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Abstract: An accurate and detailed understanding of land-use change affected by anthropogenic
actions is key to environmental policy decision-making and implementation. Although global land
cover products have been widely used to monitor and analyse land use/land cover (LULC) change,
the feasibility of using these products at the regional level needs to be assessed due to the limitation
and biases of generalised models from around the world. The main objective of the present study
was to generate regional LULC maps of three target areas located in the main ecoregions of Ecuador
at a resolution of 10 m using Google Earth Engine (GEE) cloud-based computing. Our approach is
based on (1) Single Date Classification (SDC) that processes Sentinel-2 data into fuzzy rule-driven
thematic classes, (2) rule refinement using Visible Infrared Imaging Radiometer Suite (VIIRS) data,
and (3) phenology-based synthesis (PBS) classification that combines SDC into LULC based on the
occurrence rule. Our results show that the three target areas were classified with an overall accuracy
of over 80%. In addition, cross-comparison between the global land cover products and our LULC
product was performed and we found discrepancies and inaccuracies in the global products due
to the characteristics of the target areas that included a dynamic landscape. Our LULC product
supplements existing official statistics and showcases the effectiveness of phenology-based mapping
in managing land use by providing precise and timely data to support agricultural policies and
ensure food security.

Keywords: LULC; phenology-based algorithm; image classification; GEE; Sentinel-2

1. Introduction

Land cover provides important biophysical properties to the Earth’s surface [1]. Land
cover changes, either natural or human-made, may have negative socioeconomic and
environmental impacts [2] at global and regional levels. In the latter case, local decision-
makers need accurate and timely land change information to design management policies
and plans for a range of issues such as sustainable use of natural resources, agricultural
production, and emergency response, among others. In practice, spatial information on
physical land covers is compiled in Land Use and Land Cover (LULC) maps which are
built upon satellite images captured over a given period of time.

The availability of various types of satellite data has prompted a number of global
land cover (GLC) mapping initiatives at different spatial and temporal resolutions. Coarse
spatial resolution initiatives include the global land cover classification 2000 (GLC2000) [3]
and the International Geosphere-Biosphere Programme DISCover land cover classification
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(IGBPDISCover) [4], both at 1 km resolution. Moderate Resolution Imaging includes the
Imaging Spectroradiometer land cover (MOD12Q1) [5] at 500 m resolution, and the global
land cover map (GlobCover) [6] at 300 m resolution. More recently, higher resolution
(20–30 m) GLC maps based on Landsat and Sentinel data have become available. The
Esri 2020 landcover (Esri-GLC) [7], ESA WorldCover 2020 (WC) [8], and Dynamic World
(DW) [9] report 10 m, the finest granularity accomplished to date in GLC mapping. Despite
their increasing spatial resolution, global LULC products at the regional level show inac-
curacies. Previous studies have highlighted significant differences in land class mapping
between different global products. For example, a study conducted in Syria found large
discrepancies in land class mapping between Esri-GLC and WC global products [10]. Ad-
ditionally, another study reported low accuracy for three high-resolution GLC products
in the southwest China region [11]. These findings underscore the need for more accurate
and consistent GLC mapping efforts.

Besides spatial resolution, the LULC map quality depends on the pixel classification
technique [12]. When enough training samples are available, supervised learning methods
have been proposed for classification. Otherwise, unsupervised classifiers are used, which
do not require training samples. Various supervised and unsupervised classification
techniques have been evaluated on several satellite images for LULC mapping tasks in
previous studies [13–18]. Recently, phenology-based classification approaches have shown
high discriminative power [19,20]. They exploit metrics that describe critical moments
of the phenological cycles over time to detect land changes in image time series. Among
them, the start, peak, end, and duration of a season, as well as statistics of spectral indices,
have been proposed to detect various LULC types. Previous work has produced LULC
maps at regional and local scales with a high spatial resolution by using commercial
satellite data [17,21–23] or by adding alternative data sources [24–28]. Replicating these
approaches is a challenging task for many public institutions in developing countries.
One such challenge is the difficulty in accessing clear satellite images, particularly during
the rainy/wet season, which is a common issue faced by many developing countries in
Sub-Saharan Africa [29]. Furthermore, in South America, only a few region-level products
have been developed [30]. The latest, yet global, LULC map that includes Ecuador was
created in 2014 using RapidEye and Landsat-8 satellite imagery.

This study explores the challenges of phenology-based classification to obtain a reliable
classification at the regional level in Ecuador that reflects well-known seasonal variations.
Our approach consists of three steps: (1) single data classification of Sentinel-2 data into
thematic classes driven by fuzzy rules using monthly images; (2) rule refinement using
VIIRS data; (3) phenology-based synthesis into LULC based on recurrence rules. We
compare our results against three 10 m global products: WC, DW, and Esri-GLC. By using
phenological information extracted from high-resolution satellite imagery, we were able
to describe land use at a generic level. LULC mapping results support a paradigm shift
from standard static products to the generation of large-scale dynamic on-demand LULC
maps through advanced cloud computing resources that have become readily available as
cloud services.

