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Abstract: The Grain-for-Green Project (GFGP), one of the largest ecological restoration projects in
China, has made a significant contribution to carbon neutrality. However, the quantitative contri-
bution to climate change and the driving forces of the carbon sequestration of retired farmlands
remains unclear. To analyze the carbon dynamics of the retired farmlands and their driving forces,
GlobeLand30 databases were used to identify retired farmlands from 2001 to 2020; in addition, net
primary productivity (NPP) of the identified lands was estimated with the Carnegie–Ames–Stanford
Approach (CASA). Results showed that 131,298 km2 of farmlands were retired from 2001 to 2010
(L01–10), and 130,225 km2 were retired from 2011 to 2020 (L11–20). The largest areas of retired
farmlands were South Central China (24%) in L01–10 and Northwest China (22%) in L11–20. The
annual NPP increment of retired farmlands was the highest and most significant in Southwest China
(26,455–28,783 GgC·year−1 for retired farmlands in L01–10 and 21,320–23,303 GgC·year−1 in L11–20).
In this study, NPP had significantly positive correlations with temperature and precipitation as well
as significant constraint relationships with rural population density and animal husbandry output
value. The findings could provide suggestions for the further implementation of the GFGP and other
restoration projects.

Keywords: carbon sequestration; driving force; CASA model; land use change; ecological restoration
project

1. Introduction

In the context of global climate change and efforts to decarbonize, enhancing carbon
sinks in terrestrial ecosystems can provide an important approach to mitigate increases in
anthropogenic atmospheric CO2 and achieve carbon neutrality targets. Many ecological
restoration projects have been launched around the world that can serve this purpose, such
as the Conservation Reserve Program and the Grain-for-Green Project (GFGP). Germany
and the International Union for Conservation of Nature initiated the Bonn Challenge in
2011 to restore degraded and deforested lands [1]. The Conservation Reserve Program
(CRP) enacted by the U.S. government in 1986 has slowed soil erosion and improved
wildlife habitats [2]. The Chinese government enacted the policy of the Grain-for-Green
Project in the late 1990s to reduce soil erosion and desertification by returning farmlands
prone to soil erosion with low productivity to forest and grassland habitats [3]. All of
these ecological restoration projects have exerted significant carbon storage benefits by
revegetating degraded lands [4,5]. Afforestation and ecological restoration are considered
to be important drivers of terrestrial carbon sinks in China [6]. The implementation of the
GFGP resulted in over 335,000 km2 of new afforestation with high carbon sequestration
potential, with a cumulative carbon sink reaching 1697 TgC in 2020 [7,8].
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The net primary productivity (NPP) of vegetation is a commonly used indicator
to evaluate the carbon storage benefits of ecological restoration projects, defined as the
difference in carbon stock between photosynthesis and autotrophic respiration [9]. To
estimate NPP at large scales, field and laboratory measurements are not feasible because
of high costs and a lack of representative field data [10]. With advances in remote-sensing
technology, the estimation of NPP at regional to global scales has been greatly improved
by the large size of samples from satellites and the use of model simulation [11–13]. The
estimation of NPP using remote-sensing data facilitates the analysis of the spatial and
temporal variation in the NPP of these ecological restoration projects and associated factors
influencing NPP. Among them, light use efficiency models (e.g., the Global Production
Efficiency Model (GLO-PEM) [14] and CASA models [15]) can be used to obtain the
spatial and temporal characteristics of NPP with the use of remote-sensing data, and thus
compensate for the labor-intensive plot-based measurements of regional studies and their
related limitations.

