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Abstract: Gully erosion is one of the most extreme land degradation processes that exhibit spatial
and temporal variation depending on topography, soil, climate, and land use and management
characteristics. This study investigated the impact of changes in rainfall, land use/land cover (LULC),
and land use management (LUM) practices on gully erosion in two midland watersheds (treated
Kecha and untreated Laguna) in the Upper Blue Nile basin of Ethiopia by using the LANDPLANER
model in combination with intensive field measurements and remote sensing products. We simulated
gully erosion under past (in 2005), present (in 2021), and three potential future curve number
conditions, each time under four rainfall scenarios (10, 30, 60, and 100 mm) using the dynamic erosion
index (e), static topographic (esp), and erosion channel (esp_channel) thresholds. Density plot analyses
showed that gullies frequently occur in low-lying gentle slope areas with relatively higher curve
number values. The best predictions of gullies identified through true positive rates (TPR) and true
negative rates (TNR) were achieved considering the static esp_channel > 1 for Kecha (TPR = 0.667 and
TNR = 0.544) and the dynamic e > 0.1 for 60 mm of rainfall in Laguna (TPR = 0.769 and TNR = 0.516).
Despite the 10 mm rainfall having negligible erosion-triggering potential in both watersheds, the
60 and 100 mm rainfall scenarios were 4–5 and 10–17 times, respectively, higher than the 30 mm
rainfall scenario. While the LULC change in the untreated Laguna watershed increased the impact of
rainfall on gully initiation by only 0–2% between 2005 and 2021, the combination of LULC and LUM
significantly reduced the impact of rainfall in the treated Kecha watershed by 64–79%. Similarly, the
gully initiation area in Kecha was reduced by 28% (from 33% in 2005 to 5% in 2021) due to changes
in LULC and LUM practices, whereas Laguna showed little increment by only 1% (from 42% in
2005 to 43% in 2021) due to LULC change. In addition, the future predicted alternative land use
planning options showed that gully initiation areas in Laguna could be reduced by 1% with only
LULC conversion; 39% when only LUM practices were implemented; and 37% when both were
combined. These results indicate that LUM practices outweigh the impact of LULC on gully erosion in
the studied paired watersheds. Overall, LANDPLANER successfully simulated the spatio-temporal
variation of gully erosion with scenario-based analyses and hence can be used to predict gullies in
the study area and other data-scarce regions with similar agro-ecological settings.
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1. Introduction

Gully erosion is one of the most extreme land surface processes in many regions. Yet,
its extent and spatio-temporal distributions are affected by the dynamic interaction of
several environmental factors. Despite gullies having no clear-cut upper limit boundaries
and that their width and depth could extend to hundreds of meters [1], they are considered
to have a tillage irreversible minimum depth of about 0.5 m [2], a width of one foot or
~0.3 m [3], and a cross-sectional area of one square foot or ~929 cm2 [4]. Once the initiation of
gullies starts, the upslope expansion of gullies mainly happens through the retreat of active
headcuts, called gully heads. Gully headcuts show a marked drop in elevation compared
to the gully channel bed [5]. Gullies can have various on-site and off-site environmental
impacts, including loss of land, damage to infrastructures, and sometimes casualties [6].

Studies show that topography, soil, climate, and land use/land cover (LULC) can
strongly affect the occurrence and distribution of gullies [1,6–8]. The topographic and soil-
related factors are known to have a relatively static influence, while the climate and LULC-
related factors have a dynamic effect on the initiation and expansion of gullies [9,10]. Thus,
changes in LULC and climatic elements such as rainfall can highly influence the initiation
and relative position of gully heads and, hence, define the spatio-temporal extent of gullies
across different climatic regions. A study conducted in the Mediterranean environment
of Spain showed that gully heads were best correlated with rainy day normal, a long-
term average depth of rainfall on rainy days, while rainfall and LULC have primary and
secondary controls over gully heads [11]. Vanmaercke et al. [5] confirmed that gully heads
globally showed sensitivity to rainfall intensities and could retreat extremely fast with up to
135 m yr–1, 3628 m2 yr–1, and 430 m3 yr–1 regarding linear, areal, and volumetric retreat rates,
respectively. The study also reported that the volumetric retreat rates were significantly
correlated with a rainy day normal and may increase by 200–300% if rainfall intensities
increase by the expected 10–15% due to climate change [5]. Amare et al. [12] also reported
that the amount of rainfall influences the retreat rate of valley bottom gullies. Similar
studies conducted across humid and sub-humid environments of the Upper Blue Nile
basin in Ethiopia showed that the rainfall-induced rise in the groundwater table [13–15]
and land use management (LUM) (e.g., [16,17]) could also influence the retreat rates and
the modeling of gully erosion. It was also reported that LULC and LUM practices could
influence the spatio-temporal evolution of gully erosion globally [7]. However, there is still
a gap in studying the separate and combined effect of changes in rainfall, LULC, and LUM
practices on gully erosion.

Several modeling approaches with different specific purposes and input data require-
ments have been used to assess gully erosion in the past decades. Process-based gully
erosion models consider the actual physical processes in a conceptually transparent ap-
proach, but their applicability is limited to small areas where they are derived and often
have large data requirements for calibration and validation purposes [18–20]. On the other
hand, empirical (e.g., statistical and machine learning) approaches can give meaningful
estimates with minimal assumptions and fewer data requirements [6]. However, despite
their robust predictions, the direct interpretation of machine learning-predicted results can
be difficult due to the lack of an explicit model [21]. Setargie et al. [17] employed a Random
Forest-based machine learning approach and revealed that runoff curve number and LULC
were among the top controlling factors that determine the spatial distribution of gullies in
the current study area. However, the effect of rainfall was not investigated in the previous
study, as it has been assumed homogeneous within the studied small watersheds [22]. In
addition to changes in rainfall and LULC, scenario-based assessments of gully erosion may
be required to model the effect of the adapted and future implemented LUM practices in



Land 2023, 12, 947 3 of 23

the watersheds. Thus, to completely understand the spatio-temporal dynamics of gully
erosion in the study area, the impact of variations in rainfall, LULC, and LUM practices
need to be further investigated.

In this study, a simplified distributed rainfall-runoff model called the LANDPLANER
(LANDscape, Plants, LANdslide, and Erosion) model was employed to investigate the im-
pact of changes in rainfall, LULC, and LUM practices on gully erosion modeling. The model
is a distributed model and is capable of simulating the dynamic response of watersheds for
gully initiation under a changing climate and LULC and LUM scenarios in a simplified
process-oriented way that corresponds with our understanding of the gully erosion [23,24].
LANDPLANER was selected in this study for three main reasons. First, the model predicts
the location of gullies and gully heads using a curve number-based approach, which was
identified as an important factor of gully erosion in the literature [25,26] and in our pre-
vious study conducted in the study area [17]. Second, the model can simulate the impact
of changing rainfall considering the threshold-dependent nature of gullies [25,27] that
would otherwise be impossible to account for the variability of rainfall in small watersheds.
Third, the applicability of the model was priorly tested in two study areas. The model was
tested in dryland and Mediterranean environments across Iran and Italy [6], respectively,
considering gullies as point and line features [9,10]. Thus, this study is the first case to
apply the model in a sub-humid climate in the tropical region of Africa representing gullies
by point and polygon features.