2. Materials and Methods
2.1. Target Areas

In each of the three main ecoregions of Ecuador—the coast, the Andean highland, and
the Amazon ecoregion—one study area was allocated. On the coast, a 463.03 km2 area is
located in the Daule district. The Ecuadorian coast has two seasons: the rainy season with
tropical heat and high humidity that goes from December to April, and the dry slightly
cooler season that extends from May to December. The annual average precipitation level
is 1007 mm and temperatures range from 20 ◦C to 27 ◦C most of the year [31]. Based on
previous studies [32], it was found that approximately 80% of Daule’s land consists of
agricultural areas, primarily rice crops, along with some areas dedicated to maize and fruit
tree cultivation.
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Near Cayambe city in the northern Ecuadorian Andes, an area of 447.17 km2, including
the 5790 m high Cayambe volcano was used in our experiments. In the Andean highland,
the rainy season runs from September to April. Annual rainfall levels range from 250 to
2000 mm. The dry period, from June to August, is characterised by strong winds and
high-intensity solar radiation. Across inter-Andean valleys, the temperature goes from
12 ◦C to 18 ◦C, but at higher altitudes, the temperature drops to 5 ◦C [31]. In the Andean
highlands, vegetation mostly consists of grasslands, shrublands, wetlands, and small areas
of high Andean forests [33].

The last study area (150.85 km2) is located in Joya de los Sachas, a sparsely populated
district in the Ecuadorian Amazon basin. Tropical rainforest climate produces annual
rainfall levels from 2500 to 4000 mm during the rainy season from May to December.
However, non-seasonal rainfalls are very common [34]. Fog and clouds usually cover the
higher lands, whereas average annual precipitation and temperature levels correspond to
2942 mm and 29.7 ◦C , respectively, [31]. Joya de los Sachas’s land is mostly covered by
tropical forests and plots of small-scale crops such as African palm, cocoa, and maize [35].
In this paper, each target area is referred to by its ecoregion: the coast, the Andean highland,
and the Amazon. Figure 1 shows their location and a sample satellite image.

(a)

(b)

(c)

Figure 1. Location of the target areas in Ecuador, representing three distinct ecoregions: (a) Daule,
located in the Pacific coast; (b) Cayambe, situated in the Andean highland; (c) Joya de los Sachas,
located in the Amazon rainforest ecoregion.

2.2. Datasets

To capture the spectral signatures of vegetation and soil caused by seasonal variations,
we use 2019 and 2020 Sentinel-2 and VIIRS imagery collections. In previous works [36–38],
the information contained in these datasets has improved spatial coherence and detailed
characterisation of land. Moreover, they are freely available from the GEE satellite imagery
catalogue and can be readily accessed using GEE’s application programming interface.

Sentinel-2 collection: It has 10–60 m spatial, five-day temporal, and 13-band spectral
resolutions. In humid tropical regions, optical data show chronic cloud cover [39]. Persistent
clouds and shadows distort multitemporal image mosaics, reducing the accuracy of LULC
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mapping types. Figure 2 shows the percentage of the monthly average cloud cover in
the target areas during the studied period. As expected, Amazon’s target area shows the
highest cloud contamination, reaching up to 98% cloud cover between January and June.
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Figure 2. Sentinel-2 image cloud over the target areas in (a) coast, (b) Andean highland, and
(c) Amazon.

VIIRS Day/Night Band (DNB) collection: Sourced from the Suomi National Polar-
orbiting Partnership (Suomi-NPP) satellite, it provides multitemporal night time light
(NTL), for near real-time monitoring of nocturnal visible and near-infrared light [40]. We
use the VIIRS DNB Monthly Composites Version 1 data produced in geographic grids of
15 s of arc (approximately 500 m at the Equator), covering the globe from 75 N to 65 S
latitudes. They contain two bands, the mean DNB radiance values and the amount of
cloud-free cover.

2.3. Classification Scheme and Reference Data

Our classification scheme is based on [41], which generates a land cover map in two
steps by applying SDC and PBS algorithms sequentially. To effectively support resource
planning tasks, we extend these algorithms by adding the land use classes. For SDC, we
added the agriculture, greenhouse, and urban area classes and for the PBS annual crops,
perennial crops and urban areas were added. Table 1 lists the LULC classes to be detected.
The second column indicates the LULC classes output by our extended SDC algorithm
and the third column lists the final LULC classes obtained after PBS classification. The
latter classes should enable the resulting LULC maps to be used as input data for advanced
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applications; for instance, land differentiation of annual crops, detection of agricultural
mode, and measuring the impact on biogeochemical cycles.

Table 1. Thematic classes used in the SDC and PSB classifier.

Class
Algorithm

Type
SDC LULC-PBS

Clouds x -
Water x x Land cover
Snow x x Land cover
Dark vegetation x Land cover
Low IL x Land cover
Dark soil x Land cover
Bright soil x Land cover
Grass x Land cover
Bright forest x Land cover
Pure forest x Land cover
Sparse x Land cover
Shadow soil x Land cover
Degraded forest x Land cover
Shrub x x Land cover
Forest x Land cover
Agriculture * x Land use
Built-up * x Land use
Greenhouse * x x Land use
Annual Crop * x Land use
Perennial Crop * x Land use
Grassland x Land cover
Bare soil x Land cover
Urban areas * x Land use

* Classes created in this study.

To characterise LULC classes, reference points were sampled evenly across the target
areas. For each target area, a set of ground truth reference points was built based on the
author’s knowledge and visual interpretation of high-resolution composite images created
with Google Earth Pro (version 7.3.2.5776) [42,43]. These composite images were generated
from 2019 and 2020 imagery of satellite and aircraft data at resolutions between 15 cm and
30 m with the built-in timeline tool of the Google Earth Composite Editor.

