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Abstract: Landslides along the main roads in the mountains cause fatalities, ecosystem damage, and
land degradation. This study mapped the susceptibility to landslides along the Saqqez-Marivan main
road located in Kurdistan province, Iran, comparing an ensemble fuzzy logic with analytic network
process (fuzzy logic-ANP; FLANP) and TOPSIS (fuzzy logic-TOPSIS; FLTOPSIS) in terms of their
prediction capacity. First, 100 landslides identified through field surveys were randomly allocated
to a 70% dataset and a 30% dataset, respectively, for training and validating the methods. Eleven
landslide conditioning factors, including slope, aspect, elevation, lithology, land use, distance to
fault, distance to a river, distance to road, soil type, curvature, and precipitation were considered.
The performance of the methods was evaluated by inspecting the areas under the receiver operating
curve (AUCROC). The prediction accuracies were 0.983 and 0.938, respectively, for the FLTOPSIS and
FLANP methods. Our findings demonstrate that although both models are known to be promising,
the FLTOPSIS method had a better capacity for predicting the susceptibility of landslides in the
study area. Therefore, the susceptibility map developed through the FLTOPSIS method is suitable to
inform management and planning of areas prone to landslides for land allocation and development
purposes, especially in mountainous areas.

Keywords: landslides susceptibility; inventory map; fuzzy TOPSIS; ROC curve; Iran

1. Introduction

Road networks give access to nearly every area of the country; consequently, there is
a greater requirement for an established and durable road network infrastructure. Roads
are critical infrastructure components that are frequently exposed to natural and man-
made hazards [1], especially in emerging nations if road expansion was rapid and poorly
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planned [2]. Furthermore, natural calamities brought on by climate change, such as land-
slides and earthquakes, can make roads unstable [3]. Regional roads are a vital component
of the infrastructure, and any disruptions caused by landslides can be disastrous for com-
munities dependent on them [4]. Predicting risk from landslides to roadways through
landslide susceptibility mapping (LSM) is crucial to better understand potential slope
collapse at different spatio-temporal scales to protect people’s lives and property, and to
prevent ecosystem damage and a waste of capital and resources [5–7].

To prevent a catastrophic landslide, policymakers, scientists, engineers, and the general
public can access landslide susceptibility maps (LSM), for example for land use planning
purposes, which shows landslide-prone locations [8]. Studies on LSM along road networks
adopt two different methodologies: The first line of research focuses on assessing the
immediate or indirect socio-economic effects of disruptions and makes fewer attempts
to assess their likelihood [9]. The second line of research integrates GIS and geological
modeling with a greater focus on landslide severity assessments without quantifying
the impacts of network interruptions. In a susceptibility analysis, it is essential to si-
multaneously consider the probability of landslide occurrences and the consequences of
network disruptions in order to provide useful guidance on how to prepare for and re-
spond to landslide disasters. The joint effect is widely used to characterize the impact
of landslides on roads, and it is the primary focus of current studies of landslide risk to
roads, which also consider the likelihood of landslides and their impacts on roadways [10].
Pantelidis [11] offers a comprehensive analysis of landslide susceptibility assessment sys-
tems for highways, discussing both quantitative and qualitative approaches. The Federal
Highway Administration (FHWA) of the United States suggested [12] a form of landslide
susceptibility evaluation that was later adapted by Budetta [13] to measure the risk of
landslides along highways. The purely quantitative risk assessment (QRA) assesses the
hazard in terms of the likelihood of failure or occurrence of an event of a certain scale
multiplied by its effects [14], which semi-quantitative methods do not address. While land-
slide susceptibility and hazard have been studied widely over the last two decades, using
heuristic, statistical-probabilistic, or deterministic strategies (e.g., Pregnolato et al. [15] and
Chamorro et al. [16]), there has been little effort expended on evaluating the utility of risk
indicators and on spatially assessing landslide vulnerability [17]. Optical images were
used in several landslide susceptibility mapping studies to establish landslide inventories,
vegetation indices, and land use/land cover knowledge [18,19]. To compare and rank mul-
tiple options before choosing the best-fit option for landslide susceptibility modelling,
several techniques are used in multiple-criteria decision modelling (MCDM), includ-
ing: max-min, min-max, PROMETHEE, ELECTRE, analytic hierarchy process (AHP),
TOPSIS, fuzzy TOPSIS, compromise programming, fuzzy AHP, and data envelopment
analysis. Fuzzy decision-making strategies have elicited increasing interest in better
understanding location problems that involve ambiguous or partial datasets, or those
that have linguistic factors [20].

