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Abstract: Functional data are being used increasingly in recent years and in many environmental
sciences, such as hydrology applied to agriculture. This means that the output, instead of a scalar vari-
able represented by a spatial map, is given by a function. Furthermore, in site-specific management,
there is a need to delineate the field into management areas depending on the agricultural procedure
and on the scale of application. In this paper, an approach based on multivariate geostatistics is
illustrated that uses the parameters of Dexter’s water retention model and some soil properties
to arrive at a multiscale delineation of an agricultural field in Iran. One hundred geo-referenced
soil samples were taken and subjected to various measurements. The volumetric water contents
at the different suctions were fitted to Dexter’s model. The estimated curve parameters plus the
measurements of the soil variables were transformed into standardized Gaussian variables and the
values transformed were subjected to geostatistical cokriging and factorial cokriging procedures.
These results show that soil properties (organic carbon, bulk density, saturated hydraulic conductivity
and tensile strength of soil aggregates) influence the parameters of Dexter’s model, although to
different extents. The thematic maps of both soil properties and water retention curve parameters
displayed a varying degree of spatial association that allowed the identification of homogeneous
areas within the field. The first regionalized factors (F1) at the scales of 508 m and 3000 m made it
possible to provide different delineations of the field into homogeneous areas as a function of scale,
characterized by specific physical and hydraulic properties. F1 at a short and long distance could
be interpreted as “porosity indicator” and “hydraulic indicator”, respectively. Such type of field
delineation proves particularly useful in sustainable irrigation management. This paper emphasizes
the importance of taking the spatial scale into account in precision agriculture.

Keywords: Dexter’s model parameters; factorial cokriging; saturated hydraulic conductivity; spatial
variability; tensile strength of aggregates

1. Introduction

Agricultural soils are very complex systems that are capable of storing and trans-
mitting air, water, solutes and heat to microorganisms and plants. Soil consists of solid
spaces (particles) and voids (pores) that determine its structural characteristics and function.
In particular, water transport, which is crucial in controlling the health and productive
potential of a plant, occurs through the connected pore spaces, whereas the workability of
soils depends on the existence of pores in the form of microcracks. Pore spaces are deter-
mined by the size of composite particles that form a hierarchical system [1,2], consisting
of various levels: groups of primary particles comprising microaggregates, microaggre-
gate groups comprising aggregates and aggregate groups comprising clods, which are
aggregates formed by tillage according to SSSA Soil glossary, or bulk soil. Similarly, the
average pore size follows a hierarchical system determined by the size of the soil particles.
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Therefore, following [3] the total porosity of soil can be said to contain various components:
residual, matrix, structural and macro porosity.

The first and last components include pores that are either too small or too large,
respectively, that are generally disregarded in experiments aimed at defining optimal soil
water management for irrigation purposes. In contrast, the matrix porosity represents the
pore space between individual mineral particles in the soil. As groups of mineral particles
can combine to form discrete microaggregates, it is also necessary to consider structural
porosity, which is the pore space between the microaggregates and between the incipient
aggregates. This type of porosity in most soils is largely composed of microcracks, also
called ‘elongated transmission pores’ by Pagliai, Vignozzi and Pellegrini [4], which play an
important role in transport processes.

Moreover, it is well known that water in pores is not in a free state, but is subject
to a matrix potential whose absolute value is called suction. The relationship between
suction and pore water content can be described by a function called soil water content
retention curve (SWRC) [5], the shape of which depends on different physical and chemical
properties of the soil, which are specific to each soil [6]. SWRC contains useful information
on pore water content at different suctions and pore size distributions, which characterize
the response of the soil to stress conditions, such as saturation or dryness [7]. Therefore,
it is clear that knowledge of it cannot be disregarded for sustainable irrigation water
management in a spatially variable agricultural field. However, there are many models
of SWRC in the literature that have been compared by various authors [8,9]. In particular,
Dexter’s model [3] is a double-exponential equation with five adjustable parameters and
a bimodal distribution, and each mode is related to either matrix or structural porosity.
Compared with the other models, it has the following advantages: all five parameters have
a physical meaning related to the different components of porosity; the parameter related
to residual porosity is always positive or zero; the five parameters are poorly correlated
with each other and can be related to soil properties influencing its hydraulic behaviour.

Dexter’s model parameters together with other relevant properties of agricultural soil
can then be treated jointly in a spatial analysis to arrive at a partitioning of the field into
homogeneous areas to be subjected to differential irrigation management. The study of
the spatial variability of an agricultural field generally requires soil sampling at a finite
number of locations. The samples are then subjected to laboratory measurements and
these measurements are processed spatially to produce thematic maps. However, in the
case discussed above, the interest is not in one or more scalar variables but in a functional
variable; i.e., in the modelling of a water retention curve from a set of soil moisture
measurements recorded at the same location and corresponding to gradually increasing
values of water suction.