For the SDC algorithm, 1500 pixels were used to evaluate spectral indices used in land
cover classification rules. These pixels were labelled as soil, water, built-up, agriculture,
and greenhouse and were distributed in 300, 300, 300, 500, and 100 pixels, respectively.
Within the agriculture pixel group, banana and cocoa crop pixels were selected to repre-
sent perennial crops; rice and maize crop pixels were selected to represent annual crops.
Samples of perennial crops were not included in the target area of the Andean highlands,
as only greenhouses occur in the target area. The remaining 14 thematic classes were
characterised in Simonetti et al. [41]. As for the PBS algorithm, we used 100 pixels for
each LULC-PBS class in the different areas to build the classification rules. Besides, we
selected 2400 independent reference pixels for the validation of our LULC-PBS maps, i.e.,
100 pixels corresponding to each class and target area. Perennial crop sample points were
collected only on the coast and Amazon. Snow reference points were extracted only in the
Andean highland.

2.4. Methodology

The methodology of this study is depicted in Figure 3. As a preprocessing step,
Sentinel-2 images were filtered to reduce the influence of clouds. The set of monthly
composite images was built as follows. First, Sentinel 2 images with higher cloud cover
from 50% to 70%, depending on the region, were discarded. For the remaining images, see
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Table 2, cloudy pixels were masked using the QA60 bitmask band (a quality flag band) that
is provided as metadata in Sentinel 2 products. Then, same-month images were merged
using the median function of the GEE image reducer software. Finally, spectral indices
listed in Table 3 were computed. Regarding VIIRS images, they were resampled to 10 m
using bilinear interpolation to match the spatial resolution of Sentinel-2.

Figure 3. Overview of the proposed methodology for LULC mapping.

Table 2. Sentinel-2 dataset before and after pre-processing, including the number of images in the
dataset for each target area.

2019 2020

Area Original Final Original Final

Coast 504 113 512 133
Andean highland 296 40 284 38
Amazon 153 27 159 43

Total 953 180 955 214

LULC class discrimination was evaluated using separability index analysis on spectral
indices. From this analysis, suitable threshold values for the SDC algorithm were estimated
(Section 2.4.1). For each target area, the resulting thematic maps were grouped into dry
and wet season sets to capture phenological characteristics that were later exploited for
PBS classification (Section 2.4.2). On the resulting LULC product, which we refer to in
the rest of the document as the LULC-PBS map, we performed statistical validation using
well-known detection accuracy metrics (Section 2.4.3). Finally, a comparison against global
LULC products at 10 m spatial resolution was conducted (Section 2.4.4).

2.4.1. SDC

We applied SDC to detect LULC classes using the rule-based approach proposed by
Simonetti et al. [44] in the construction of the SDC algorithm. Classification rules compare
a pixel’s spectral indices against a set of given empirical threshold values that were set
using global scale observations. To Simonetti’s 14 SDC land cover classes, listed in Table 1,
we added built-up, agriculture, and greenhouse classes to better represent the actual land
use types in Ecuador. For these new classes, we chose spectral indices and thresholds by
quantifying interclass separability from the spectral indices listed in Table 3. It should be
emphasised that our extended set of SDC classes is not present in the final LULC-PBS map,
but they are rather used to build the recurrence rules that guide its construction.
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Spectral index selection was performed using the Bhattacharyya distance, usually
referred to as Score. It measures the scatter degree between two classes (ωi, ωj), as follows:

Score(ωi, ωj) = − log
∫ √

(p(x|ωi)p(x|ωj))dx. (1)

where, p(x|ωi) and p(x|ωj) are the prior conditional probability of the classes ωi and ωj,
respectively, with i 6= j. In contrast to other methods for measuring class separability,
such as divergence, transformed divergence, and the Jeffries–Matusita distance [45–49], the
Bhattarcharrya covers the interval [0, ∞], i.e., it has no upper limit, therefore allowing it to
identify the highest spectral separability between indices. The higher the score the easier to
discriminate between two classes.

Table 3. Spectral indices used in this study: SWIR1, SWIR2, NIR, RED, GREEN, and BLUE represent
the spectral reflectance in the shortwave infrared 1, shortwave infrared 2, near-infrared, red, green,
and blue bands, respectively. These correspond to the B11, B12, B8, B4, B3, and B2 spectral bands of
the Sentinel-2 MSI sensor.

Index Equation Ref.

Normalised difference vegetation index (NDVI) (NIR−RED)
(NIR+RED)

[50]

Bare soil index (BSI) (RED+SWIR1)−(NIR+BLU)
(RED+SWIR1)+(NIR+BLU)

[51]

Urban index (UI) (SWIR2−NIR)
(SWIR2+NIR) [52]

Normalised difference built-up index (NDBI) (SWIR1−NIR)
(SWIR1+NIR) [53]

Normalised difference tillage index (NDTI) (SWIR1−SWIR2)
(SWIR1+SWIR2) [54]

Normalised difference water index (NDWI) (GREEN−NIR)
(GREEN+NIR) [55]

Normalised difference snow index (NDSI) (GREEN−SWIR)
(GREEN+SWIR) [56]

Green difference vegetation index (GDVI) (NIR−GREEN)
(NIR+GREEN)

[57]

Soil-adjusted vegetation index (SAVI) (NIR−RED)(1+L)
(NIR+RED+L) [58]

Enhanced vegetation index (EVI) 2.5(NIR−RED)
NIR+(C1×RED)−(C2×BLUE)+L) [59]

In our separability analysis for built-up pixels, we include water, dark soil, and bright
soil because it is well-known that pixels along river banks tend to show similar spectral
indices values. After the most discriminant spectral indices for each SDC class were found
on the monthly image stack, rules were drawn by comparing spectral indices boxplots.
Due to the characteristics of Ecuador’s target areas, threshold values must be set according
to phenological cycles and geographic, climatic, and seasonal conditions.