With an accurate estimation of NPP, the identification of driving forces that affect
it could assist in developing better management practices for restoration projects to en-
hance carbon storage benefits and other ecological services [16]. Based on previously
published studies, climate change, human activities, ecosystem types, and restoration
policies influence the NPP in restoration areas [17,18]. Climate change has a direct impact
on vegetation growth through changes in temperature, precipitation, and light [19,20];
human activities act directly or indirectly on vegetation growth through different types
of disturbances [21,22], and there are complex interactions and response mechanisms be-
tween the two at spatial and temporal scales. Wu et al. [23] quantitatively estimated the
impact of anthropogenic factors on NPP using population and GDP data. Wang et al. [24]
analyzed the effect of the implementation of the GFGP on the trade-offs among ecosystem
services such as NPP, soil conservation, and water yield in the upper reaches of the Yangtze
River. Nonetheless, most previous studies have focused on local and regional (watershed)
scales [25–27], with anthropogenic influences used to focus on land-use type conversion
and regional economic development [22,28]. Fewer studies have been conducted to quan-
tify the effects of specific human activities on vegetation NPP for large-scale ecological
restoration projects.

Many studies have been conducted in China on the GFGP, which, as one of the most
ambitious restoration projects, has provided significant carbon storage benefits [29]. For
example, Deng and Shangguan [30] investigated the dynamics of carbon sequestration
during forest restoration in Shaanxi Province based on forest inventory data and empirical
factors. Feng et al. [29] used remote sensing and ecological modeling to analyze the changes
in carbon sequestration that occurred after the implementation of the GFGP on the Loess
Plateau. However, the GFGP was implemented nationwide with high spatial heterogeneity
in both natural and social factors [31]. Small-scale studies have difficulty distinguishing the
main factors involved in carbon storage in different areas. The identification of the driving
forces for the NPP in the areas in which the GFGP has been implemented can provide
suggestions for further development of the GFGP and other possible restoration projects.
Therefore, the main objectives of this study were to: (1) reveal the spatial pattern of retired
farmlands resulting from the implementation of the GFGP in China from 2000 to 2020;
(2) assess the spatial and temporal variations in the NPP in the retired farmlands from 2011
to 2020; and (3) identify the driving forces affecting NPP in the retired farmlands.

2. Materials and Methods
2.1. Identification of Retired Farmlands from GFGP

The Chinese government expanded the GFGP from Sichuan, Shaanxi, and Gansu
provinces to include 174 counties in 13 western administrative regions in 2000, and then the
project was further expanded to the entire country in 2002 [7]. Large areas of farmland have
been retired in the last two decades. The retired farmlands were identified by the global land
use database GlobeLand30 v2000, v2010, and v2020 (http://www.globallandcover.com/
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accessed on 13 December 2020), which was provided by the National Geomatics Center of
China and has high classification accuracy. The classification accuracy of farmlands, forests,
shrublands, and grasslands was 83, 84, 72 and 73%, respectively [32]. In 2000, farmland
was considered retired if it had been converted to other terrestrial vegetation in 2010 and
2020. The retired farmlands were resampled to 900 m resolution after being identified from
the GlobeLand30 database.

To better reveal the changes in NPP and the driving factors in the retired farmlands,
China was previously divided into six major regions (Resource and Environment Science
and Data Center, https://www.resdc.cn/ accessed on 25 November 2021): Northeast
China (NE), South Central China (SC), East China (E), North China (N), Northwest China
(NW), and Southwest China (SW) based on differences in climate conditions, soils, and
topographic characteristics (Figure 1); the present study uses these regions. The retired
farmlands were divided into two groups according to the year of land conversion as follows:
lands retired between 2001 and 2010 (L01–10) and lands retired from 2011 to 2020 (L11–20).
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2.2. NPP Estimation for the Retired Farmlands

The NPP of the retired farmlands for each grid cell was estimated by the Carnegie–Ames–
Stanford approach (CASA) model. The CASA model was developed by Potter et al. [15] and
has been intensively validated and widely used in the Americas, as well as in Eurasia [33,34].
The inputs of this model are typically vegetation type, monthly normalized difference vege-
tation index (NDVI), monthly solar radiation, mean monthly air temperature, and monthly
precipitation. The NPP is determined by two variables, photosynthetically active radiation
absorbed by the vegetation (APAR) and actual light use efficiency (ε) [32,35]:

NPP(x, t) = APAR(x, t)× ε(x, t) (1)

https://www.resdc.cn/
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where for grid cell x in month t, NPP(x, t) represents the net primary productivity
(gC·m−2), APAR(x, t) is the photosynthetically active radiation absorbed by the vege-
tation (MJ·m−2), and ε(x, t) is the actual light use efficiency (gC·MJ−1).