A merged MCDM combines the widely applied TOPSIS method [21], which has been
extensively utilized in the literature [22–25]. Similarly, the analytic network process (ANP)
to predict landslides [26], floods [27], forest fires [28], land subsidence [29], and earth-
quakes [30]. Risk assessment and mapping studies have been undertaken in many different
ways using both qualitative and quantitative methods. ANP and assessments of landslide
susceptibility factors are among the most popular and effective qualitative methods and
tools [31,32]. Quantitative multivariate and bivariate analyses are also used [33].

Rock type, structural discontinuities, slope gradient, relative relief, aspect, soil
depth, soil characteristics, land use and land cover, groundwater, and hydrologic con-
ditions are the geoenvironmental factors that significantly increase the likelihood of
landslides [34,35]. Construction operations, particularly for roads, are substantial con-
tributors to the occurrence of landslides in addition to considerations such as distance to
rivers, faults, and lineaments [36,37]. Numerous researchers have proposed different
strategies for landslide susceptibility mapping (LSM) by considering landslide trigger-
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ing and precipitating factors. According to He et al. [38], geometric factors such as
elevation, aspect, and slope are among the most significant factors. In addition, hy-
drological factors need to be considered, such as the topographic wetness index (TWI),
the sediment transport index (STI), and the distance from rivers as they exacerbate and
trigger landslides. Geological and environmental factors (such as lithology and land
use) and soil textures [39] also contribute to landslides and are therefore useful for their
early detection.

The causes of landslides have been determined through a number of studies.
Saleem et al. [40] investigated how DEM derivatives affect risk assessment and mapping of
landslide susceptibility. In order to estimate landslide areas, Zhang et al. [41] used 12 con-
ditioning factors and ensemble learning approaches to determine landslide susceptibility.
The heterogeneity of the Earth’s surface makes it difficult to adopt a universal strategy to
identify the causes responsible for landslides. Some scientific organizations and institutes
have established recommendations for LSM suggesting the use of a common nomenclature
and guide for analysts [42]. However, the applied approaches differ from area to area and
even within the same area [43].

Since many landslides occur annually along the road that we studied, and this road
constitutes one of the primary intercity roads, many travelers are exposed to the risk of
landslides. No study has been conducted on landslides for this road, identifying highly
susceptible areas is of great urgency. According to our literature review, although TOPSIS
and ANP have been broadly developed for and adopted in a wide range of real-world
problems, few studies exist for the LSM. In this study, we combined TOPSIS and ANP with
the fuzzy logic approach to obtain more accurate maps for predicting landslides in the study
area. ANP integrates the multiple benefits of AHP, including simplicity, adaptability, and
the chance to review verdicts, replacing hierarchical structures with networks by estimating
the independence between complicated decision-making aspects [44].

Furthermore, it is a straightforward tool to use that aids in understanding the interre-
lationships between variables, and assists planners, decision-makers, and developers in
making a common decision [44]. TOPSIS is an MCDM method that can quickly determine
the best alternative with minimal input from planners, decision-makers, and developers.
Consequently, the primary goals of this study are to: (1) identify the most important factors
affecting landslides in the study area; (2) develop fuzzy ANP and fuzzy TOPSIS methods
to model landslide susceptibility; and (3) prepare a landslide susceptibility map with high
prediction accuracy for the Saqqez-Marivan road in Kurdistan province, Iran.

2. Data Acquisition and Preparation
Study Area

The case study area forms part of the communication route from Saqqez to Marivan
and is located in Kurdistan province. It covers approximately 1100 km2 and lies between the
46◦10′34′′ to 46◦29′33′′, east longitude and 35◦29′7′′ to 36◦15′36′′ north latitude (Figure 1).
The Saqqez-Marivan road is a strategic and important road that connects western Iran and
Iraq and facilitates trade relations with the Kurdistan region. This route is 126 km long,
which includes winding and steep passages that are prone to landslides and avalanches
due to heavy snow and rainfall. Figure 2 shows different types of landslides which have
occurred in the study area.
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3. Materials and Methods
3.1. Landslide Conditioning Factors (LCFs)

Knowledge of the primary causes of landslides is necessary in order to identify and
map a sufficient collection of conditioning factors linked to landslide occurrences [45].
In general, the number of landslide conditioning factors considered for modelling varies
from several to dozens [46]. Here, eleven landslide conditioning factors were chosen
under five categories, taking into account previous studies and the features relevant for
landslide occurrence in the study area: slope, aspect, elevation, lithology, land use, distance
to river, distance to road, soil type, curvature, and rainfall. It is important to note that
the classification of the layers was based on regional characteristics and expert opinions.
Landslide conditioning factors are reported for each factor class in the study area. First, a
digital elevation model (DEM) with a resolution of 12.5 m × 12.5 m was prepared from the
ALOS PALSAR satellite and the site (https://vertex.daac.asf.alaska.edu, accessed on 15
December 2022).