2.4.2. PBS

LULC classification using phenology-based synthesis is performed by extracting
and testing for recurrence patterns in SDC labels over time. The SDC provides land
cover classification based on a single image, whereas PBS leverages temporal patterns to
improve classification accuracy. Such patterns can be formulated as rules that are pixel-wise
evaluated across an SDC thematic map stack. If all conditionals in a rule are true at a given
location, the corresponding LULC-PBS class is assigned to that pixel in the LULC-PBS map.
Table 1 shows the LULC-PBS classes defined for this study. To build a recurrence rule (see
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Figure 4), we used empirical thresholds based on observations from SDC monthly thematic
maps grouped into dry and wet seasons and collected at the regional scale.

Few rules are independent of the target area under study. For instance, water is a very
stable class, as pixels classified as water appear at the same locations across every stack and
target area. Forest, grassland, shrub, bare soil, and urban rules combine a number of SDC
classes but show similar frequency patterns in all target areas. Annual crops use different
recurrence rules per target area because seasonal and geographical conditions influence
spectral index values and consequently SDC output as seen in Figure A1, Appendix A. For
instance, on the coast, annual crops occur when at least 10% of degraded forest and 50% of
agriculture labels appear per pixel location, followed by observations of up to 50% of water,
40% grass, 30% bright soil, 20% bright forest, and up to 10% dark vegetation as sparse, as
shown in Figure 4a. If the same pixel is labelled as cloud at least 80% of the time across a
stack, that pixel is marked as No Data. Our PBS classification routine was coded using the
GEE framework with JavaScript language.
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Figure 4. Recurrence rules for LULC-PBS classes, with the percentage of observations per SDC
thematic class (legend indicates classes used in SDC and PSB classifier) in (a) coast, (b) Andean
highland, and (c) Amazon. Percentages are used to express values.

2.4.3. Accuracy Metrics

LULC-PBS map accuracy was evaluated using four confusion metrics: overall accuracy
(OA), producer accuracy (PA), user accuracy (UA), Kappa coefficient, and F1-score. OA is
the probability that a pixel, taken at random from the classified data, has the same class
as the corresponding pixel in the reference data and vice versa. PA is the probability that
a pixel from the reference data class i belongs to the same class in the classified data. It
indicates how well the reference data of a class are classified. UA is the probability that
a pixel from the classified data class i belongs to the same class in the reference data. It
indicates the probability that a classified pixel actually represents class i on the ground truth
data. Kappa indicates the proportional reduction in the error generated by a classification,
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compared to the error of a completely random classification [60]. F1-score is the harmonic
mean of precision and recall, which are measures of the accuracy and completeness of the
classification, respectively. This score varies between 0 (lowest value) and 1 (best value).

2.4.4. LULC Maps Comparison

To evaluate the spatial coherence of LULC products at each target area, we split them
into three sub-areas that displayed all LULC-PBS classes as follows (Table 4):

Table 4. Mathematical models for each target area and their corresponding sub-areas. The sub-areas
used in this modelling process can be visualised in Figure 8.

Target Area Sub-Areas

Coast AC = {AC
1 , AC

2 , AC
3 }

Andean Highland AH = {AH
1 , AH

2 , AH
3 }

Amazon AA = {AA
1 , AA

2 , AA
3 }

First, we visually compared LULC-PBS, Esri-GLC (global), DW, and WC maps for 2020
against Google Earth imagery. Although somewhat limited, this type of analysis provides
insights into the spatial matching of LULC labels. In a more quantitative evaluation, the
spatiotemporal variation in LULC classes was measured using the normalised variation
index as follows. Given:

r ∈ R = {C, H, A}, the name of a region: Coast C, Highlands H, or Amazon A.
c ∈ Ch, a class in the set of the harmonised LULC classes, see Table 5.
m ∈ M = {LULC-PBS, Esri-GLC, DW} a given LULC map used for comparison.
y ∈ Y = {2018, . . . , 2020} a year in the evaluation period.

Table 5. Harmonised LULC classes of LULC-PBS, Esri-GLC, and DW.

Ch Harmonised Class LULC-PBS Esri-GLC DW

ch1
Water Water Water Water

ch2 Forest Forest Trees Trees

ch3 Cropland

Annual crop Flooded
vegetation Crops

Perennial crop Crops Flooded vegetation

Greenhouse

ch4
Rangeland

Grassland
Rangeland

Grass

Shrub Shrub and Scrub

ch5 Bare soil Bare soil Bare ground Bare ground

ch6 Urban Urban Built area Built area

ch7 Snow/Ice Snow/ice Snow and ice Snow and ice

ch8 Clouds Clouds Clouds Clouds

Then, the jth sub-area Ar
j at region r, is the sum of surface patches a labelled with

every possible harmonised class c, for a given map m and year y:

Ar
j = ∑

c
mar,y

c,j (2)

The difference in size of a harmonised class surfaces with respect to yo = 2017 for
sub-area Ar

j is:

∆
mar,y

c,j
=
∣∣∣ mar,y

c,j − mar,yo
c,j

∣∣∣. (3)
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Hence, the normalised variation index with respect to the size of that sub-area is:

m ãr,y
c,j =

∆
mar,y

c,j

Ar
j

. (4)

In our experiments, WC products were excluded due to a lack of annual datasets.
Furthermore, instead of the global Esri-GLC map we used the annual Esri-GLC product
(2017–2021) which uses an updated 9-class model and combines Grass and Scrub into a
single Rangeland class. The original Esri 2020 Land Cover collection uses a 10-class model
(Grass and Scrub separately).