We evaluated the separate and combined impacts of rainfall, LULC, and LUM practices
on gully erosion with single and paired watershed approaches. The single watershed
approach (e.g., [28–30]) compared the model simulated results before and after changes in
each watershed, while the paired watershed approach (e.g., [31–33]) compared the results
before and after changes across different watersheds. Even though the impacts of rainfall,
LULC, or LUM practices were investigated in a few gully erosion studies (e.g., [11,34,35]),
to our knowledge, the separate and combined impacts were not examined using single and
paired watershed approaches. The objectives of this study were therefore to (1) characterize
gullies with input datasets of the model ahead of running the model, (2) test the potential of
LANDPLANER to predict the location of gullies based on the static and dynamic thresholds
of the model, and (3) conduct scenario-based analyses to model the impact of changes in
rainfall, LULC, and LUM practices on the spatio-temporal variation of gully erosion.

2. Study Area

The study was carried out in adjacent paired watersheds (Kecha and Laguna), sep-
arated by a common drainage divide, at the Aba Gerima site representing a midland
agro-ecology of the Upper Blue Nile basin in Ethiopia (Figure 1). The paired watersheds
were selected by design to evaluate the impact of LUM practices on gullies found across
the watersheds. While there was no LUM practice in Laguna in the past (2005) and present
(2021), Kecha has been part of the National Sustainable Land Management Program since
2011 [33]. The cultivated lands in Kecha are terraced, and the grazing and bushlands are
protected compared to Laguna. Hence, Kecha represents a treated condition with LUM
practices, while Laguna represents an untreated condition. Terraces, soil, and stone bunds
are widely employed land management practices in Kecha [33]. The elevation in Kecha and
Laguna varies between 1913 and 2122 and 1946 and 2253 m.a.s.l., while their slope gradients
vary between 0 and 89 and 0 and 133%, with mean values of 14% and 27%, respectively.
The long-term (1962–2020) mean annual rainfall of the site recorded at the nearest Bahir
Dar meteorological station is 1450 mm while the average daily temperature is about 20 ◦C.
The study site has a sub-humid (moist Weyna Dega) climate based on the classification of
Hurni et al. [36]. The study watersheds share similar characteristics in terms of altitude,
rainfall, temperature, and major crops except for differences in topographical settings and
the coverage of LUM practices (Table S1). They are highly vulnerable to gully erosion due
to human activities and climate variability [16,17]. In Kecha, 32 gullies were mapped in
2005 and increased to 37 gullies in 2021, whereas gullies in Laguna were 13 in 2005 and
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increased to 24 in 2021. The locations of gullies were further confirmed during recent field
observations conducted from August to September 2022. A detailed description of gullies
and the paired watersheds is given in Setargie et al. [17].
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3. Methodology
3.1. LANDPLANER Model

In this study, the LANDPLANER model was employed to evaluate the impact of
changes in rainfall, LULC, and LUM on gully erosion beyond testing the applicability of
the model in the study area. LANDPLANDER is an integrated hydrological, erosion, and
landslide model developed to simulate the effect of changing climate, land use, and hillslope
topography on the triggering/occurrence of erosion and landslide phenomena [23]. It
aimed to evaluate the dynamic response of watersheds for gully occurrences under different
rainfall and curve number scenarios [24]. It is an open-source raster-based distributed
model written in R programming language [38]. The model performs pixel-based analyses
with spatial input and output data provided in standard geographical ‘.asc’ format. The
modeling schema of LANDPLANER allows for the computation of erosion indices and
topographic thresholds, taking input from its rainfall-runoff hydrological modules.

3.1.1. Hydrological Modeling

The hydrological model considers rainfall, runoff, infiltration, exfiltration, evapora-
tion, and transpiration for water repartition, while it uses a modified runoff curve number
approach [23,24] to estimate the surface runoff. The runoff curve number (CN), devel-
oped by the former Soil Conservation Service (SCS) of the United States Department of
Agriculture (USDA), is an empirical parameter used to calculate direct runoff from excess
rainfall based on the hydrologic soil-cover complexes of the area [39]. Unlike the original
CN approach where runoff is computed based on a weighted average CN assigned for
the whole basin [39], this model adds the upslope generated runoff to each downslope
draining cell of the basin (Equation (1)):

Qo f f =
(P + ∑ Qon − λS)2

P + ∑ Qon + (1 − λ)S
(1)

where Qo f f is the runoff towards the downslope cell (in), P is the depth of rainfall (in), Qon
is the runoff from the upslope cell (in), λ is the initial abstraction ratio (dimensionless), and
S is the maximum potential retention (in). Qo f f , P, and Qon are computed on a daily basis,
while S0.05 was used for an initial abstraction of 5% (i.e., λ = 0.05S).

A study by Hawkins et al. [40] suggested that the use of S0.05 (i.e., λ = 0.05S) as shown
in Equation (2) might be more appropriate than the original S0.2 (i.e., λ = 0.2S) relationship
derived by SCS [39]:

S0.05 = 25.4 · 1.33
[

1000
CN

− 10
]1.15

(2)

where CN is the curve number (dimensionless), and S0.05 is the maximum potential reten-
tion (mm). A normal antecedent moisture condition (i.e., AMC II) was assumed to calculate
the associated runoff curve number-II (CN2) in the study watersheds.

3.1.2. Erosion Index

The dynamic erosion index (e) indicates the stream power of direct runoff on the land
surface and is used to model the erosion-triggering potential of surface runoff. Detailed
investigations on the local rainfall, slope, soil, and LULC and LUM characteristics are nec-
essary to model the dynamic erosion process using the hydrologic model. Hence, Rossi [23]
introduced a potential erosion index (Equation (3)), which is further simplified into an
expected erosion index (Equation (4)), to identify the potential hotspot areas of erosion:

epot = α ·
(Qo f f · sin(s)

S0.05

)β

(3)

e =
Qo f f · sin(s)

S0.05
(4)
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where epot and e are potential and expected erosion indices (dimensionless), Qo f f is the cell
runoff calculated by the hydrological model (mm), s is slope angle (degree), α and β are
coefficients (dimensionless) assumed unity unless calibration is made, and S0.05 (mm) is
given in Equation (2).

3.1.3. Topographic Thresholds

The physical-based topographic gully head threshold equation proposed by Torri
and Poesen [25], as shown in Equation (5), is used to locate gully heads exceeding the
topographic threshold (esp) of the area:

sin(s) ≥ 0.73ce1.3RFC(0.00124 · S0.05 − 0.037)A−0.38 (5)

where s is the slope angle (degree), c is a correction coefficient (dimensionless) to represent
unaccounted sources of variation (assumed unity), RFC is surface rock fragment cover
(%), S0.05 (mm) is given in Equation (2), and A is an upslope contributing area (ha). For
the gully head to initiate, the above equation must exceed its critical threshold. The esp
marks gully initiation points based on the topographic threshold approach [25], while the
erosion_channel defines erosion channels downslope of the gully initiation points, which
marks potential areas of gullies [23].