In the following, a slope map was prepared using a DEM in ArcGIS 10.7 which was
then categorized into 6 classes (Figure 3a). The aspect layer was extracted from a DEM
in ArcGIS 10.7 and categorized into 9 classes (Figure 3b). The elevation of the sea level
map was obtained from a DEM in ArcGIS 10.7 in 7 classes (Figure 3c). The lithology map
was then retrieved from the geological map with a scale of 1:100,000 and then categorized
into 14 classes (Figure 3d). A land use/cover map was prepared by interpreting Landsat 7
ETM+ satellite images obtained in 2017 in 12 classes (Figure 3e). A distance-to-the-fault
map divided into 5 classes was made using a fault map of the research area that was created
from a geological map at a scale of 1:100,000 (Figure 3f). Using the kriging method, the
rainfall was mapped and then divided into five classes using 20 years of data (from 1996 to
2016) from the rain gauge stations both inside and outside of the study area (Figure 3g).
The curvature is frequently employed as one of the most significant conditioning factors in
landslide modelling [46]. The curvature map was produced using a DEM of 12.5 m, and it
was then divided into three classes: concave, convex, and flat (no curvature) (Figure 3h).
The soil layer of the region categorized into two classes was referenced from a map of
Kurdistan Province showing land resources and capabilities with a scale of 1:250,000
(Figure 3i). River networks were extracted from the DEM of 12.5 m to create a distance-to-
the-river map divided into five classes (Figure 3j). The excavation of roads in hilly areas
causes slope instability and landslides [47]. Thu, the road network had to be obtained from
the 1:50,000 scale topographic map. A distance-to-the-road map was created, divided into
five classes (Figure 3k).

3.2. Landslide Inventory Map (LIM)

A landslide susceptibility map essentially needs two datasets; namely, a dataset to
create a landslide inventory and another dataset of factors that affect landslide occurrence.
Landslide inventories are required for model training and validation in landslide suscep-
tibility assessments. Inventories of landslides can be established from field survey data,
news and government report detailing previous landslide events, and remote sensing
data analysis [48]. Kavzoglu et al. [49], Kilicoglu, [50], and Akinci et al. [51] identified
the locations of prior landslides using GNSS-based field surveys, high-resolution satellite
imagery, Google Earth imagery, previous projects and reports, atlases, and other sources.
Consequently, the evidence gathered from prior landslides is referred to as an inventory
map and consists mainly of the locations of existing landslides. In our case, a landslide
inventory containing 100 landslide locations was created using Google Earth images and
field surveys, among other sources. These landslides are classified into training (70%)
and validation (30%) datasets for model building and validation purposes, respectively. It
is worth mentioning that there is no guideline or standard for classifying the number of
landslides into the training and validation datasets. We collated some references from the
literature for different combinations of percentages in Table 1.

https://vertex.daac.asf.alaska.edu
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Table 1. Different combinations of percentage allocations of data into the of training and validation
datasets for landslide susceptibility assessments.

Ratio (Percentage) References

70:30 [52–57]

80:20 [58–60]

75:25 [61,62]

50:50 [63,64]

3.3. Multi-Criteria Decision-Making Methods in LSM
3.3.1. Fuzzy TOPSIS Algorithm

The concept of “relative closeness to an ideal solution” serves as the foundation for the
MCDM technique known as TOPSIS, which was developed by Hwang and Yoon [65,66].
The fundamental objective is to choose an ideal solution from a set of alternatives that
should be as far away from the negative ideal solution (NIS) and as close to the positive
ideal solution (PIS) [66–69]. This approach computes the weights for each preset criterion,
normalizes the scores, and then calculates the geometric distance between each alternative
and the PIS and NIS [70,71].

The TOPSIS technique procedure typically involves the following steps:
In the fuzzy TOPSIS method, weights and decision matrices are defined as fuzzy

numbers. The ranking occurs similarly as when using the classic TOPSIS method, namely
according to the distance between the positive and negative values, using Equation (1).