3. Results
3.1. Rules for New SDC Classes

To build SDC rules included in Algorithm 1 for agriculture, built-up, and greenhouse
classes, first, we sought suitable indices for classification, and then we tried, across monthly
images, combinations of rules and thresholds that deliver the best detection results. For
instance, the built-up classification rule for the coast was developed using UI, NDBI, and
BSI indices, as water and built-up pixels are largely separable with UI and NDBI indices,
whereas soil and water pixels can be discriminated with the BSI index; see Figure 5a. First,
we split the monthly image stack into dry and wet seasons to account for changes in solar
radiation. Then, we found the index’s value ranges that detect built-up pixels while filtering
out the others; see Figure 6a. These ranges are added to the rule using AND operators.
Finally, season rules are merged together using OR operators. If the final output requires
additional refinement, we can add additional factors to the rule using the remaining indices
and data sources. In the built-up class, we included VIIRS Nighttime Day/Night composite
dataset values.

We repeated the aforementioned procedure for agriculture and greenhouse classes. In
Ecuador, the agriculture class includes cocoa, banana, maize, and rice crops. For each target
area, we compute the following vegetation indices: EVI, SAVI, GDVI, and NDVI. Some
crops are easily distinguished from others such as rice in the coast and Amazon regions; see
Figure 5b. However, in general, the ranges of spectral indices coincide across target areas
which yields more compact rules than built-up class; see Figure 6b. Finally, the greenhouse
class was computed with the same vegetation indices as agriculture class and only in the
Andean highland ecoregion. The list of SDC rules is shown in Algorithm 1.

Spectral Indices
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(a)

Spectral Indices
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(b)
Figure 5. Bhattacharyya scores for (a) new land cover and (b) crop pixels in the coast target area.
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(a) (b)

Figure 6. Spectral index boxplots: (a) land cover pixels and (b) for agriculture pixels in each
target area.

Algorithm 1: SDC rules.
Input: UI, BSI, NDBI, NDVI, NDWI, EVI, SAVI, GDVI, EVI, NDTI, VIIRS
Output: OutClass
Data: Target area dataset

1 if Area is ’Coast’ then
2 if ((UI>-0.05) and (NDBI >-0.13)) or ((BSI>-0.1 and BSI<0.1) and (VIIRS>20) and

(NDTI <0.19)) then
3 OutClass = Built-up

4 if ((SAVI>0.10 and SAVI< 0.25) and (GDVI >0.30 and GDVI<0.45) ) or
((GDVI>0.5) and (SAVI>-0.3 and SAVI<-0.10)) then

5 OutClass = Agriculture

6 if Area is ’Andean highland’ then
7 if ((NDWI>-0.20 and NDWI<-0.09) and (VIIRS>10)) or ((NDWI>-0.08 and

NDWI<0.05)) then
8 OutClass = Built-up

9 if ((NDVI>0.29 and NDVI<0.43))or(EVI>0.36 and EVI<0.48) or ((SAVI>0.2 and
SAVI<0.35) ) or ((NDWI>-0.50 and NDWI<-0.30) )) then

10 OutClass = Greenhouse

11 if ((SAVI>0.10 and SAVI<0.25) and (GDVI>0.30 and GDVI<0.45)) then
12 OutClass = Agriculture

13 if Area is ’Amazon’ then
14 if ((NDTI<0.19) and (BSI >0 and BSI <0.149 )) or ((UI>-0.05) and (NDBI >-0.13) )

then
15 OutClass = Built-up

16 if ((SAVI>0.10 and SAVI<0.25) and (GDVI>0.30 and GDVI<0.45)) then
17 OutClass = Agriculture

3.2. LULC-PBS Maps

The LULC-PBS maps obtained using the proposed methodology are shown in Figure 7.
The coast map consists mostly of annual and perennial crops, whereas a small area cor-
responds to forests. In the Andean highlands, predominant classes are grassland cover
and forest, with some patches of annual crops and urban areas identified. The Amazon
is dominated by annual and perennial crops, followed by the forest cover type. The best
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OA (94.62%) was obtained in the Amazon and the lowest OA (80.2%) was obtained in the
coast area. Table 6 shows PA and UA metrics results grouped by ecoregion and the full
confusion matrices are reported in Appendix B (Figure A2).

In the coast ecoregion, forests have low PA and high UA which means that not
all forest pixels were detected, but in case they are, they actually represented a forest
area. Perennial crops have a high PA (91%) and low UA (65%), which indicates that
perennial pixel detection on the coast is rather low. The confusion matrix shows that of the
100 pixels corresponding to forests, 42 were classified as perennial crops and 16 as shrubs;
see Figure A2a. In the Andean highland target area, the grassland class displays low levels
for UA (53.75%). In the corresponding confusion matrix (Figure A2b) some pixels that
should have been classified as grassland were classified as annual crops. In Amazon, most
LULC-PBS classes obtained high PA and UA values. For instance, the perennial crops had
a PA value of 87%, and UA of 100%, i.e., the perennial pixels were identified correctly. Our
methodology yielded high F1-Scores for the three target areas: 0.92 for the coast, 0.93 for the
Andean highlands, and 1.0 for the Amazon. These scores indicate a high level of accuracy
in the classification of the LULC-PBS classes in these ecoregions.