Although the standard formulation of the topographic threshold model is considered
static as it does not directly depend on rainfall and generated runoff [9,23], LANDPLANER
considers the dynamic effects of changing rainfall and LULC on gully erosion by consider-
ing different scenarios of rainfall and LULC [24].

3.2. Preparation and Characterization of Model Input Data

Before running LANDPLANER, the geomorphic input variables of the model (i.e.,
elevation, slope, flow direction, and flow accumulation) and the curve number maps
were analyzed using density plot analysis. The density plot analysis helped to show the
distribution of gully and non-gully areas based on the probability density function of the
input variables of the model [9,26].

The spatial input datasets were extracted from a very high resolution (5 m × 5 m) digi-
tal elevation model (DEM) map aggregated from a high-accuracy 0.5-m ALOS World 3D En-
hanced DEM (https://www.aw3d.jp/en/products/enhanced/, accessed on 14 March 2023),
high-resolution (QuickBird and Pleiades) satellite images, and local soil maps created
by means of intensive fieldwork and laboratory analyses [37]. The DEM-derived mor-
phological input variables of the model were elevation, slope, flow direction, and flow
accumulation maps. Using the LULC maps (Figure 1c; Table S2) manually digitized from
the high-resolution satellite images taken in 2005 and 2021, together with detailed soil
maps of the areas (Figure 1d; Table S3), the curve number maps were produced for the past
(i.e., CN2005) and present (i.e., CN2021) scenarios using the associated hydrologic soil-cover
complexes (i.e., hydrologic soil groups, land uses, and treatment classes; see Table S4) [39].
All the spatial input datasets were analyzed and prepared (in standard geographical ‘.asc’
format) in ArcGIS Pro [41] and GRASS GIS [42] environments, while LANDPLANER was
run in the R environment [38].

3.3. Validation of Model Prediction Performance

The prediction performance of the model was validated using statistical metrics, and
the best-performing scenarios were identified for use in predicting the location of gullies
in the study watersheds. The gully inventory maps were prepared by digitizing a total of
126 gullies from satellite images taken in 2005 and 2021 (see Table 1).

https://www.aw3d.jp/en/products/enhanced/
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Table 1. Details of the satellite images used to construct the gully inventory maps.

Study Site Satellite Sensor Spectral
Resolution

Spatial Resolution
(m)

Acquisition Date
(Day Month Year)

Aba Gerima
QuickBird Multispectral 0.6 × 0.6 6 March 2005
Pleiades Multispectral 0.5 × 0.5 7 January 2021

The performance metrics of gully head and erosion channel predictions were evaluated
based on the dynamic erosion indices (e) and the static topographic (esp) and erosion channel
(esp_channel) threshold outputs of the LANDPLANER model. The predicted esp are binary
results that can be directly used to validate the presence of gully heads, while certain critical
thresholds needed to be assumed for the continuous e and esp_channel variables to validate
their predictions of gullies. The critical thresholds of erosion indices (e) exceeding 0.01,
0.05, 0.1, 0.5, 1, 5, and 10 were used to evaluate the occurrence of gullies depending on the
curve number and rainfall scenarios, while an erosion channel (esp_channel) exceeding 1
was assumed to validate gullies. Although the erosion index (e) was designed to show the
erosion potential (Equation (3); [23]) and needs calibration to directly convert into (gully)
erosion amount, it can also be used to predict the location of gullies [9,10].

The statistical accuracy metrics used to evaluate the agreement between model predic-
tion and observed gullies in the study areas made use of true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) values. The additional derived metrics
included true positive rate or sensitivity (Equation (6)), true negative rate or specificity
(Equation (7)), and overall accuracy or efficiency (Equation (8)).

TPR =
TP

TP + FN
(6)

TNR =
TN

TN + FP
(7)

OA =
TP + TN

TP + TN + FP + FN
(8)

The TP and TN values count the correctly predicted gullied and non-gullied pixels
whereas, and the FP and FN values count the wrongly classified gullied and non-gullied
pixels, respectively. On the other hand, the TPR and TNR values show the contribution of
correctly predicted gullied and non-gullied pixels relative to the entire observed gully and
non-gully areas, respectively. Similarly, the FPR and FNR values indicate the proportion
of wrongly classified gullied and non-gullied pixels relative to the total observed gully
and non-gully areas, respectively. Hence, the higher the TPR and TNR value, the better
the predicted performance. On the contrary, the prediction performance decrease as FPR
and FNR values increase. Since a good predicting model needs to have a higher TPR and
TNR values, the predicted results were compared by their jointly maximized values (i.e.,
an average of TPR and TNR) to select the best-performing scenarios [10]. The ‘caret’ and
‘ggplot2’ packages in R were used for the accuracy assessment of predicted results and the
presentation of analysis results, respectively.

3.4. Assessing the Impact of Rainfall, LULC, and LUM Practices on Gully Erosion

Five curve number scenarios were considered to evaluate the impact of changes in
rainfall, LULC, and LUM practices on the spatio-temporal modeling of gully erosion. The
past (CN2005) and present (CN2021) curve number scenarios were prepared using the oldest
(2005) and latest (2021) high-resolution satellite images available (Table 1) to show the
impact of LULC and LUM practices in the study area. In addition, three future curve
number scenarios (CNoption1, CNoption2, and CNoption3) prepared based on alternative land
use planning options were used to assess the impact of LULC changes and LUM practices
on gully initiation. The CNoption1, CNoption2, and CNoption3 scenarios assessed the effect of
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proposed changes in LULC, LUM, and LULC and LUM, respectively, on gully initiation in
Laguna. These alternative land use planning options, adapted from the national integrated
local level land use planning manual prepared by the Ministry of Agriculture (MoA) of
The Federal Democratic Republic of Ethiopia (FDRE), were developed based on a simple
and less-expensive land use planning method called land capability classification [43].

Similarly, four event-based rainfall scenarios of 10, 30, 60, and 100 mm were considered
based on a literature review. These critical rainfall thresholds are potentially capable of
triggering rills and (ephemeral) gullies worldwide [1,18] and are plausible values for the
studied watersheds. A daily rainfall depth of 7.5–20 mm was needed to initiate rills in
croplands [44,45], 15–18 mm to initiate ephemeral gullies in croplands [46], and 80–100 mm
to initiate gullies in forest land [47]. The locations of gullies were predicted by the model for
four rainfall scenarios (i.e., 10, 30, 60, and 100 mm) under two curve number scenarios (i.e.,
CN2005 and CN2021) for Kecha and under five curve number scenarios (i.e., CN2005, CN2021,
CNoption1, CNoption2, and CNoption3) for Laguna. Hence, a total of 8 and 20 simulations
were run for Kecha and Laguna watersheds, respectively. Figure 2 presents the detailed
methodological flowchart followed in this study.
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The separate and combined impacts of changes in rainfall, LULC, and LUM treatment
conditions in the study watersheds between 2005 and 2021 were evaluated using single and
paired watershed approaches [33]. Although Laguna remains untreated in the past (i.e.,
2005) and present (i.e., 2021), Kecha was treated since 2011. The paired watershed approach
compared differences in the predicted gully initiation areas between the treated (Kecha)
and untreated (Laguna) watersheds, while the single watershed approach compared the
separate and combined impact of rainfall, LULC, and LUM practices in each watershed.
In addition to the past and present scenarios, three alternative land use planning options
were formulated to evaluate the separate and combined influence of LULC and LUM
practices on future gully initiation based on the MoA FDRE [43] guidelines. The first
option (CNoption1) recommended LULC conversion by avoiding crop cultivation on steep
slopes (>30%) and afforesting hillslope (>50%) areas without implementing any LUM
practices. The second option (CNoption2) recommended the implementation of different
LUM practices extensively monitored across 42 field plots in three experimental sites in
the Upper Blue Nile basin. The third option (CNoption3) recommended both the conversion
of LULC and the implementation of LUM practices. The LUM treatment options were
‘bund+grass’ for cultivated lands, ‘enclosure’ for grazing lands, ‘trench+enclosure’ for
bushlands, and ‘napier+desmodium’ for khat plantations. The validated curve number
values of these LUM options [30] were used to evaluate their impact on gully initiation
in Laguna.