Moreover, it is expected that the functional data will exhibit spatial dependence. Sev-
eral alternative techniques have been developed by different authors [10] to spatially predict
continuous curves instead of single-point data for each observation site. These methods
first require the application of a parametric or non-parametric smoothing technique (e.g.,
Dexter’s model or B-spline regression) to convert discrete data into continuous functions;
after that, some interpolation technique is applied to predict the whole curve in unsampled
locations. These methods have also been used in several areas besides hydrology and
agronomy, including meteorology [11] and marine biology.

In this paper, a multivariate geostatistical approach was preferred for the following
main reasons. The fitting of a linear model of coregionalization (LMC) allows the modelling
of the spatial relationships of Dexter’s retention curve parameters with each other and
with the soil properties considered to be particularly influencing water transport. In
addition, multivariate geostatistics make it possible to arrive at a delineation of the field in
homogeneous areas that is a function of scale [12,13], since the processes governing soil
water transport occur over different scales.

The delineation of management zones for precision irrigation is commonly based on
statistical clustering, which combines the impacts of different variables operating over
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different spatial and temporal scales on the hydraulic behaviour of soil [14-17]. However,
these techniques suffer from two main limitations: (1) they do not take into account the
generally observed spatial correlation between spatial observations, and (2) they produce a
single field partition at an unspecified spatial scale, even if this partition is produced by
processes operating at different scales [18].

Therefore, in light of the above considerations, the objective of this study was to define
a multivariate geostatistical approach based on SWRC measurements in an agricultural
field to predict the whole curve of Dexter’s model at unsampled points and produce a
multiscale field delineation in homogeneous areas for site-specific water management.

Notation Box

KS Saturated hydraulic conductivity (ms~?)
oC Organic carbon (%)
BD Bulk density (g cm™3)
TS Tensile strength of soil aggregates (kPa)
0 Asymptote of the equation, which is residual water
r content (cm3em—3)
Aq Amount of matrix pore spaces (cm3cm™2)
Aj Amount of structural pore spaces (cm3cm3)
Characteristic pore water suctions at which the matrix and
h; and h;

structural pore spaces start to empty, respectively (bar)

2. Materials and Methods
2.1. Study Area and Experimental Site

The experiment was carried out in a 200-ha field at the Dastjerd Research Farm
of the College of Agriculture, Bu-Ali Sina University, Hamedan, Iran (35°02/10.46” N-
35°03/39.72" N and 48°28'21.25"” E-48°30'0.90” E) in 2019. One hundred disturbed and
undisturbed soil samples were collected from 0.10-0.15 m depth at the nodes of a grid
with cells of 150 x 150 m? size and in some areas of 75 x 75 m? and 37 x 37 m? size [13]
(Figure 1) to increase the number of pairs of samples at shorter distances and to reduce the
nugget effect in variogram models, representing the lower limit of estimation precision.

elewvation

™ High:1836.23

L
Low : 1746.75

N

*  Soil samgling
- 2
C———Jkm

Figure 1. Location of the study site and sampling points.

The mean annual rainfall is 479.7 mmy ! and the mean annual temperature is 14.83 °C
(daily temperature varying from —9 °C to 35 °C).
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2.2. Dexter’s Soil Water Retention Curve (Dexter’s Model)

Soil water content was measured in the undisturbed core samples at the matric poten-
tials of —0.01, —0.02, —0.04 and —0.06 (with a Sandbox apparatus), and —0.3, —1, —5 and
—15 bar (with a pressure plate apparatus).

Dexter’s model (Dexter et al., 2008) was fitted to data:

—h —h
w = 0; + Ajexp <h) + Azexp <h> D
1 2

where, w (cm3cm~3): volumetric moisture content of the soil; 8,: asymptote of the equation,
which is the residual water content (cm®>cm~3); A; (cm3cm~3): amount of matrix pore
spaces; Aj (cm3cm—3): amount of structural pore spaces; h (bar): matric suction correspond-
ing to w; h; (bar) and h; (bar); characteristic pore water suctions at which the matrix and
structural pore spaces start to empty, respectively [3].

Model Fitting

Dexter’s model parameters were estimated using the Excel Solver (2016). To test the
goodness of fitting, root mean square error (RMSE) and determination coefficient (R?) were
used as follows:

1

1z

RMSE = N (Vi_ypi)? ()

._
Il
—_

[N (Eﬁl YiYp;) — TN, YiYN, Ypi}
\/[N(Zﬁl Yi2) — (Z%il Yi)Z} X [N(Zﬁl Y%i) — (Z{il YPi)z}

where, N is the number of samples; Y; and Yy,; are the measured and predicted values of
the variable at location i, respectively.

R* =

®)

2.3. Soil Property Measurements

Disturbed soil samples (2 kg) were air-dried and passed through a 2 mm sieve before
physical and chemical analyses (Table 1).

Table 1. Method of measuring study variables.