D =

 X̃11 X̃12 X̃1n
X̃21 X̃22 X̃2n
X̃m1 X̃m2 X̃mn

 (1)

When using triangular fuzzy numbers, X̃ij =
(
aij, bij, cij

)
, the function of the option (i = 1,

2, . . . , m) relates to the criterion (j = 1, 2, . . . , n).
Using triangular fuzzy numbers, each component Wj (standard weight) is represented

by Equation (2).
W =

(
w̃i, . . . , w̃j, . . . , w̃r

)
(2)

If the fuzzy numbers are triangular, these equations are applied to calculate the scales
of the unmeasured decision matrix for the positive and negative criteria:

Γ̃ij =

(
aij

c+j
,

bij

c+j
,

cij

c+j

)
(3)

Γ̃ij =

(
a−j
cij

,
a−j
bij

,
a−j
aij

)
(4)

which is shown in these relations (c+j = maxcij) and (a−j = minaij).
This leads to the following derivation of the scale-less fuzzy decision matrix (R):

R̃ =

 r̃11 r̃1j r̃1n
r̃i1 r̃ij r̃in
r̃m1 r̃mj r̃mn

 (5)
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where m is the number of alternatives and n is the number of criteria Equations (6) and (7)
outline the conditions for the positive and negative features if the fuzzy numbers
are triangular:

Ṽij = r̃ij.W̃j =

(
aij

c+j
,

bij

c+j
,

cij

c+j

)
.
(
Wj1, Wj2, Wj3

)
=

(
aij

c+j
.Wj1,

bij

c+j
.Wj2,

cij

c+j
.Wj3

)
(6)

Ṽij = r̃ij.W̃j =

(
a−j
cij

,
a−j
bij

,
a−j
aij

)
.
(
Wj1, Wj2, Wj3

)
=

(
a−j
cij

.Wj1,
a−j
bij

.Wj1,
a−j
aij

.Wj1

)
(7)

Equation (8) calculates the positive ideal solution matrix, while Equation (9) deter-
mines the negative ideal solution matrix.

A+ =
{

Ṽ+
1 , Ṽ+

2 , . . . ., Ṽ+
n

}
(8)

A− =
{

Ṽ−1 , Ṽ−2 , . . . ., Ṽ−n
}

(9)

where Ṽ+
i constitutes the best value of criterion I and Ṽ−i constitutes the worst value of

criterion I considering all the options.
The selections in A+ and A− represent options that are vastly superior and inferior,

respectively [72].
The separation between each choice and the ideal positive and negative solutions can

be calculated using the following equations.
To find the distance from each option to the neutral and positive solutions that are

optimal, Equation (10) can be used to express the distance between alternatives i and A
with a positive ideal solution:

S+
i =

n

∑
j=1

d
(

Ṽij, Ṽ+
j

)
i = 1, 2, . . . , m (10)

The distance between alternatives i and A and the negative ideal solution can be
formulated with Equation (11):

S−i =
n

∑
j=1

d
(

Ṽij, Ṽ−j
)

i = 1, 2, . . . , m (11)

If (a1, b1, c1) and (a2, b2, c2) are two triangular fuzzy numbers, then the distance
between them is given by Equation (12):

d
(

M̃1, M̃2

)
=

√
1
3

[
(a1 − a2)

2 + (b1 − b2)
2 + (c1 − c2)

2
]

(12)

It should be noted that d
(

Ṽij, Ṽ+
j

)
and d

(
Ṽij, Ṽ−j

)
are definite numbers.

The preference value for each alternative (i, V) employs the following Equation to
calculate (13): (

C+
i
)
=

S−i
S+i + S−i

; i = 1, 2 . . . m (13)

The alternatives are ranked to the C+
i in decreasing order [73].

3.3.2. Fuzzy Analytical Network Process Model (Fuzzy ANP)

The analytic hierarchy process (AHP) is often considered to be less comprehensive
and precise than ANP [74]. However, there may be dependencies among the criteria
which are not taken into account in the AHP. According to the AHP, each criterion in a
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one-way hierarchy is autonomous and there is no direct connection between them [75].
The ANP arranges decision criteria into a network of clusters and nodes to overcome these
AHP limitations [76,77]. The ANP is a relatively straightforward method for estimating
individual decision-making model criteria. In this study, ANP was used to calculate the
final weights by following the steps below [78]:

Step A: Building ANP Models and Structuring Problems

The problem needs to be precisely specified and arranged into logical systems before
an ANP model can be developed. Using the proper processes, a framework that accurately
represents the network can then be created based on the decision-maker’s judgment.