4. Results
4.1. Characterizing Gully Erosion with Model Input Variables

The input variables of the model in both watersheds exhibited spatial (Figure 3a–h)
and spatio-temporal variations (Figure 4a–d).
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The density plots of elevation showed that gullies in both watersheds were frequently 
found in the low-lying areas around 1935–1970 m.a.s.l. (Kecha) and 1975–2005 m.a.s.l. (La-
guna) relative to hillslope areas (Figure 5a,f,k,p). Most of the gullies in Laguna were con-
centrated in the lowland areas, except for little presence in the hillslope areas compared 
to Kecha, which showed more distribution of gullies over the watershed area. Most gullies 
at both watersheds were found in gentle slopes between 5 and 20°, with gullies at Laguna 
having slightly higher slopes compared to Kecha (higher modal value in Figure 5b,g,l,q). 
In addition, most gullies in both watersheds were found on NW-facing slopes, with La-
guna showing a clear distinction, while most non-gully areas in Kecha and Laguna were 

Figure 3. Maps of DEM-derived input variables of the LANDPLANER model for Kecha (top panel,
a–d) and Laguna (bottom panel, e–h) watersheds: (a,e) elevation, (b,f) slope, (c,g) flow direction,
and (d,h) flow accumulation. NE: north-east; N: north; NW: north-west; W: west; SW: south-west; S:
south; SE: south-east; E: east.
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in 2005, and (d) Laguna in 2021. See Table S4a–d for the derivation of runoff curve number-II.

The density plots of elevation showed that gullies in both watersheds were frequently
found in the low-lying areas around 1935–1970 m.a.s.l. (Kecha) and 1975–2005 m.a.s.l.
(Laguna) relative to hillslope areas (Figure 5a,f,k,p). Most of the gullies in Laguna were
concentrated in the lowland areas, except for little presence in the hillslope areas compared
to Kecha, which showed more distribution of gullies over the watershed area. Most gullies
at both watersheds were found in gentle slopes between 5 and 20◦, with gullies at Laguna
having slightly higher slopes compared to Kecha (higher modal value in Figure 5b,g,l,q). In
addition, most gullies in both watersheds were found on NW-facing slopes, with Laguna
showing a clear distinction, while most non-gully areas in Kecha and Laguna were on
NW- and E-facing slopes, respectively (Figure 5c,h,m,r). Both gully and non-gully areas
exist in low and high flow accumulation areas, which makes it difficult to differentiate
gullies just by looking at the flow accumulation frequency density maps (Figure 5d,i,n,s).
Gullies showed preference towards the higher curve number values, primarily around 90
(in 2005) and between 81 and 84 (in 2021) for Kecha and around 90 (in 2005 and 2021) for
Laguna (Figure 5e). The higher numbers corresponded with cultivated and grazing lands
in high-clay soils. Conversely, the higher density of non-gullied areas was concentrated
around the same curve number values, while it was overlaid with gullied areas. The
response of input factors of the model showed a similar trend for the past and present
conditions of gullies in the study watersheds, despite the expansion and addition of new
gullies (Figure 5).

4.2. Evaluating Dynamic and Static Thresholds for Different Rainfall and Curve Number Scenarios

4.2.1. Performance of Erosion Index (e) Thresholds for Different Curve Number and
Rainfall Scenarios

LANDPLANER predicted the potential locations of gullies through erosion indices
(e) for the considered curve number (CN2005, CN2021) and rainfall (10, 30, 60, 100 mm)
scenarios (Figure 6a–p). The maximum erosion indices with the highest erosion potential
corresponding to rainfall magnitudes of 10, 30, 60, and 100 mm in 2005 were 0.05, 1.37,
8.78, and 28.45 for Kecha and 0.06, 2.29, 17.44, and 48.73 for Laguna, respectively (Table S5).
These maximum values of erosion indices increased to 0.01, 0.24, 2.36, and 12.57 in Kecha
and to 0.06, 2.25, 13.03, and 53.82 in Laguna, corresponding to the rainfall amounts of 10, 30,
60, and 100 mm in 2021, respectively (Table S5). As expected, the average and maximum
erosion indices showed an increasing trend with increasing runoff due to an increase in
the magnitude of rainfall (see Equations (1) and (4)), with the maximum values found
for 100 mm of rainfall for both curve number scenarios in both watersheds. The average
and maximum erosion indices for CN2021 were also slightly higher than that of CN2005 for
the same rainfall magnitudes. Laguna was found to have relatively higher average and
maximum erosion indices compared to Kecha under similar curve number and rainfall
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conditions (Table S5). The erosion hotspot areas in both watersheds were highlighted by
higher erosion indices (Figure 6).
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Figure 5. Density plots showing the response of geomorphic input variables for gullied and non-
gullied areas in 2005 and 2021 for Kecha (left panel) and Laguna (right panel) watersheds: (a,f,k,p)
elevation, (b,g,l,q) slope, (c,h,m,r) flow direction, (d,i,n,s) flow accumulation, and (e,j,o,t) curve
number maps. NE: north-east; N: north; NW: north-west; W: west; SW: south-west; S: south; SE:
south-east; E: east.
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Figure 6. LANDPLANER-simulated erosion indices: for (a,i) CN2005 and 10 mm, (b,j) CN2005 and
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and 30 mm, (g,o) CN2021 and 60 mm, and (h,p) CN2021 and 100 mm scenarios in Kecha (left panel)
and Laguna (right panel) watersheds.
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In addition, the prediction capabilities of the erosion indices exceeding certain critical
thresholds (i.e., 0.01, 0.05, 0.1, 0.5, 1, 5, and 10) were tested for all curve number and
rainfall scenarios. The performance of erosion indices exceeding these critical thresholds
varied between 0 and 1 (reported using the TPR, TNR, FPR, FNR, and OA metrics) and
was summarized in confusion matrices (Tables S6 and S7). Despite the predicted results
showing higher OA (close to 1) for the majority of rainfall, curve number, and erosion index
threshold combinations, most of them did not achieve good values of both TPR and TNR
(i.e., >0.5) at the same time.