Variable Measurement Method Unit References
Soil organic carbon (OC) oxidation method (%) [19]
Bulk density (BD) standard core method (gem~3) [20]
Saturated hydraulic conductivity (KS)  The constant head method (ms—1) [21]

The studied soils covered five textural classes according to the USDA soil classification
(Figure 2) [13]. Soil samples included the following classes: clay loam (1 = 6), loam (1 = 10),
sandy clay loam (1 = 57), sandy loam (n = 22) and loamy sand (n = 5).
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Figure 2. Distribution of soil texture classes in the United States Department of Agriculture (USDA)
textural triangle.

2.4. Aggregate Tensile Strength Measurement

According to Dexter and Kroesbergen (1985), tensile strength is probably the most
useful measure of the strength of individual soil aggregates, where soil strength is intended
to the highest stress that any type of soil can be exposed to before failure [22]. It is influenced
by soil moisture, the degree of connection among soil aggregates and the occurrence of
soil cracks [23]. An increase in soil moisture causes a decrease in the bonding strength
between the organic and inorganic particles in soil aggregates and a reduction in the tensile
strength of soil aggregates [24]. Therefore, given the close relationship between the soil
water content and tensile strength, it was decided to include this soil property among the
variables chosen for the delineation of soil in hydraulically homogeneous areas. To measure
tensile strength, air-dried aggregates with a diameter of 4 to 8 mm were used (Figure 3).

Figure 3. Soil aggregates.

The reason for using these diameters was the ease of collection and measurement
with the available devices. First, twenty aggregates were randomly selected from each soil
sample; second, the device described by Dexter and Watts [25] was used to measure the
tensile strength (Figure 4). In this device, soil aggregates were placed between the two
disks, and pressure was applied to them by adding water to a water container and using a
leverage system. Before starting the test, the disk and container were levelled so that no
pressure was applied to the aggregates. Pressure was then applied to the aggregates until
they broke, at which point the water uptake stopped.
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Figure 4. The device used to measure the force required for breaking soil aggregates [25].

The force (F) in Newton (N) required to break aggregates was calculated using the

following equation:
X
= (%) ®

where, M, is the mass of water (kg) required to break soil aggregates; X is the length of the
upper lever; X; is the length of the lower lever (cm); g is gravity acceleration (9.807 ms~2).

Finally, the tensile strength of aggregates was calculated using the following equation
based on the method by Rogowski [26] and Dexter and Kroesbergen [27]:

Y = 0576 x —- )
eff

where, Y is tensile strength (kPa); F is the maximum force (N) required for aggregate
breaking; d.¢ is the effective diameter of the aggregates assumed to be of spherical shape,
which was calculated using the following equation:

dmax + dmin

: ©)

deff =

dmax and dp,in are the maximum and minimum diameters of soil aggregates.

2.5. Multivariate Geostatistical Analysis

The proposed multivariate geostatistical approach jointly treats two different types of
data (data fusion): point data concerning the measurements of some soil properties (KS,
BD, OC and TS), which were considered to be influencing the hydraulic characteristics of
soils, and functional data for the determination of the parameters of Dexter’s model. The
objective of such an analysis is two-fold: (1) to determine SWRC at an unsampled point in
the field; (2) to characterize the field from a hydraulic point of view to arrive at a partition
into homogeneous areas to be subjected to differential irrigation water management.

The approach consists of different steps as follows:

Fitting of Dexter’s model to determine its five parameters;
Basic statistics of all study variables including Dexter’s model parameters and the
selected soil properties;

e Normalization and standardization of all variables through Gaussian anamorphosis,
if they show significant deviations from symmetrical data distribution;

e  Fitting of a linear model of coregionalization (LMC) to the whole data set of the
experimental direct and cross-variograms of the Gaussian transformed variables to
model the spatial relationships of the curve parameters with each other and with
soil properties;

o  Testing the goodness of fitting through cross-validation;
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Sample Data
OC, BD, K5,

e  Ordinary cokriging on all Gaussian transformed variables and back transformation of
the estimates of Gaussian transformed parameters using the anamorphosis Gaussian
function previously determined;

e  Mapping of soil properties for characterizing spatial variability, and of the curve
parameters to draw SWRC in any point of the field;

e  Factorial cokriging on Gaussian transformed variables and extraction of the regional-
ized factors at short and long ranges;

e  Mapping of the retained regionalized factors at each scale with eigenvalue greater
than 1, which cumulatively explains a good proportion of the spatial variability at
that scale;

e  Delineation of within-field zones with different hydraulic properties by using the
retained regionalized factors.

With regard to the geostatistical procedures used, the interested reader can refer to
one of the many published manuals [28] for a detailed description. Only the main steps are
briefly described below (Figure 5).

Functional InputData
Data (8WEC)

Ts

¥

1 Data Fuzion
OC, BD, K8, TS |
l Dexter's model parameters | ‘

(—————————-,,I r-—--—-—---q,l I\.-[ulti'i'ariate

: Cokiriging i :Factnrial Cokiriging | Geostatistical

Ve N ———— Analysis
Thematic SWRCs at Field delineation at Field delineation Output

maps any g:]’:t e shorter range at longer range

Figure 5. Flowchart illustrating the methodology followed. All results are described according to
this scheme.