Step B: Pairwise comparisons

The ANP approach structures the problem into clusters, with decision components
occurring at various levels of abstraction. The first cluster represents the overall goal,
followed by criteria in the second cluster (e.g., topography, geology, climate, and biology),
and indicators in the third cluster (e.g., selected indicators). Pairwise comparisons are then
made using a control criterion to determine the importance of each component within each
cluster and to examine the interdependencies between cluster indicators. As suggested
by Feizizadeh et al. [79], on a scale of 1 to 9, the relative significance is evaluated, with
the lower bound signifying equal relevance and the upper bound signifying excessive
significance. The eigenvector can be used to describe the measure of an element’s influence
on other elements. This evaluation is based on the relative weights of two indicators—a
matrix row component and a matrix column component [30]. For reverse comparison, a
mutual value was established to highlight the importance of the element as it relates to
the (jth) element. The pairwise comparison values provided by the comparison matrix are
similar to those of the AHP, and the local priority vector is obtained from the eigenvector
using the following formula:

A.W = λmax.W (14)

Pairwise comparison matrix Matrix A has the biggest eigenvalue W, which stands for
the eigenvector. The eigenvector X of a consistency matrix A can be computed using

(A− λmaxI)X = 0 (15)

An important ANP verification criterion is the value. By calculating the consistency
ration (CR), this measure serves as a reference index for analyzing the estimated vector.

CI =
(λmax− n)

n− 1
(16)

The consistency index (CI) is used to evaluate the pair-wise matrix’s consistency. It is
required that the approved consistency value (CR) be less than 0.1.

CR =
CI
RI

(17)

RI indicates the average consistency index for reciprocal matrices of a similar order
containing any random entries. The estimated value is considered acceptable if CR ≤ 0.1;
otherwise, a new comparison matrix is continuously sought until this measure’s acceptable
range is not achieved.
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Step C: Calculating the Super Matrix

A pair-wise comparison helps the super matrix’s calculation, which is broken down
into clusters and those elements’ individual components. The following describes the
N-cluster supermatrix:
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Each kth cluster has mk elements, where CK stands for the kth cluster and (k = 1, 2 . . . n) [30].

Step D: Selection

The objective of this step is to analyze each signal and select the best one for the final
judgment based on the alternative weights obtained from the constructed supermatrix. The
final weight calculation method for the ANP model mapping of landslide susceptibility
assessment involves three steps:

Step 1: Objective (LSM): This step involves creating the subject model and structure
using 11 factors, including slope, aspect, elevation, lithology, land use, distance to fault,
distance to a river, distance to road, curvature, and rainfall. These factors are classified
into four clusters: topography (elevation, slope, curvature, and aspect), geology (soil type,
distance to fault and lithology), anthropogenic (land use and distance to road), and climate
(rainfall, distance to river).

Step 2: Make priority vectors and binary comparison matrices: The control criterion
and experts assess the importance or priority of criteria or sub-criteria in this step, assigning
a number between 1 and 9 to each. The final weights of the factors (clusters) are determined
by multiplying the relative weights of the factors in the matrix from stage two. This matrix
is made up of pairwise comparisons of the 11 research criteria using even comparisons and
fuzzy numbers, once looking at the relationships and again at the lack of communication.

Step 3: Determining the criterion and sub-criterion’s ultimate weight. The final weight
of each criterion is calculated in this stage by multiplying the matrices produced in the
previous step. The model was run in ArcGIS after the weights of the classes of each criterion
were calculated using the ANP approach and fuzzy membership functions. The weighting
of criteria and sub-criteria was achieved by using the Super Decision software.

3.4. Validation of the Methods

In landslide susceptibility and hazard mapping research, the precision and depend-
ability of landslide susceptibility maps are essential [80]. The model’s performance should
be assessed following a standard investigation of the receiver operating characteristics
(ROC) curve [19,81]. The ROC curve represents the true positive rate (AUCROC) and
false negative rate based on sensitivity and specificity, respectively [82]. AUCROC ranges
from 0 to 1, with 0.5 being the threshold. The higher the AUCROC value, the better the
performance and prediction accuracy of the methods, both for the training dataset and the
validation dataset [83].
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4. Results and Analysis
4.1. Model Building and Comparison

In this study, fuzzy TOPSIS and fuzzy ANP were used to derive the sub-criteria
weights. In fuzzy ANP, the network and pairwise comparisons of internal and external
factors and dependencies were constructed, and the Super Decision software generated
three large matrices. By combining target comparison matrices, criteria, and sub-criteria,
a large weightless matrix was formed. Finally, to transform the weightless matrix into a
weighted matrix, it was multiplied by a clustered matrix.