The overall analysis of the predicted results showed that the TNR performances
increased as the erosion index thresholds increased but at the expense of decreasing TPR.
As can be seen in Table 2, the best performances for gully channel-based predictions were
obtained for a rainfall amount of 100 mm in Kecha (using e > 0.1 in CN2005) and for a rainfall
amount of 60 mm in Laguna (using e > 0.1 in CN2005). Similarly, the best performances for
gully head-based predictions were achieved for a 100 mm rainfall in Kecha (using e > 0.1 in
CN2021) and for a rainfall amount of 60 mm in Laguna (using e > 0.1 in CN2005). In either
case, the gully head-based predictions performed better than most gully channel-based
predictions. On the contrary, the worst performing scenario for all was found considering a
rainfall amount of 10 mm (Tables S6 and S7). The predictions made by the best-performing
erosion indices showed that Laguna achieved a slightly better performance than Kecha
(Table 2; Figure 7). The fact that the 10 mm rainfall scenario showed lower performance in
predicting gullies does not mean the model is bad; rather, it means the scenario showed the
least correlation and hence cannot be used to predict gullies in the study area.

Table 2. A confusion matrix table showing the prediction performance of different erosion index (e)
thresholds for rainfall amounts of 100 mm for Kecha and 60 mm for Laguna watersheds.

Watershed
Scenario

e
Gully Channel-Based Performance Gully Head-Based Performance

Curve Number Rainfall
(mm) TPR TNR FPR FNR OA TPR + TNR

2 TPR TNR FPR FNR OA TPR + TNR
2

Kecha

CN2005
(untreated) 100

0.01 0.557 0.400 0.600 0.443 0.401 0.478 0.848 0.400 0.600 0.152 0.400 0.624
0.05 0.557 0.400 0.600 0.443 0.402 0.478 0.848 0.401 0.599 0.152 0.401 0.625
0.1 0.495 0.494 0.506 0.505 0.494 0.495 0.758 0.494 0.506 0.242 0.494 0.626
0.5 0.230 0.799 0.201 0.770 0.794 0.515 0.394 0.799 0.201 0.606 0.799 0.597
1 0.121 0.905 0.095 0.879 0.898 0.513 0.242 0.905 0.095 0.758 0.905 0.574
5 0.012 0.997 0.003 0.988 0.988 0.505 0.030 0.997 0.003 0.970 0.997 0.514
10 0.002 1.000 0.000 0.998 0.991 0.501 0.000 1.000 0.000 1.000 0.999 0.500

CN2021
(treated) 100

0.01 0.552 0.400 0.600 0.448 0.401 0.476 0.750 0.400 0.600 0.250 0.401 0.575
0.05 0.551 0.402 0.598 0.449 0.404 0.477 0.750 0.403 0.597 0.250 0.403 0.576
0.1 0.386 0.670 0.330 0.614 0.667 0.528 0.525 0.669 0.331 0.475 0.669 0.597
0.5 0.088 0.947 0.053 0.912 0.939 0.517 0.100 0.947 0.053 0.900 0.947 0.523
1 0.030 0.988 0.012 0.970 0.979 0.509 0.050 0.988 0.012 0.950 0.988 0.519
5 0.000 1.000 0.000 1.000 0.990 0.500 0.000 1.000 0.000 1.000 1.000 0.500
10 0.000 1.000 0.000 1.000 0.990 0.500 0.000 1.000 0.000 1.000 1.000 0.500

Laguna

CN2005
(untreated) 60

0.01 0.640 0.293 0.707 0.360 0.294 0.466 0.846 0.293 0.707 0.154 0.293 0.570
0.05 0.640 0.296 0.704 0.360 0.297 0.468 0.846 0.296 0.704 0.154 0.296 0.571
0.1 0.547 0.516 0.484 0.453 0.516 0.532 0.769 0.516 0.484 0.231 0.516 0.643
0.5 0.203 0.852 0.148 0.797 0.850 0.528 0.231 0.852 0.148 0.769 0.852 0.542
1 0.063 0.952 0.048 0.937 0.948 0.507 0.077 0.952 0.048 0.923 0.951 0.514
5 0.004 0.999 0.001 0.996 0.995 0.501 0.000 0.999 0.001 1.000 0.999 0.499
10 0.000 1.000 0.000 1.000 0.996 0.500 0.000 1.000 0.000 1.000 1.000 0.500

CN2021
(untreated) 60

0.01 0.621 0.293 0.707 0.379 0.295 0.457 0.760 0.293 0.707 0.240 0.293 0.527
0.05 0.621 0.296 0.704 0.379 0.298 0.458 0.760 0.296 0.704 0.240 0.297 0.528
0.1 0.526 0.508 0.492 0.474 0.508 0.517 0.560 0.508 0.492 0.440 0.508 0.534
0.5 0.194 0.850 0.150 0.806 0.844 0.522 0.160 0.849 0.151 0.840 0.849 0.505
1 0.071 0.952 0.048 0.929 0.945 0.511 0.080 0.951 0.049 0.920 0.951 0.516
5 0.002 0.999 0.001 0.998 0.991 0.500 0.000 0.999 0.001 1.000 0.999 0.499
10 0.000 1.000 0.000 1.000 0.992 0.500 0.000 1.000 0.000 1.000 1.000 0.500

CN2005: curve number scenario in 2005; CN2021: curve number scenario in 2021; e: erosion index; TPR: true
positive rate; TNR: true negative rate; FPR: false positive rate; FNR: false negative rate; OA: overall accuracy.
Note: values in bold red, yellow, and green indicate prediction performances between 0.4 and 0.45, between 0.45
and 0.5, and greater than or equal to 0.5, respectively, while the green, yellow, and orange highlighted rows show
the best predictions in decreasing order achieved by a specific erosion index threshold.
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4.2.2. Performance of Topographic (esp) and Erosion Channel (esp_channel) Thresholds 
for Different Curve Number Scenarios 

The predicted esp and esp_channel maps (Figure 8) showed that more areas of Kecha 
watershed in CN2005 were predicted as potentially gullied areas compared to the CN2021 
scenario. The corresponding accuracy assessment results (Table 3) also indicated that 
CN2005 scenarios in both watersheds were better in predicting most gully heads and erosion 

Figure 7. The best predictions made by LANDPLANER considering a simulated erosion index (e)
exceeding a critical threshold of 0.1 in Kecha (top) and Laguna (bottom) for (a) CN2005 and 100 mm,
(b) CN2021 and 100 mm, (c) CN2005 and 60 mm, and (d) CN2021 and 60 mm.

4.2.2. Performance of Topographic (esp) and Erosion Channel (esp_channel) Thresholds for
Different Curve Number Scenarios

The predicted esp and esp_channel maps (Figure 8) showed that more areas of Kecha
watershed in CN2005 were predicted as potentially gullied areas compared to the CN2021
scenario. The corresponding accuracy assessment results (Table 3) also indicated that
CN2005 scenarios in both watersheds were better in predicting most gully heads and
erosion channels than the CN2021 scenario. In addition, although esp and esp_channel
yielded comparable performances, the use of erosion_channel > 1 was found to slightly
improve the performance of most gully erosion predictions compared to esp. Similar to
the dynamic indices, gully head-based predictions showed better performances than gully
channel-based predictions for most of the static thresholds, with Laguna scoring a higher
performance than Kecha (Table 3).
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Figure 8. LANDPLANER-simulated results of the topographic threshold (esp) and erosion channel
(esp_channel) exceeding a critical threshold of 1 for (a) Kecha in 2005, (b) Kecha in 2021, (c) Laguna in
2005, and (d) Laguna in 2021.