Water

Forest

Annual Crop

Perennial Crop

No data

Grassland

Shrubs

Bare Soil

Urban

Snow

LULC-Classes

(a) (b)

Grassland

Greenhouse

Shrubs

No data

Bare Soil

Urban

Snow

(c) (d)

(e) (f)

Figure 7. LULC-PBS and RGB Sentinel-2 images of the coast (a,b), Andean highlands (c,d), and
Amazon (e,f).
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Table 6. Accuracy measures derived from LULC-PBS classification.

Coast Andean Highland Amazon

Class PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Water 99 93.39 86 94.5 100 98.03
Forest 40 75.47 77 78.57 100 84.03
Annual Crop 97 76.98 37 75.51 93 93
Perennial Crop 91 65 - - 87 100
Greenhouse - - 93 95.87 - -
Grassland 66 79.51 92.07 53.75 70 94.79
Shrub 84 73.04 99 92.52 95 95.95
Bare Soil 65 97.05 70 75.26 94 94.94
Urban area 98 89.08 88 100 97 98.97
Snow - - 95 93.13 - -

OA (%) 80.2 81.9 94.62
Kappa 0.77 0.79 0.93
F1-Score 0.92 0.93 1.00

3.3. Visual Comparison of LULC Maps

Figure 8 shows the sub-areas in DW, Esri-GLC, WC, and LULC-PBS maps and the
Google Earth reference image. Below, we discuss the main ambiguities found for each of
the following criteria:

• Dominant Classes: This occurs when pixels of a given class appear more often than the
rest in a map. For instance, urban coverage is observed in most pixels of the reference
images of sub-areas AC

2 and AH
2 with some pixels corresponding to bare ground and

vegetation. In WC and LULC-PBS maps, most pixels are classified as urban areas while
keeping a proportional relationship to the features seen in the corresponding reference
image, whereas Esri-GLC and DW maps show a single large urban patch. Similarly, in
sub-area AA

1 where an urban area is surrounded by vegetation. Here, vegetation could
be interpreted as agricultural mosaics, therefore overestimating the predominant land
use class. In sub-area AC

1 , most rivers’ pixels in the reference image were labelled
as urban areas in Esri-GLC and DW maps, whereas in the WC map, some of them
are detected as bare ground. In the LULC-PBS river, pixels were correctly classified
as water.

• Nature-related interclasses conversion: Natural phenomena may cause temporal changes
in land cover and consequently ambiguities in pixel-level classification. This effect
can be seen in sub-area AA

3 , in which the reference image shows a river with overbank
deposits. These deposits are not detected in WC. LULC-PBS classified them as grass-
land and both Esri-GLC and DW as bare soil. Similarly, the islet in sub-area AC

2 only
appears in WC and LULC-PBS maps.

• Greenhouses: These structures usually appear in LULC maps as urban or crops pixels
as in sub-areas AH

2 and AH
3 in DW, Esri-GLC and WC maps and as a greenhouse in

the proposed LULC-PBS map.
• Phenological stage transitions: For example, in AC

1 and AC
2 , a large farmland mosaic in

the LULC-PBS map is mapped as grassland in DW and WC products. The Esri-GLC
map shows crop areas, although overestimated in size. In the case of sub-area AC

3 ,
the reference image contains a large area of the Amazonian forest but also a few crop
patches. Global products miss these areas that appear in the LULC-PBS map.
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Google Earth DW Esri-GLC WC LULC-PBS

AA
3

Figure 8. Sub-area visual comparison between LULC maps and a high-resolution reference image.

3.4. Surface Area Differences

In Appendix C, we provide additional support for the visual interpretation of the
annual variations in the DW, Esri-GLC, and LULC-PBS maps for each of the sub-areas
by showing images that illustrate these changes. Furthermore, we computed normalised
variation indices for the eight harmonised classes and sub-areas in LULC-PBS (M1); Esri-
GLC (M2) and Dynamic World (M3) maps were computed for 2017 to 2020, the year 2017
was used as reference. We found that LULC changes were not consistent across LULC
maps as seen in Figure 9, where the percentage of area change is scaled by colour. Results
for each sub-area are presented below:

• Coast sub-areas, see Figure 9a:
AC

1 : This area is made up of a rural village, crops, and a large river, and therefore
showed slight variations in the vegetation, built-up, and water classes. The LULC-PBS
map shows a variation of up to 4% in forest (ch2 ). LULC-PBS and DW detected changes
on surface size from cropland (ch3 ) and rangeland (ch4 ). Meanwhile, only the DW map
showed a variation on water (ch1 ), between 2% and 6%.
AC

2 : Over the years, this area has changed from agricultural cultivation to urban areas,
whereby LULC-PBS and Esri-GLC have correctly detected the variations in the surface
area of the built (ch6 ) class. Three maps showed variation up to more than 12% in the
forest (ch2 ), rangeland (ch4 ), and bare soil (ch5 ) classes.
AC

3 : Only two types of land cover changed in size, forest area changed between 2% and
7%, and the cropland between 2% and 4% were detected by LULC-PBS and Esri-GLC.

• Andean highland sub-areas, see Figure 9b:
AH

1 : This area contains a volcano with its snow cover surrounded by paramo veg-
etation; thus, all three maps coincided in detecting changes in the rangeland (ch4)
class. Only the Dynamic world map was able to detect changes up to 14% in the
snow (ch7 ) class.
AH

2 : LULC-PBS and Esri-GLC detected minor variations, up to 2%, in forest (ch2 ) and
rangeland (ch4 ) classes. The cropland class (ch3 ) showed a change in the area up to 14%
in all three maps. AH

3 : forest (ch2) and cropland (ch3) classes varied in size, by about
6% in LULC-PBS and Esri-GLC, respectively. Rangeland (ch4) varied by more than
14% in the PBS-LULC map only.