Table 2 presents the final weight of each criterion in the fuzzy ANP method. It is clear
that the factors of distance from road, soil, and rainfall have the best predictive power for
the landslide model, but lithology, curvature, and land use have the least impact on the
occurrence of landslides in the research area. Additionally, the results of the fuzzy TOPSIS
model indicate that the most significant factors in landslide modeling are the distance to
the road, rainfall, and distance to the fault, in that order. However, lithology and land
use hold the lowest importance on landslide occurrences. Table 2 shows the final weights
obtained from the two methods (fuzzy ANP and fuzzy TOPSIS).

Table 2. The performance of the methods based on fuzzy ANP and fuzzy TOPSIS.

Model Fuzzy ANP Fuzzy TOPSIS

Criteria The Weight
Final Rank Distance to

Positive Ideal
Distance to

Negative Ideal
Relative Proximity to

the Ideal Solution Rank

Distance to river 0.095 5 0.232 0.108 0.317 8
Distance to road 0.141 1 0.108 0.235 0.675 1
Land use 0.080 9 0.343 0.105 0.295 10
Lithology 0.028 11 0.355 0.111 0.283 11
Rainfall 0.108 3 0.117 0.185 0.598 2
Slope 0.089 7 0.201 0.108 0.343 6
Soil 0.112 2 0.151 0.110 0.423 4
curvature 0.060 10 0.343 0.111 0.303 9
Aspect 0.095 6 0.189 0.091 0.337 7
Distance to fault 0.104 4 0.145 0.149 0.502 3
Elevation 0.088 8 0.168 0.112 0.385 5

4.2. Developing Landslide Susceptibility Mapping

We utilized the weights obtained from the two methods (fuzzy ANP and fuzzy TOPSIS)
to produce and map landslide susceptibility in ArcGIS 10.7. The landslide susceptibility
maps that resulted from weighing the sub-criteria and criterion were divided into five
levels: very low, low, moderate, high, and very high (refer to Figure 4). Since the distance to
roads was found to be the most important factor in landslide occurrences, the distribution
of various susceptibility levels around roads appears to be fairly consistent. Inferences
can also be drawn that roads in the northern section of the region are more vulnerable to
landslides than those in the southern parts of the region (refer to Figure 4).

Table 3 displays the percentages of each class’s area and the percentage of landsides in
each class for both methods based on the validation dataset. According to the results from
the fuzzy ANP method, the very low susceptibility class covers the largest area (30.65%),
followed by the low susceptibility class (24.70%), the moderate susceptibility class (21.39%),
and the high susceptibility (14.74%) and very high susceptibility classes (8.52%). Moreover,
the table reveals that the percentage of landslides has decreased from very low (0 %) to
very high (86.67%). In the fuzzy TOPSIS method, the percentages for the moderate, very
low, low, high and very high susceptibility classes are 26.37%, 24.75%, 23.98%, 15.53%,
and 9.37%, respectively. However, the percentage of landslides is 0% for the very low and
low susceptibility classes, followed by high susceptibility (6.67%), moderate susceptibility
(10%), and very high susceptibility (83.33%).



Land 2023, 12, 1151 12 of 19

Land 2023, 12, x FOR PEER REVIEW 12 of 19 
 

Inferences can also be drawn that roads in the northern section of the region are more 
vulnerable to landslides than those in the southern parts of the region (refer to Figure 4). 

 

 
Figure 4. Landslide susceptibility maps of the models (a) fuzzy ANP (b) fuzzy TOPSIS. 

Table 3 displays the percentages of each class’s area and the percentage of landsides 
in each class for both methods based on the validation dataset. According to the results 
from the fuzzy ANP method, the very low susceptibility class covers the largest area 
(30.65%), followed by the low susceptibility class (24.70%), the moderate susceptibility 
class (21.39%), and the high susceptibility (14.74%) and very high susceptibility classes 
(8.52%). Moreover, the table reveals that the percentage of landslides has decreased from 
very low (0 %) to very high (86.67%). In the fuzzy TOPSIS method, the percentages for the 
moderate, very low, low, high and very high susceptibility classes are 26.37%, 24.75%, 
23.98%, 15.53%, and 9.37%, respectively. However, the percentage of landslides is 0% for 
the very low and low susceptibility classes, followed by high susceptibility (6.67%), mod-
erate susceptibility (10%), and very high susceptibility (83.33%). 