2.5.1. Basic Statistics and Gaussian Anamorphosis

The maximum, minimum, mean and median values, standard deviation (SD), skew-
ness and kurtosis were calculated for all study variables to characterize the type of data
distribution. In the case of skewed variables, Gaussian anamorphosis was performed to
determine a continuous mathematical function that transformed a standardized Gaussian
variable into a random variable [29]. For such a transformation, Hermite’s ortho-normal
polynomial series was truncated to the first 100 terms.

2.5.2. Spatial Interpolation

e  Linear Model of Coregionalization

The LMC represents a simplified model of multiscale spatial relations in a multivariate
data set [30-32]. It assumes that all direct and cross semi-variograms can be described by
the same set of basic spatial structures (standardized semivariograms with unit sill) for each
spatial scale (range). What differentiates variables or pairs of variables is only the partial sill
of each spatial structure corresponding to a specific scale. Although quite crude, this model
nevertheless works well under many experimental conditions [30] since it is based on the
assumption that the variables are different manifestations of the same processes operating
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over different scales in the system under study. Cokriging and Factorial cokriging are two
of the standard multivariate geostatistical techniques using the same LMC.

e  Factorial Cokriging Analysis

Factorial cokriging analysis (FCA) is a technique very similar to the principal com-
ponent analysis (PCA) of traditional statistics. The fundamental difference is that instead
of being applied to the variance-covariance matrix, it is applied to each coregionization
matrix of a given spatial scale and derived from the LMC. The latter can be considered as a
variance-covariance matrix, but specific to a given spatial scale. As in PCA, orthonormal
components can be extracted, which in geostatistics are called regionalized factors and
are scale-dependent. From the loading coefficient values, it is then possible to attribute a
particular physical meaning to each factor, which can be regarded as a synthetic indicator of
spatial variability. All geostatistical analyses were performed using the Isatis geostatistical
software package [33].

e  Cross-validation

The quality of the LMC can be evaluated using cross-validation [34], which consists of
removing one observation at a time and then producing the estimate at the point where
the observation was removed with the remaining observations. The difference between
the estimate and the observation represents the error. Repeating the procedure for all n
observations yields n errors for which different statistics can be calculated.

In particular, the mean error (ME), root mean square error (RMSE) and root mean
square standardized error (RMSSE) were calculated using the following equations:

ok (2 -2 )

" (7)
n A 2
£ (260 - 20))
RMSE = \| =2 ®)
n
2
n A N , A ) (9)
Y Z(xi)—z(x;) | /o (x;)

A
where, 1 is the number of samples; Z (x;) and z (x;) are the predicted and measured values

of the variable at point x;, respectively; (/}(xi) is the root mean squared prediction error. The
optimal values for ME and RMSE should be 0, whereas RMSSE should be close to one

within the heuristic tolerance interval {1 — 3\/%, 1+3 \/ﬂ [35].

3. Results and Discussion
3.1. Basic Statistics of Soil Properties

The basic statistics of the soil properties are presented in Table 2. Related to variations
in soil texture [13] and structure (Table 2), 40% of the soil samples had a very high KS
(>0.12 m/h), 23% had high KS (0.06-0.12 m /h), 29% had moderate KS (0.02-0.06 m/h), 4%
had low KS (0.01-0.02 m/h) and 4% had very low KS (<0.01 m/h) [36]. For low KS, runoff is
quite irregular and soil may be suitable for irrigation [36], whereas for very high KS, (about
40% of soil samples), if soil is used for effluent or waste disposal, possible problems might
arise due to potential groundwater contamination. Only 8.9% of soil samples had high
BD (1.6-1.7 gcm~3), whereas the others had medium BD (1.3-1.6 gcm~3) [26]; therefore,
the permeability of the soil does not cause water runoff or irrigation problems, at least
in most circumstances. The box plots reveal the existence of some outliers in the soil
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properties, with the exception of TS (Figure 6). Strong positive skewness and kurtosis > 3
were observed for KS; however, all variables showed non-symmetrical data distribution.

Table 2. Basic statistics of soil properties.

Min Max Mean Std. Dev Skewness Kurtosis
KS (msfl) 0.33 34.59 8.73 5.93 1.58 7.04
OC (%) 0.08 0.66 0.40 0.12 —0.51 3.20
BD (gcm*3) 1.21 1.73 1.42 0.11 0.50 2.98
TS (kPa) 51.47 124.21 85.71 17.05 0.21 2.32
— —— b i A H— —
0 10 20 30 0.10.2 0.3 0.40.50,
KS Qc
— ——1 [ E— b —
1.2 1.3 1.4 1.5 1.6 1.7 50 60 70 80 90 10011012

BD TS

Figure 6. Box plots of soil variables with outliers (green stars), middle value (vertical line) and
mean value (X).