Table 3. A confusion matrix table showing the prediction performances of topographic (esp) and
erosion channel (esp_channel) thresholds.

Watershed Threshold
Scenario Gully Channel-Based Performance Gully Head-Based Performance

Curve
Number TPR TNR FPR FNR OA TPR + TNR

2 TPR TNR FPR FNR OA TPR + TNR
2

Kecha
(treated)

esp CN2005 0.411 0.666 0.334 0.589 0.664 0.539 0.515 0.666 0.334 0.485 0.666 0.590
CN2021 0.083 0.951 0.049 0.917 0.942 0.517 0.150 0.951 0.049 0.850 0.950 0.550

esp_channel CN2005 0.540 0.545 0.455 0.460 0.545 0.543 0.667 0.544 0.456 0.333 0.544 0.606
CN2021 0.145 0.913 0.087 0.855 0.906 0.529 0.250 0.913 0.087 0.750 0.913 0.581

Laguna
(untreated)

esp CN2005 0.619 0.578 0.422 0.381 0.578 0.599 0.692 0.577 0.423 0.308 0.577 0.635
CN2021 0.587 0.575 0.425 0.413 0.575 0.581 0.680 0.574 0.426 0.320 0.574 0.627

esp_channel CN2005 0.760 0.443 0.557 0.240 0.444 0.601 0.846 0.442 0.558 0.154 0.442 0.644
CN2021 0.698 0.430 0.570 0.302 0.432 0.564 0.760 0.429 0.571 0.240 0.429 0.595

esp: topographic threshold; esp_channel: erosion channel; CN2005: curve number scenario in 2005; CN2021: curve
number scenario in 2021; TPR: true positive rate; TNR: true negative rate; FPR: false positive rate; FNR: false
negative rate; OA: overall accuracy. Note: Values in bold red, yellow, and green colors indicate prediction
performances below 0.4, between 0.4 and 0.5, and greater than or equal to 0.5, respectively, while the green,
yellow, and red highlighted rows show the best predictions in decreasing order achieved by a specific erosion
index threshold.
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4.3. Impact of Rainfall Variability, LULC Changes, and LUM Practices on Gully Erosion in the
Paired Watersheds

The results showed that, despite the average erosion-triggering potential of a 10 mm
rainfall being insignificant for both watersheds across all curve number scenarios, it in-
creased to 0.03, 0.15, and 0.35 for Kecha in 2005; 0.01, 0.04, and 0.12 for Kecha in 2021; 0.05,
0.25, and 0.66 for Laguna in 2005; and 0.05, 0.25, and 0.67 for Laguna in 2021 for 30, 60, and
100 mm of rainfall, respectively (Table 4). The erosion triggering potential of the 60 and
100 mm rainfall scenarios in Kecha were 4–5 and 10–17 times higher than the 30 mm rainfall
scenario, respectively. Similarly, the 60 mm and 100 mm rainfall scenarios in Laguna were 5
and 13 times higher than the 30 mm rainfall scenario, respectively. These results indicated
that the impact of rainfall for Kecha was 64–79% lower in 2021 compared to the same
thresholds in 2005, whereas Laguna showed little change (i.e., only 0–2% higher) between
2005 and 2021 (Table 4). The percentage change of topographic thresholds (esp) in Kecha
showed a reduction of gully initiation areas by 28% (from 33% in 2005 to 5% in 2021). On
the contrary, Laguna showed a little increment of gully initiation areas by only 1% (from
42% to 43%) during the same period (Table 4).

Table 4. The impact of rainfall and past and present curve number scenarios on gully initiation in
Kecha and Laguna watersheds.

Watershed

Scenario Impact of Rainfall Gully Initiation

Curve
Number

Rainfall
(mm Day−1) Min. Max. Mean St.

Dev.

Times *
(Compared
to 30 mm)

Change ** (%)
(from 2005)

Gully
Initiation
(Pixels)

Gully
Initiation

(%)

Change ** (%)
(from 2005)

Kecha

CN2005

10 0.00 0.05 0.00 0.00 - -

53,585 33 -30 0.00 1.37 0.03 0.06 - -
60 0.00 8.78 0.15 0.29 4 -

100 0.00 28.45 0.35 0.72 10 -

CN2021

10 0.00 0.01 0.00 0.00 - -

7910 5 −28
30 0.00 0.24 0.01 0.01 - −79
60 0.00 2.36 0.04 0.07 5 −72

100 0.00 12.57 0.12 0.25 17 −64

Laguna

CN2005

10 0.00 0.06 0.00 0.00 - -

58,145 42 -30 0.00 2.29 0.05 0.08 - -
60 0.00 17.44 0.25 0.47 5 -

100 0.00 48.73 0.66 1.32 13 -

CN2021

10 0.00 0.06 0.00 0.00 - -

58,633 43 1
30 0.00 2.25 0.05 0.08 - 0
60 0.00 13.03 0.25 0.46 5 1

100 0.00 53.82 0.67 1.31 13 2

CN2005: Curve number scenario in 2005; CN2021: Curve number scenario in 2021; Min.: minimum; Max.:
maximum; St. Dev.: standard deviation. * The mean erosive potentials of the 60 and 100 mm rainfalls were equal
to the reported results times the mean erosive power of the 30 mm rainfall. ** The mean change in the erosive
potentials of the 30, 60 and 100 mm rainfalls for the CN2021 scenario compared to the same rainfall amounts
in CN2005.

The comparison of different alternative land use planning options in Laguna (Figure 9;
Table S8) also showed that the impact of rainfall on gully initiation could be reduced by
3–6% for CNoption1 due to LULC conversion, by 94–96% for CNoption2 due to LUM options,
and by 89–93% for CNoption3 due to changes in LULC and LUM options (Table 5). As a
result, the separate impact of LULC conversion could reduce gully initiation by only 1%,
while the separate implementation of LUM options significantly reduced gully initiation
by 39%. In addition, gully initiation was reduced by 37% when LULC and LUM options
were combined (Table 5).
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Figure 9. The land use/land cover (LULC) and curve number (CN2) maps of the proposed alternative
land use planning options in the Laguna watershed: (a) LULC for Option1, (b) LULC for Option2,
(c) LULC for Option3, (d) CN2 for Option1, (e) CN2 for Option2, and (f) CN2 for Option3. See
Tables S4 and S8 for the derivation of the runoff curve number-II.

Table 5. The impact of different rainfall and alternative land use planning options on gully initiation
in the Laguna watershed.

Watershed

Scenario Impact of Rainfall Gully Initiation

Curve
Number

Rainfall
(mm Day−1) Min. Max. Mean St.

Dev.