• Amazon sub-areas, see Figure 9c:



Land 2023, 12, 1112 16 of 32

AA
1 : It is a small village area surrounded by forest and crops. All three maps detected

dynamism among the classes corresponding to vegetation. LULC-PBS was the only
map that did not detect any changes in the built (ch6 ) class.
AA

2 : It is an area covered with crops. All three maps showed changes of up to 12% in
vegetation classes. Meanwhile, the Dynamic world map did not detect any changes in
the bare soil (ch5 ) class.
AA

3 : This area shows a large forest with patches of cropland. Only LULC-PBS was
able to detect variations in the forest (ch2 ) and cropland (ch3 ) classes changed from 2%
to 4%. Visual analysis of the study area revealed the presence of a river containing
several islets. Our results showed that the Esri-GLC and DW maps indicated changes
ranging from 6% to 8% in the bare soil (ch5) class, whereas all three maps showed
changes in the water (ch1 ) class.
The three maps showed changes in water (ch1 ).

0

2%

4%

6%

8%

10%

>12%

(a)

0

2%

4%

6%

8%

10%

12%

>14%

(b)

0

2%

4%

6%

8%

>10%

(c)
Figure 9. Annual variation comparison of LULC-PBS (M1), Esri-GLC (M2), and Dynamic World (M3)
on sub-areas extracted from the (a) coast, (b) Andean highland, and (c) Amazon target areas.

4. Discussion

The proposed methodology proved useful to capture LULC dynamics in complex and
heterogeneous regions of Ecuador. Our LULC-PBS map not only displays high classification
accuracy but also spatial consistency with commercially available global LULC products.
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4.1. PBS Classification

We noted that classification accuracy rates decrease in areas with high land cover
dynamics. For instance, forest and perennial crop classes in the coast target area report the
lowest detection accuracy because the reflectance values of different species of fruit trees
and forest trees can be similar, leading to misclassification.

For annual crops and urban zones, our map obtained high accuracy values in all
sub-areas. Annual crop detection was achieved due to class separability analysis using
spectral indices. For urban class accuracy, in addition to the spectral indices, the VIIRS
(DNB) dataset was used to improve the classification accuracy, as reported in [61], where it
was shown that the inclusion of VIIRS (DNB) contributes to improving the accuracy of the
results in the urban area identification. On the other hand, LULC-PBS maps were generated
for the years 2017 to 2020 for the comparison study with the global products.

The ten LULC classes in our map are not only useful for understanding land surface
processes, but they also improve the information available for biodiversity studies. For
example, the forest, grassland, and shrubs classes are vegetation, which plays a key role
in improving ecosystem performance [62]. The transition from the vegetation class to the
bare soil class is useful for understanding the status and monitoring of desertification
or deforestation [63]. The snow class in the paramo helps to quantify snowmelt in the
Andes [64]. The information from the urban class can enable the monitoring of urbanisation
and settlement pattern [65] and provide a large-scale base layer for the more detailed
mapping of local climatological zones in urban areas [66], which are the focus of many
studies. Moreover, the combination of the urban and vegetation class in the city could be
exploited to assess the impacts of urban form on the landscape structure of urban green
spaces. In addition to these ecological benefits, our methodology can also be used to
identify areas where indigenous communities may be impacted by LULC changes. By
enabling further research on the interactions between indigenous communities and LULC
dynamics observed in this study, we can identify opportunities to mitigate negative impacts
and support community-based conservation efforts.

4.2. Global Product Comparison

Our results show that urban class is overestimated in both the WC and Esri-GLC maps.
In fact, many water pixels were misclassified as built-up. To cope with this effect, Ref. [67]
suggested that the global products should use night light data to improve classification
accuracy in the urban area, as in the LULC-PBS map. On the other hand, although the
water class was the most accurate in the global products [68], our study revealed that the
water class was not correctly represented by these products in the evaluated areas.

We highlight that there is confusion in the classification of LULC products due to the
fact that some areas are affected by temporary natural phenomena, e.g., in rivers when
in the dry season the flow decreases and sediments are formed. This misclassification
depends on the number of observations obtained for each different season.

As for greenhouses, our map identified them as croplands, whereas the global products
identified them as urban. This is explained by the fact that greenhouses are made of artificial
materials and therefore DW, Esri-GLC, and WC, which are only land cover maps, classify
them as built-up areas. Our proposed map also considered land use classes and therefore
classified them as greenhouses.

Moreover, we found that the global products showed inaccuracies in classifying crop
areas, and in some cases, these were classified as grassland or shrubland, which may occur
due to the dates of acquisition of the images on the phenological cycle of the crops.

On the other hand, LULC maps must reflect the dynamism of the landscape, so we
focused on the variations of the products available on an annual basis. However, only
Esri-GLC and LULC-PBS showed variations in urban class within the sub-area AC

2 . DW
could not detect any urban area changes in the period from 2017 to 2020, despite this
sub-area having been characterised by rapid urban expansion in recent years [69,70].
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In sub-area AA
3 , LULC-PBS showed variations and was even the only LULC product

to identify cropland classes within this sub-area in 2020 (see Figure 8), whereas the global
products showed no variation in their vegetation classes such as forest, cropland and
rangeland. However, Refs. [71–73] reported that the area assessed has suffered from
deforestation in recent years.

Thus, the differences and discrepancies in accuracy found between global and LULC-
PBS products are due to the different biogeographical conditions, which generate different
spectral signatures within the same LULC class.