3.2. Basic Statistics of Dexter’s Water Retention Curve Model (SWRC)

The goodness of fitting for the SWRC function to Dexter’s model was satisfactory at
any location with an average RMSE of 0.010 (range: 0.001-0.08) and R? varying between
0.96 and 0.99. The values of model parameters showed general wide variability due to the
heterogeneity of soils belonging to different texture classes (Figure 2). High skewness in
absolute values (>0.5) was observed in A; and h, indicating markedly non-symmetrical
data distribution of these parameters (Table 3).

Table 3. Basic statistics of Dexter’s model parameters.

Min Max Mean Std. Dev Skewness Kurtosis
0; (cm3cm—3) 0.00 0.13 0.05 0.05 0.22 1.39
A; (em3cm™3) 0.06 0.25 0.15 0.05 0.10 2.07
Ay (emPem—3) 0.10 0.34 0.24 0.05 —0.72 3.32
hy (bar) 0.27 43.51 14.74 10.91 0.38 2.00
hy (bar) 0.01 0.19 0.06 0.03 1.46 10.04

The box plots (Figure 7) show the presence of outliers only for A, and hy, which
confirms the high asymmetry of the data distribution of these parameters as already
indicated by the skewness coefficient.

Although the geostatistics estimator is not parametric and, in theory, can be applied to
any type of data distribution, variogram modelling is facilitated on Gaussian transformed
data. Furthermore, it is also possible to calculate the uncertainty of strongly skewed
data [37]. Therefore, before using multivariate analysis, it was preferred to normalize and
standardize to zero mean and unit variance for all data (including soil properties and model
parameters) due to the presence of skewed variables and outliers.
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Figure 7. Box plots with outliers (green stars) of Dexter’s model parameters.

3.3. Correlation Analysis

In order to detect significant linear correlations between the model parameters and the
investigated soil properties, Pearson coefficients were calculated for all variables (Table 4).

Table 4. Correlation coefficients (r) between the study variables.

Or Aq Ay hy h, KS ocC BD TS
0r 1.00 —0.72 % —0.06 —091*  —027* 0.18 —0.11 ~0.18 —0.01
A 1.00 —0.01 0.60 ** 0.07 —0.11 0.29 ** —0.06 0.08
Ay 1.00 0.11 0.19 0.16 0.29 ** —0.38 ** 0.12
hy 1.00 0.41** —0.22* 0.11 0.14 0.10
h, 1.00 ~0.18 0.00 —0.05 0.01
KS 1.00 0.10 —0.29 ** ~0.15
oC 1.00 —0.29 ** 0.23 *
BD 1.00 —0.06
TS 1.00

* and ** Correlations are significant at the 0.05 and 0.01 probability levels, respectively.

A and A; showed significant and positive correlations with OC (0.29 **), while A,
had a negative correlation with BD (—0.38 **). These results are expected because organic
carbon is effective in increasing the porosity at the pore sizes investigated and decreasing
the bulk density. However, BD seems to be more influenced by structural porosity than
by matrix porosity, at least according to Dexter’s model. h; was negatively correlated
with KS (r = —0.22 **), which reflects the fact that high matrix pore water suction has a
negative impact on KS. With regard to the relationships between the model parameters,
it is worth emphasizing the negative correlation of 6, with A; and h; and partly with hy,
which shows that soils with a high proportion of residual water have a low proportion
of matrix pores. Additionally, other significant observations are as follows: the positive
correlation between A; and h; (0.60 **); the higher the pore water suction at which the
matrix pore spaces starts to empty, the higher the proportion of matrix pores; the positive
correlation (0.40 **) between the two suctions related to the two sizes of pores. Concerning
the significant correlations between soil properties, the positive correlation (0.23 *) of OC
with TS is explained because OC increases the soil’s resistance to being crushed. Saturated
hydraulic conductivity and OC were negatively correlated with BD (—0.29 **), which was

as expected because OC increases porosity, improves KS and reduces BD [38].

It can be deduced from the above results that, although some correlations are signif-
icant, there are no strong relationships between the investigated soil properties and the
parameters of Dexter’s model. However, these are linear correlations that do not take into
account the spatial correlations of the observations. The spatial analysis could confirm

these results.
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An isotropic LMC was fitted to the matrix of both the direct and cross-experimental
variograms of all Gaussian transformed variables, including the following basic spatial
structures: (S0) nugget effect, (S1) spherical model (range = 508.64 m) and (S2) spherical
model (range = 3000 m) (Figure 8a,b). The proportions of the total spatial variance explained
by each spatial component were as follows: S0 50%, S1 13% and S2 37%, which shows that
most spatial variation is due to the nugget effect, i.e., spatially uncorrelated error. One
way to reduce this spatial component might be to intensify sampling because at the scale
at which it was performed, it proved incapable of resolving micro-variability due to both
intrinsic soil properties and anthropogenic activities.
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Figure 8. Cont.
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Figure 8. Experimental direct (a) and cross (b) variograms of the Gaussian transformed variables
(points) and the variogram models (bold line). The dashed line indicates an intrinsic (maximum)
spatial correlation between the two variables (Wackernagel, 2003). g before the name of variable
stands for Gaussian transformed variable.