Times *
(Compared
to 30 mm)

Change ** (%)
(from

Baseline)

Gully
Initiation
(Pixels)

Gully
Initiation

(%)

Change ** (%)
(from

Baseline)

Laguna

CN2021
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10 0.00 0.06 0.00 0.00 - -

58,633 43 -30 0.00 2.25 0.05 0.08 - -
60 0.00 13.03 0.25 0.46 5 -

100 0.00 53.82 0.67 1.31 13 -

CNoption1

10 0.00 0.06 0.00 0.00 - -

57,838 42 −1
30 0.00 2.02 0.05 0.08 - −6
60 0.00 12.10 0.24 0.43 5 −5

100 0.00 46.27 0.65 1.23 13 −3

CNoption2

10 0.00 0.04 0.00 0.00 - -

4971 4 −39
30 0.00 0.52 0.00 0.01 - −96
60 0.00 1.86 0.01 0.05 5 −95

100 0.00 6.14 0.04 0.16 17 −94

CNoption3

10 0.00 0.04 0.00 0.00 - -

8144 6 −37
30 0.00 0.53 0.00 0.01 - −93
60 0.00 1.89 0.02 0.06 5 −91

100 0.00 8.04 0.07 0.21 18 −89

CN2005: Curve number scenario in 2005; CN2021: Curve number scenario in 2021; Min.: minimum; Max.:
maximum; St. Dev.: standard deviation. * The mean erosive potentials of the 60 and 100 mm rainfalls were equal
to the reported results times the mean erosive power of the 30 mm rainfall. ** The mean change in the erosive
potentials of the 30, 60 and 100 mm rainfalls for the CN2021 scenario compared to the same rainfall amounts
in CN2005.
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5. Discussion

Studies showed that the initiation and expansion of gullies could be affected by LULC
and climate in addition to the topographic and soil-related factors [1,6,8]. This study
investigated the effect of changes in rainfall, LULC, and LUM practices on the spatio-
temporal modeling of gully erosion using geomorphic and curve number maps as an input
for the distributed LANDPLANER model [23,24].

Before applying LANDPLANER, the density plots of input factors explained that
gullies were mostly found in low-lying areas with relatively higher curve number values in
NW-facing gentle slopes (Figure 5). The higher curve number value of gullies indicated
that gullies might be initiated by the surface runoff generated in the study watersheds (see
Equations (1) and (2); [24]). The relatively higher curve number for gullies in the untreated
Laguna watershed was due to the lack of existing LUM practices in the watershed com-
pared to the treated Kecha watershed [33]. In agreement with this, recent studies reported
that most gullies in the study watersheds were concentrated in low-lying, higher curve
number, and gentle slope (less than 15◦) areas compared to hillslope areas with steep slopes,
where lower flow accumulation is expected [16,17]. This is mainly because gullies are
threshold-dependent phenomena, and their initiation is expressed by an inverse power rela-
tionship of slope and contributing area [25,27,48]. Since a subsurface flow is not common at
Aba Gerima, the initiation of gullies in low-lying areas is more likely caused by an overland
flow due to the absence of subsurface flow and the predominance of Hortonian overland
flow for the development of gullies in the study area. For gentle slopes in low-lying el-
evation areas, the surface runoff at a point increase with increasing curve number and
upslope contributing area that could eventually exceed the critical topographic threshold
and trigger the initiation or continue the expansion of the gully at that point [25,26]. Despite
the classical topographic threshold approach does not explicitly account for the effect of
curve number, Equation (5) an equation proposed by Torri and Poesen [25] accounts its
effect as can be seen from Equation (5). With this regard, the use of LANDPLANER was
found advantageous for directly considering the curve number from S0.05 (see Equation (2))
to predict topographic thresholds. The drainage directions in the study areas showed a
relatively wider distribution with certain preferences towards the NW direction (Figure 5)
along drainage networks. This means many gullies found on the right side of the water-
sheds facing NW are close to streamlines. Geroy et al. [49] reported that differences in the
depth and grain size of soil materials could affect the water retention capacity of soils in
specific slope aspects/flow directions. In addition to watershed geometry, the drainage
direction may also influence the spatial distribution of soil moisture, vegetation density,
and erosion processes of the watershed [9], which create favorable conditions for gullies to
initiate and expand. Similar studies using topographic, statistical, and machine-learning
approaches have reported that flow direction could strongly influence the presence of
gullies [50–54].