4.3. Limitations

Although our product, LULC-PBS, achieved high overall classification accuracy, we
also found shortcomings among its LULC classes. We detected limitations in the quality
and quantity of the image collection as we used a phenology-based algorithm which
required capturing the state of all phenological stages of vegetation. Furthermore, cloud
contamination reduced the quality of the images captured through the optical sensors,
causing them to be discarded for the phenology-based algorithm, and thus leading to
misclassification. Another limitation is that the training data were acquired by visual
interpretation. Therefore, SDC threshold values are not entirely reliable. However, to
improve threshold values further, research could focus on developing approaches for
automatically detecting optimal threshold values for the different indices used in our
algorithm, such as machine learning algorithms, decision trees, or support vector machines,
to automatically learn the best threshold values from the training data. Another approach
is the use of clustering techniques, such as k-means or fuzzy clustering, to group pixels
with similar spectral properties and identify threshold values based on these groups.

5. Conclusions and Recommendations

The timely mapping of complex and heterogeneous landscapes is necessary to under-
stand the dynamics of LULC changes. This study had two main focuses: (i) to provide a
regional-scale LULC product that includes dynamic landscape areas at 10 m spatial resolu-
tion using the powerful free cloud-based software tool, GEE; (ii) to compare LULC-PBS
with existing global products within the three target study areas.

Firstly, using GEE, we generated LULC maps in three distinct Ecuadorian ecoregions,
with a ground sampling distance (GSD) of 10 m. Our adapted methodology allowed us
not only to identify land cover classes but also to map land use classes, such as agriculture
and urban areas, using phenology-based algorithms and data from multiple sources. The
proposed methodology provided reasonable performance with an overall accuracy between
80.2% and 97.12% depending on the conditions of the ecoregions.

By adding very few extra reference pixels, the global PBS approach was fine-tuned to
work at the regional scale. Hence, this approach has the potential for regional mapping,
as long as it is well-calibrated. In this sense, our research findings are able to contribute
to the current knowledge of LULC classification. Moreover, the present results were
obtained using accessible optical data computed on a cloud-based platform considering
our study area. In tropical regions, obtaining long-term optical data can be challenging;
thus, it is crucial to explore the potential of Synthetic Aperture Radar (SAR) data for future
work. Therefore, we encourage the combined use of Sentinel-1 and Sentinel-2 for LULC
classification, considering the availability of observations.

Secondly, in our comparative results between the global LULC and LULC-PBS maps,
we found inaccuracies and spatial discrepancies in each product that vary between the
different ecoregions. In the visual comparison of the LULC products with the Google Earth
image, we found that LULC-PBS showed a consistent spatial representation, followed by
the global WC product, which showed urban areas correctly identified. LULC-PBS showed
yearly variations in classes and areas that maintain high dynamism. Although Esri-GLC
showed changes in the urban class, it also showed an overestimation of the urban class.
Therefore, global products have limitations and biases at the regional level. We suggest that
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when using global LULC products, the purpose of their application should be considered,
as these maps tend to show some deficiencies when they are used independently in specific
areas. However, global products can be integrated with local datasets to improve the
accuracy of local LULC maps [26].

In conclusion, this study provides a glimpse of the inconsistencies of global products
when applied in a regional context, which could affect decision-making on environmental
conservation or sustainability. In addition, we provide a solution to map LULC at the
regional level through a phenological approach algorithm that could be adopted in the
future to map national LULC with an annual frequency and a finer resolution. Furthermore,
this methodology can be used for national mapping in South American countries with
ecoregions similar to those evaluated in this work.
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Appendix A. Monthly Spectral Index
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Figure A1. Cont.
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Figure A1. Monthly spectral index profiles of annual and perennial crops 2020.

Appendix B. Confusion Matrices
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Figure A2. The confusion matrices obtained from different target areas: (a) coast, (b) Andean
highland, and (c) Amazon.
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Appendix C. Annual Visual Comparison between Different Land Cover Products in
Ecuadorian Ecoregions
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Figure A3. Annual spatial comparison between DW, Esri-GLC, and LULC-PBS maps in the coast
ecoregion, site AC
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Figure A4. Annual spatial comparison between DW, Esri-GLC, and LULC-PBS maps in the coast
ecoregion, site AC
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Figure A5. Annual spatial comparison between DW, Esri-GLC, and LULC-PBS maps in the coast
ecoregion, site AC
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Figure A6. Annual spatial comparison between DW, Esri-GLC, and LULC-PBS maps in the Andean
highland ecoregion, site AH
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Figure A7. Annual spatial comparison between DW, Esri-GLC, and LULC-PBS maps in the Andean
highland ecoregion, site AH
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Figure A8. Annual spatial comparison between DW, Esri-GLC, and LULC-PBS maps in the Andean
highland ecoregion, site AH

3 .



Land 2023, 12, 1112 27 of 32
20

17
20

18
20

19

Planet-NICFI

20
20

DW Esri-GLC LULC-PBS

Water Forest Cropland Rangeland Bare Soil Urban Snow/ Ice Clouds

Figure A9. Annual spatial comparison between DW, Esri-GLC, and LULC-PBS maps in the Amazon
ecoregion, site AA
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Figure A10. Annual spatial comparison between DW, Esri-GLC, and LULC-PBS maps in the Amazon
ecoregion, site AA
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Figure A11. Annual spatial comparison between DW, Esri-GLC, and LULC-PBS maps in the Amazon
ecoregion, site AA
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