From Figure 8a of the LMC, some considerations can be made as follows: all direct
variograms show a high nugget, as already noted in general above, which can be attributed
to the adopted sampling scale, which should be reduced, as well as the measurement error
associated with the measurement of soil properties and parameter estimation error. In
addition, all direct variograms clearly show a short-range structure (around 500 m), which
can be attributed to intrinsic soil variation within the field and the effects of anthropogenic
operations, and a long-range structure (around 3000 m), causing the sill to exceed the
sampling variance, which can be attributed to the study area belonging to soil map units
extending beyond the field size [13]. Deviating from the characteristics stated above, there
is a KS variogram, which is similar to the pure nugget effect, most likely determined by the
low precision of its measurement marked by high stochasticity; and that of BD, in which
the long-range component prevails since BD is generally closely linked to the type of map
unit to which the soil belongs at a scale greater than that of the field (Figure 8a).

Regarding the cross-variograms between the model parameters and soil properties, it
can be said that in general the spatial relationships are quite low. This can be ascertained
from the large distance of the model curve of the cross-variograms from the dashed line
(Figure 8b) representing the intrinsic correlation, i.e., the maximum obtainable spatial
correlation between the two variables considered [32]. The only soil properties that show
spatial correlations of some significance with the model parameters are OC, which is
positive with A; and A, due to the positive effect already noted for OC on both matrix
and structural porosity; and BD, which is negative with 6, and A; but positive with h;,
meaning that an increase in density causes a reduction in structural porosity and the
amount of residual water, but an increase in the suction at which matrix pores become
empty. Regarding the spatial relationships between the various parameters of the model,
from the cross-variograms, it can be seen that 6; is negatively correlated with all but Ay;
A is positively correlated with h; and, to a lesser extent, with hy. It is noteworthy that A;
and A, are not significantly correlated; that is, there is no significant spatial relationship
between the two types of porosity (Figure 8b). This is probably attributable to the different
origins of the two types of porosity; Al (matric porosity) is intrinsically linked to the
granulometric characteristics of the soil (texture), whereas A2 (structural porosity) is mostly
related to the type of tillage carried out in the field. Moreover, A2, similarly to the other
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parameters of Dexter’s model, shows a high degree of stochasticity (nugget effect) and is
the one that appears least correlated with the other parameters (Figure 8b).

There is a positive relationship between h; and h; and between h; and A;; therefore,
higher porosity, at least matrix porosity, is associated with higher suction, at which pores
(of both types) begin to empty.

Finally, with regard to the spatial relationships among the soil properties investigated,
KS appears to be poorly correlated with all of them, mostly due to its essentially stochas-
tic nature. It shows a slight negative correlation with BD, which is quite expected since
the densest soils are those with the lowest porosity and, therefore, with low hydraulic
conductivity. TS is spatially uncorrelated with the other soil properties, except for a some-
what positive correlation with OC. Therefore, it can be said that both of these properties
(OC and TS) contributed to improving the soil structure and consequently its hydraulic
characteristics.

Summarising the previous results concerning (1) the high nugget effect for direct vari-
ograms, and (2) the general low sill of cross-variograms, denoting low spatial correlation
between the curve parameters and between these and the soil variables, it can be stated
that this is attributable to two main causes. The first is related to the insufficient sampling
density, as already noted; the second is to the uncertainty inherent in the measurements of
the soil variables (especially KS) and to the fact that the parameters of Dexter’s model are
not directly measurable physical variables but are estimated parameters with an estimation
error that may also be high. However, despite the imprecision associated with the measure-
ment and estimation procedures, we believe that it is possible to disclose interesting spatial
relationships among variables related to the soil’s capability of transmitting water.

The goodness of fit of the LMC for any Gaussian transformed variable was evaluated
through cross-validation, and the results are shown in Table 5. The ME and RMSE were
quite close to 0, and the RMSSE fell within the tolerance interval [0.58-1.42] for all variables.

Table 5. Results of cross-validation of the studied variables.

g0 * gA1 [:7.V) gh; ghy gKS gOC gBD gTS

ME —0.03 —0.03 0.03 0.01 0.01 0.03 0.03 0.002 0.05
RMSE —0.06 —0.06 0.04 0.03 0.01 0.03 0.04 0.004 0.07
RMSSE 0.95 1.00 0.85 0.99 0.98 0.98 0.85 1.08 1.10

* g before the name of variable stands for Gaussian transformed variable.

The maps of soil attributes display that higher KS and OC values were localized in
the central parts of the field, whereas lower values were in the south and south eastern
corner (Figure 9a,b). Thus, the OC and KS showed a positive degree of association, and
their higher values were associated with higher clay contents as reported elsewhere [13].

Conversely, BD was higher in the southeastern part of the field, where the soils were
mostly sandy (Figure 9¢c) [13]. In the north and central parts, the presence of more OC
enhanced the formation of larger soil pores, which reduced BD and improved permeability.
Very low KS (0.05-1 cm/h) in the south part of the field, which might cause regular runoff
under rainfall and irrigation, is likely to be inefficient. In contrast, in the central part of the
field and the north, with hydraulic conductivity greater than 6 mm per hour, superficial
water flow would rarely occur, and the soil might be too permeable for irrigation [36].