The LANDPLANER-simulated dynamic and static thresholds were also used to evalu-
ate the effect of changes in rainfall and curve number scenarios on modeling the spatial
and temporal distribution of gully erosion (Tables 2 and 3). The variation of the dynamic e
for changes in rainfall scenarios was significant compared to changes in the curve number
scenarios considered (see Figure 6). The main reason for this may be because of small
changes in the LULC in the study watersheds between the past and present scenarios
(Table S2). However, rainfall variation could also have the main influence on the initiation
and development of gullies in the study area compared to LULC. A study conducted in
a small watershed in the Mediterranean environment of Spain reported that, despite the
effect of LULC could be higher during low rainfall periods, rainfall has the primary control
over the initiation of gully heads during higher rainfall periods, with LULC exerting only a
secondary control [11]. Vanmaercke et al. [5] also reported that the rainy day normal signif-
icantly correlated to gully headcut retreat rates. These results confirm the fact that gully
heads are mostly formed in areas with higher curve numbers and are triggered by higher
rainfall magnitudes [9]. The analysis of the predicted results showed that the performance
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of the model measured by TNR increased with values of the e threshold, decreasing the
TPR metrics and suggesting that more areas were wrongly predicted as gully by smaller e
thresholds than larger ones. The predictive performance evaluation of various e thresholds
showed that the worst performance was obtained for a rainfall amount of 10 mm, which
showed the least correlation with the occurrence of gullies which indicated that the same
amount of rainfall might not be enough to initiate or expand gullies in the study area.
Studies reported that a minimum daily rainfall depth of 15–18 mm is required to initiate
(ephemeral) gullies in croplands with silt loamy soils [1,18,46]. On the contrary, the best
model predictions achieved considering e > 0.1 for a 100 mm rainfall in Kecha and a 60 mm
rainfall in Laguna (Table 2) suggest that the prediction of gullies in the study area is highly
variable depending on watershed characteristics. Hence, the best model prediction for
gullies in other study areas needs to consider the morphological, climatic, LULC, and
LUM conditions of the areas instead of extrapolation. The higher rainfall amount in Kecha
likely reflects the higher resistance of the soil [25,26] for smaller rainfall magnitudes due to
better LULC and LUM practices in the watershed [33]. In fact, most areas in Kecha have
relatively lower curve number values (higher infiltration rate) due to protected grazing
and bushlands and better coverage of LUM practices. The result that showed gully head-
based predictions were slightly better than gully channel-based predictions (Table 2) is in
agreement with other studies [9,10] that employed LANDPLANER. This is attributed to
the fact that the performance assessment of gully channel-based assessments considers
not only gully head pixels but also other pixels within the gully boundary, which gives
rise to prediction errors. Agostini et al. [10] associated the lower accuracy predictions with
the fulfillment and quality of the gully inventory maps used. In addition, other processes
may play the role for gully channels. Overall, the results indicated that e > 0.1 could be
used to predict gully erosion from a slightly higher to good accuracy compared to a simple
random prediction with TPR and TNR values of 0.5. Similarly, the static esp and esp_channel
thresholds were used to predict gully initiation and the resulting erosion channel for the
past and present LULC and LUM scenarios (Figure 8). The analysis of the static results
showed that both esp and esp_channel thresholds for the past (CN2005) scenario predicted
gully initiation and erosion channels better than the present (CN2021) scenario, showing
slightly higher correlation (Table 3).The use of esp_channel showed better overall predictive
capability than that of esp for most predictions. This is because esp_channel better resembles
gully polygons, as they incorporate additional downslope areas other than erosion start-
ing esp points that represent gully heads [23]. Although the predicted results of esp and
esp_channel showed good average maximized performances of TPR and TNR, some of their
TPR and TNR performances were worse than an average random estimation (Table 3). This
could be attributed to one or more of the following factors: (1) uncertainties in the source
and resolutions of datasets used; (2) differences in the stages of gully development; (3) bias
to unaccounted factors in the slope–area relationships. First, there might be uncertainties
related to the acquisition and analysis of different sources of remote sensing datasets (i.e.,
satellite images and DEM maps) that cannot be fully resolved even with the aid of field
surveys [10]. For instance, a machine learning-based gully erosion susceptibility assessment
carried out in the study watersheds showed that the spatial resolution of DEM-derived
factors could affect the prediction performance of the model [17]. Second, differences in
the geomorphological stages of gullies need to be accounted. Sidorchuk [55] modeled
gully erosion separately by considering two different stages of gully development as a
dynamic and static stage, representing the initial and final geomorphological stages of
gully development, respectively. Hence, the older gullies might be presently considered as
streams when the geomorphologically dynamic gully systems that developed in the past
evolved to be part of well-defined and stabilized stream networks. The static threshold
maps intersected with most of the river networks in the study watersheds (Figure 8), as
gullies also depend on the size of contributing areas like streams [25,27,48]. Third, bias in
the unaccounted factors in slope–area relationships (such as land use and management,
rainfall, and topographic characteristics) might have impacted the predictive performance
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of the static thresholds of the model. Rossi et al. [24] reported that the land use consid-
ered may not truly represent the situation of gullies at the time of gully initiation and
development since gullies might be older than the land use mapped later. When studying
gullies, the LULC to be considered should be at the moment of gully development [26].
Another potential reason could be the difference between the actual and topographically
derived contributing areas at gully heads. This happens when the duration of rainfall
(with specific intensity-duration-frequency characteristics) is less than the minimum time
of concentration required to hydrologically connect the whole contributing areas at the
gully heads [24]. Similarly, the recent land management activities may also have an impact
on altering the contributing areas of gully heads, which is an important parameter for the
static thresholds of the model [56]. The fanya juu terraces, soil, and stone bunds are common
land management practices in Kecha in addition to the traditional field plot boundaries
and drainage ditches [33].

The erosive impact of rainfall in the untreated Laguna watershed slightly increased
(by only 0–2%) between 2005 and 2021 due to LULC, while it significantly reduced in the
treated Kecha watershed (by 64–79%) during the same period due to LULC and LUM.
Similarly, the gully initiation area in Laguna showed little increment (by only 1%) due
to LULC, while it significantly reduced (by 28%) due to LULC and LUM. Furthermore,
gully initiation areas for the future predicted that alternative land use planning options in
Laguna could be reduced by 1% due to LULC options, 39% due to LUM options, and 37%
due to LULC and LUM options. The gully initiation increased from CNoption2 to CNoption3
since there are more converted forests in CNoption3 that will not be treated by the proposed
LUM alternatives (Figure 9). The results are in agreement with other studies conducted
in the current study area [30,33] to study the impact of alternative land use planning
options on runoff and sediment loss. Berihun et al. [33] reported that the implementation of
LUM practices in Kecha reduced sediment yield in 2016 by 43% compared to its previous
untreated condition in 2005 and by 51–68% compared to Laguna, while the combination
of changes in LULC, LUM, and rainfall reduced sediment yield by 65–78%. In addition,
Berihun et al. [30] reported that the proposed alternative land use planning options in
Laguna could reduce sediment loss by 32–83% due to LULC options, 40–89% due to LUM
options, and 95% when LULC and LUM options combined. These results showed that
LUM practices outweigh the impact of LULC on gully initiation for the past, present, and
future scenarios. Other studies conducted in different parts of Ethiopia also confirmed that
different soil and water conservation practices were effective in reducing runoff and (gully)
erosion (e.g., [57–59]).

Overall, the analysis of the dynamic and static threshold results for the past and present
curve number conditions across various rainfall scenarios showed that LANDPLANER
was capable of predicting the location of gullies in the study watersheds at a reasonable
accuracy (with TPR = 0.667 and TNR = 0.544 for Kecha and TPR = 0.769 and TNR = 0.516
for Laguna). Despite slightly less than average random prediction performances observed
in some cases, this study proved that the model can serve as an important tool to study the
hydro-geomorphological processes of watersheds in general and gully erosion in particular.
The model is even more advantageous for its relatively simple and quick predictions of
gully occurrence with fewer data requirements compared to more complex and parameter-
intensive process-based models and with less programming skill compared to most machine
learning algorithms. Such qualities make the model preferable to predict gully erosion for
data scare regions, where obtaining many input factors is difficult.

6. Conclusions and Recommendations

This study evaluated the effect of changes in rainfall, LULC, and LUM practices on the
spatial and temporal modeling of gully erosion at (treated) Kecha and (untreated) Laguna
watersheds in the Upper Blue Nile basin of Ethiopia using a distributed LANDPLANER
model. Gullies in the study watersheds were mostly found in low-lying areas with higher
curve number values and NW-facing gentle slopes. The performance of predicted results
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showed that the dynamic index and static thresholds predicted gully erosion reasonably
well. While the 10 mm rainfall had minimal erosion triggering potential, the 30, 60 and
100 mm rainfall scenarios had higher potential with increasing order. The impact of rainfall
and the coverage of gully initiation areas between 2005 and 2021 was significantly reduced
in the treated (Kecha) watershed due to LUM practices and insignificantly increased in the
untreated (Laguna) watershed due to LULC changes. The analysis of the past, present, and
future scenarios indicated that the LUM practices have a pronounced impact on reducing
gully initiation in the study watersheds compared to LULC changes.

The main findings of this study clearly indicated that (1) changes in the rainfall and
LUM practices significantly impacted gully initiation, and (2) LUM practices outweighed
the impact of LULC on gully erosion in the study watersheds. Hence, future research
and gully management activities should pay attention to rainfall magnitudes and LUM
practices in addition to LULC.

The results imply that LANDPLANER can be used to study hydro-geomorphological
processes and predict gully erosion, with some improvements needed to expand its appli-
cability in the future. The model can further be improved by incorporating: (i) calibration
tools that convert the erosion index to actual erosion rates and (ii) simulation techniques
that directly consider the impact of single and multiple time series rainfall events on the
model outputs, especially on static thresholds of the model.
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