantitative
assessment method of NPP response to temperature and precipitation in large regions can
provide experience for the regional NPP change prediction and ecological management.
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