The aggregate tensile strength map showed a different trend in the field, which is more
similar to that of BD (Figure 9d). The lowest values of TS were observed in the central and
southeastern parts of the field, probably due to an increase in OC, which might decrease the
tensile strength because it might increase the size of the aggregates [39]. Smaller aggregates
are stronger because they contain fewer surface cracks [40] and are denser [2]. However, the
relationship between OC and TS is not always so direct as it appears to be reversed in some
southern parts of the field. This would induce one to think that the resistance of aggregates
to the disintegrating action of water actually depended on multiple interrelated factors.
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Figure 9. Cokriging maps of KS (a), OC (b), BD (c) and TS (d). An isofrequency colour scale was used.

The increase in sand in the southeastern part [13] reduced the tensile strength of
aggregates, probably because sand acted as the main nucleus to connect the particles to
each other and form larger aggregates, which were more unstable, thereby causing soil
fragility to increase [41].

Greater 6, values were localized in the central part of the field, whereas smaller values
of these parameters were observed in the north and south (Figure 10a). Moisture retention
at greater suctions (0;) strongly depends on the particle size distribution [42]; therefore, a
finer texture in the central part of the field might have caused an increase in 0.
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Figure 10. Cokriging maps of 6; (a), A (b), A (c), h; (d) and h; (e). An isofrequency colour scale

was used.

A; showed the lowest values in the southern part of the field, whereas the highest

values were observed in the central and northern parts of the field, probably due to the silt
content, which is mostly responsible for the pores of the soil matrix [43]. A, map shows a
very similar pattern to A; map with the exception of the northern part, where the structural
porosity is reduced (Figure 10c) due, as already noted, to the higher silt content in soils to
the north. However, throughout the field, the proportion of structural pores prevails over
that of matrix pores; that is, the larger pores between the soil aggregates can favour water
flow and avoid water logging.

However, a correct proportion between macro- and micro-porosity is fundamental for
rational water management in an agricultural field because, while the former facilitates
water flow and avoids waterlogging, the latter increases water availability to crops. This
critical balance can be achieved by adopting, for example, conservation agriculture tech-
niques [44] that improve the sustainable use of water resources. The higher OC content
in the central part has a positive effect, especially on structural pores (A;, Figure 10c),
which improves the hydraulic properties and, in particular, promotes the water flow near
soil-saturated conditions (KS, Figure 9a). Therefore, from the above discussion, the central
part seems to have water characteristics that make it suitable for irrigation. In contrast,
the greater values of sand and BD (smaller values of total porosity) in the southern part
of the field would have caused a loss of structural and matrix porosity, which explains
the reduction in A; and A;. Therefore, the plants in this part of the field might be more
frequently susceptible to water stress than elsewhere.
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The maps of h; and h; (Figure 10d,e) show a somewhat opposite trend to that of A;
and Ay, whereby greater (both structural and matrix) porosity generally corresponds to
lower suctions. The highest values of h; and h; are observed in the south, with larger
contents of sand. However, the relationship between porosity and suction is not so direct
and is greatly influenced by the variations in texture and pore size variation spectra that
occur in the field. For example, loam sandy soils (sands and sandstones) located in the
northeast and southwest have a very narrow distribution of pore sizes; therefore, they
empty over a very narrow range of suctions [45]. Furthermore, tillage management can
affect porosity and suction at which pores become empty because soils under conventional
tillage produce higher structural porosity (large and medium pores) and lower matrix
porosity (small pores) than soils under no tillage or conservative agriculture [46,47], thus
reducing the risk of water stress. Therefore, more conservative and less energy-demanding
techniques should be promoted, as the field was only subjected to conventional tillage at
least until the sampling date.

The maps in Figure 9 can also be used to derive SWRC curves at each point in the field.
As an example, the curves at three locations in the field (Figure 9a) that clearly differed in
their hydraulic properties, as discussed above, are shown (Figure 9a).

The hydraulic differences among the three zones are also well shown by the SWRC
curves; in fact, at equal suction, the highest values of water content occur in the middle zone,
the lowest in the southeast zone and the intermediate in the north zone (Figure 11a). These
variations, as discussed above, can clearly be interpreted in terms of textural variations
(higher content of silt in the north, clay in the center and sand in the south-east) and OC
(higher content in the central zone), which have an impact on bulk density and porosity
and, thus, on water availability to plants.
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Figure 11. Estimated SWRC curves for three zones of the field. C: Center; N: North; S: South.