  

Figure 4. Landslide susceptibility maps of the models (a) fuzzy ANP (b) fuzzy TOPSIS.

Table 3. Proportional distribution of landslides in five different landslide classes, based on fuzzy
ANP and fuzzy TOPSIS.

Landslide Classes

Fuzzy ANP Fuzzy TOPSIS

Class Area
(%Pixels)

Landslide
(%Pixels)

Class Area
(%Pixels)

Landslide
(%Pixels)

Very low susceptibility 30.65 0.00 24.75 0.00
Low susceptibility 24.70 3.33 23.98 0.00
Moderate susceptibility 21.39 6.67 26.37 10.00
High susceptibility 14.74 3.33 15.53 6.67
Very high susceptibility 8.52 86.67 9.37 83.33

The area under the ROC curve (AUCROC) was examined based on the validation
dataset to verify the created landslide susceptibility map. It was determined to be 0.983
for the fuzzy TOPSIS approach and 0.938 for the fuzzy ANP. The findings show that for
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mapping the landslide susceptibility in the research area, the fuzzy TOPSIS method is more
accurate than the fuzzy ANP method. Table 4 and Figure 5 present these results.

Table 4. AUCROC values of the models using the validation dataset.

Row Models Validating Dataset

1 Fuzzy TOPSIS 0.983
2 Fuzzy ANP 0.938
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5. Discussion

Although landslides vary in their magnitude and severity, they typically cause signifi-
cant financial and human loss. Predicting landslide events generates important data for
policymakers, and multiple stakeholders, for land allocation projects before, during, and
after such events [84]. Government agencies, for instance, employ the straightforward pro-
cess of “landslide susceptibility mapping” (LSM) to develop landslide control policies [85].
The LSM can reduce loss and injury by identifying and classifying locations that are prone
to landslides and adjusting land planning decisions accordingly [86]. Landslide studies
have greatly benefited from the use of geographic information systems (GIS) and remote
sensing techniques (RS) because they enable the extraction of landslide conditioning factors
(LCFs) such as slope and distance to a road to identify areas prone to landslides [87].

The Saqqez-Marivan main road in the Kurdistan province of Iran, extending over the
course of 126 km, is one of the busiest roads in the area due to its geographical location.
It holds great importance for transportation and trade between multiple countries. Every
year, numerous large-scale rock movements and landslides threaten this road. In this study,
we considered the influence of slope, aspect, elevation, lithology, land use, distance to the
fault, distance to a river, distance to the road, soil type, curvature, and rainfall as predictors
for landslide occurrence. According to our fuzzy ANP model, classes 1700–1900 m had the
lowest impact on landslide incidence while 2100–2300 m had the largest impact. The fuzzy
TOPSIS model predicted that the class of 1500–1700 m had the highest impact while the
class of 2100–2300 m had the lowest impact. Furthermore, in accordance with both models,
the medium slopes of 30–40 degrees were associated with a greater likelihood of landslides
while the slopes of less than five degrees were least likely to be associated with landslides.

This issue indicates that the intermediate elevations are more sensitive to the occur-
rence of landslides in the study area. Conversely, the lower elevations do not have the
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potential for landslides as the slope is not severe enough, while the areas with higher
elevations have mainly slopes above 45 degrees. These are mostly rocky with shallow
soils, which is not conducive for the formation of landslides. In addition, human activity is
limited in these higher areas. Human activity that may trigger landslides mainly occurs
in the middle elevations. These elevations are coupled with slopes and depths of soil
conducive to landslides, and exacerbated by human activity such as cutting the slope for
the construction of roads and transmission lines.

That median slopes are more prone to landslides is consistent with Huang et al. [88].
In addition, one of the key factors affecting slope stability is the distance to rivers. This is
so because water flow’s shear stress is substantially greater than the shear strength of soil
banks and beds. Less than 100 m from rivers revealed the highest frequency of landslides
in the studied area, while areas furthest away from rivers (>2000 m) were least likely to
incur landslides. These findings concur with Pourghasemi et al. [89].