3.4. Factorial Cokriging

To synthesize the spatial relationships shown above between Dexter’s model pa-
rameters and soil properties, and simultaneously arrive at a delineation of the field into
hydraulically homogeneous areas, a factor analysis was carried out. Only the first factor (F1
short) at the shorter range (508.64 m) and the first and second factors (F1 long and F2 long)
at a longer range (3000 m) were retained, with eigenvalues greater than 1, thereby explain-
ing a larger percentage of the variance than that explained by each variable standardized
to variance 1. The percentages of spatial variance at the corresponding scale explained by
F1 short, F1 long and F2 long were 73.72%, 68.79% and 24%, respectively (Table 6).
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Table 6. Composition of the retained regionalized factors at the scales of 508.64 m and 3000 m.

g0, gA1 gA, ghy gh, gKS gOC gBD  gTS E“gi“ P\SE
Spherical Model Range  508.64 m
Flshort 0.30 -0.27 —0.20 -0.56 —0.49 0.06 —0.30 0.13 -0.37 1.08 73.72
Spherical Model Range 3000 m
Fllong1 0.35 —0.04 0.36 -036 —-018 031 0.40 -057  —-0.05 2.95 68.79
F2 long -0.24 0.36 0.36 0.22 0.30 0.19 -0.01 —0.03 -0.71 1.03 24.00

* g before the symbol of variable means Gaussian transformed variable.

On F1 short, the Gaussian variables were as follows: gh;, ghy, gTS and gOC, and to a
less extent gAl and gA, weigh negatively, whereas g0, weighs positively. Therefore, this
factor may be considered an indirect “porosity indicator” associated with higher values of
OC and TS. It is worth underlining that, at this scale, the porosities and suctions of both
types are positively correlated. Therefore, low values of F1 short are an indicator of soils
with high total porosity, greater content of OC, more stable aggregates and low content of
residual water. On F1 long, gOC, gA,, gKS and g0, weigh more and positively, whereas
BD weighs negatively, as expected. Therefore, at this scale, the structural porosity and
the content of OC significantly affect the flow of water in the soil. This factor can then be
considered a direct “hydraulic indicator” of the properties of the soil. F2 long, although it
explains only 24% of the variance at a 3000 m scale, it was nevertheless retained because
it can be assumed as an indirect “aggregate stability indicator”, as TS weighs much more
negatively than the other variables (Table 6).

Therefore, from the composition of the retained factors, it is evident how the relation-
ships between the variables change depending on the scale, as they are linked to processes
that occur in the soil over different scales [12]. It is, therefore, expected that the maps of
the three factors also have a different pattern and, thus, produce a different partition of
the field into homogeneous areas. To stress the differences among the structures of spatial
dependence, three classes of equal frequency, i.e., of the same spatial extension, were used,
which could be defined as follows: low, medium and high classes of total porosity, water
flow and aggregate stability for F1 short, F1 long and F2 long, respectively, taking into
account the particular composition of these regionalized factors (Figure 12).

The F1 short map (Figure 12a) appears to be divided into several micro-areas charac-
terized by different porosity and consequent permeability, and aggregate stability, to be
associated with local variations in texture and OC, but without a clear overall trend. The
high areas are those particularly suited to mechanical tillage and irrigation (especially the
wide blue coloured area in the south).

The geometric pattern changes markedly in the map of F1 long, in which one can
recognize a large central zone, which also extends partly to the south in a narrower form,
characterized by good water flow conditions favored by high structural porosity. These
properties, determined by pedological characteristics and higher OC content at a longer
scale, should reduce the risk of flooding or waterlogging in the occurrence of extreme
weather events.

The map of F2 long (Figure 12c) also appears rather fragmented, as shown in Figure 11a,
with numerous areas characterized by higher aggregate stability, which improves resistance
to the destructive action of water, extending from the center of the field towards the south
(blue coloured areas). Summarizing the above, it is evident that there is no single partition
of the field into homogeneous areas based on the hydraulic properties, but this depends
significantly on the scale. Nevertheless, it can be said that there is a large central zone,
which is more suitable for irrigation, whereas the northern and southern zones are more
variable. In particular, the southern zone with a coarser texture might cause problems for
irrigation, so it would be advisable to intervene with smaller but more frequent irrigation
volumes and more substantial organic fertilization.
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Figure 12. Maps of porosity indicator (a), hydraulic indicator (b) and aggregate stability indicator (c).

4. Conclusions

In this paper, a particular approach based on multivariate geostatistics is proposed
in order to jointly process (data fusion) two types of data: soil properties by point-based
measurements and functional data to determine the parameters of Dexter’s model of
the SWRC curve. This model was chosen among many because its parameters have
physical meaning to be associated with the hydraulic properties of the soil. This approach
proved effective in interpolating functional data and in rendering scale-dependent field
delineation. However, this study highlights two issues. First, the scale of sampling should
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be appropriate for the observed variability. An excessively high nugget, which prevails
over the other structured spatial components, is indicative of the need to intensify sampling
by reducing its scale.

Second, there is no single partitioning of the field into homogeneous areas to be
subjected to differential management; instead, it is a function of scale. Therefore, it is
critical to determine which agronomic procedure is to be optimized and to investigate the
scale of the processes involved. Unfortunately, there are few scientific works that have
produced a partitioning of an agricultural field according to scale, whereas this crucial
topic would require a more widespread and detailed treatment in precision agriculture.
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