Another important factor is curvature, which is the rate of change of slope angle
or aspect in a specific direction (i.e., topographic convergence or divergence). Based on
both models, landslides were most likely to occur on concave slopes and least likely to
occur on flat slopes which aligns with Asmare [90]. The evaluation of the distance to
the fault demonstrated that landslides were most likely to occur in the distance class of
1500–2000 m to a fault and least likely in a distance of 3000 m or more, also consistent
with Pourghasemi et al. [89].

Both models predicted that the highest frequency of landslides was found on Entisols
and the lowest frequencies on Inceptisols. Entisols are young soils with mainly weak or
incipient development [91]. They are highly susceptible to landslides in the study area
as they are young and immature, and improper construction of roads on this type of soil
causes serious issues.

Landslides occurred most likely on pastures (fuzzy ANP model) or semi-dense forests
(fuzzy TOPSIS model). In contrast, farming land and agricultural land classes were less
likely to be exposed to landslides. Higher rainfalls were associated with landslides, es-
pecially the 700–800 mm class versus the 485–500 mm class. With increasing rainfall, the
probability of landslides’ occurrence increased. In other words, rainfall weakens the bond
between the soil mass and the rock by eroding and washing away the topsoil on the slope’s
surface. Landslides are more likely to occur as the shear strength of the rock and soil mass
decreases [88].

One of the most important causes of landslides is the underlying geology. Landslides
were most likely to occur on dark gray shales (fuzzy ANP model) or low-level valley
terraces (fuzzy TOPSIS model). Conversely, the occurrence was low on Orbit Olin limestone
formations (fuzzy ANP model) and Upper Cretaceous formations (fuzzy TOPSIS model).
Rosly et al. [92] concluded that areas covered by shale interbedded with sandstone are
more prone to landslides occurrence. In fact, shale contains a high amount of clay and is
classified as a highly plastic soil characterized by pore water pressure that increases with
rainfall. The amount of infiltration and consequently matric suction are decreased, and,
finally, the shear strength of the soil is diminished, all of which make landslides likely [92].

We discussed the FLTOPSIS method and showed that it outperformed the FLANP
methods in assessing landslide susceptibility. As TOPSIS is an easily understandable and
programmable calculation technique, it is more popular and has therefore been widely
used by researchers in some fields of study. In fact, it can account simultaneously for
various criteria with different units of measurement [93], and therefore overcome the weak
points of fuzzy logic including normalization and compatibility between the weights [94].
Additionally, TOPSIS has attempted to combine MCDMs with other methods such as fuzzy
theory to solve uncertainty and ambiguity relating to expert judgement [95].

The ANP method is simple, realistic, flexible, and cost-effective to use, and it can create
transparency in the decision-making process [96]. Balogun et al. [97] claimed that ANP can-
not model comparison judgments well because of the uncertainty entailed in a model based
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on human preference. Moreover, its applicability has been reported by Alilou et al. [98]
when evaluating watershed health by combining it with fuzzy logic FLANN.

As for study limitations, it needs to be noted that the FLTOPSIS method is not appli-
cable to solving hierarchical issues because a hierarchical system is not considered in this
method. Another limitation concerning the ANP method is the fact that questionnaires
need to be completed and the reliability of the estimated weights depends on the evaluation
by experts.

6. Conclusions

We applied a combination of fuzzy logic with MCDM approaches, including TOPSIS,
FLTOPSIS, ANP, and FLANP, to map landslide susceptibility for the Saqqez-Marivan
mountain road of Kurdistan Province, Iran. We constructed a database consisting of
eleven conditioning factors and a landslide inventory map, using 70% of the 100 observed
landslides to generate susceptibility maps and 30% for validation of the methods. In
summary, the key achievements and findings of this research are as follows:

1. The three most significant factors influencing landslide occurrence were distance to
the road, rainfall, and soil type.

2. Our methodology concluded that the FLTOPSIS method (AUC = 0.983) outperformed
the FLANP (AUC = 0.938) for predicting landslides in the study area. We conclude
that FLTOPSIS is better at solving uncertainty and ambiguity in judgement operations
than FLANP.

3. FLTOPSIS, thus far an infrequently used method in landslide susceptibility assessment,
constitutes a promising and innovative technique for creating susceptibility maps in
other landslide-prone areas, although further testing is warranted.

4. Local government agencies can implement the findings of this research to manage
and plan land development in susceptible landslide areas strategically.

5. In the future, we recommend combining fuzzy logic with other MCDM methods, such
as ELECTRE, VI-KORE, and ELECTRE III, and comparing the results to determine
which combination achieves the most reliable landslide susceptibility map.
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