The photosynthetically active radiation was calculated based on solar radiation and
NDVI. The monthly solar radiation was obtained from the China Meteorological Data
Service Center (http://data.cma.cn/ accessed on 29 October 2021) and interpolated to 900
m resolution in ArcGIS ver. 10.8 using ordinary Kriging and inverse distance weighting. The
NDVI data (250 m × 250 m resolution) from 2011 to 2020 (MOD13Q1) were obtained from
the moderate-resolution imaging spectroradiometer (MODIS) and products provided by
the United States National Aeronautics and Space Administration (https://www.nasa.gov/
accessed on 12 August 2022). The MOD13Q1 data were pre-processed and stitched to the
national scale using the MODIS Reprojection Tool and were used to generate monthly
NDVI by the Maximum Value Composite procedure. The NDVI data were then resampled
to 900 m resolution.

The actual light use efficiency of each vegetation type was calculated based on the
maximum light use efficiency of each vegetation type and the local climate. The maximum
light use efficiency for each vegetation type used here was the well-validated parameter
by Zhu et al. [36]. The efficiencies for the evergreen coniferous forest, evergreen broadleaf
forest, deciduous coniferous forest, deciduous broadleaf forest, mixed forest, shrubland,
grassland, and cultivated land were 0.389, 0.985, 0.485, 0.692, 0.475, 0.429, 0.542, and
0.542 gC·MJ−1, respectively. The vegetation type (MCD12Q1) was also obtained from the
MODIS. The mean monthly air temperature and monthly precipitation were obtained from
the China Meteorological Data Service Center and interpolated to 900 m resolution.

2.3. Analysis of Spatial and Temporal Variation in NPP

The trends of variation in NPP from 2011 to 2020 for each grid cell were analyzed by
the Sen trend degree method. This method does not require a normal distribution of time
series data and is resistant to noise interference in comparison to linear regression [37,38].
The significance tests for the trends of the variation in NPP were conducted by the Mann–
Kendall trend test method. Equation (2) was used to calculate the Sen trend degree (β). A
positive or negative value of β indicates that the NPP had an increasing or decreasing trend
over time, respectively:

β = Median
( xj − xi

j− i

)
, ∀j > i (2)

where xi and xj are the NPP of two consecutive years i and j.
The values of the Sen trend degree (β) and the Mann–Kendall trend test (Z) for each

grid cell were obtained by the raster calculation package raster and the non-parametric
trend test package trend in R software. According to the values of β and Z, the variation
trends in vegetation NPP were classified into nine levels: −4, −3, −2, −1, 0, 1, 2, 3, and
4 (Table S1).

2.4. Analysis of Driving Forces for NPP Variation

Many factors affect the NPP of vegetation. In this study, the effect of climatic factors
(i.e., annual mean air temperature and precipitation) and anthropogenic factors (i.e., rural
population and animal husbandry) on NPP were analyzed. The indicators for the rural
population and animal husbandry were the rural population density and the output value
of animal husbandry, respectively.

The annual mean air temperature and precipitation from 2011 to 2020 were calculated
for each prefectural-level city based on the mean monthly air temperature and monthly
precipitation data from the China Meteorological Data Service Center. The rural pop-
ulation density and the output value of animal husbandry from 2011 to 2020 for each
prefectural-level city were derived from provincial and municipal yearbooks (National
Digital Electronic Library, http://www.nlc.cn/ accessed on 2 June 2022). In this paper, the
concept of a province often includes other large administrative areas such as autonomous

http://data.cma.cn/
https://www.nasa.gov/
http://www.nlc.cn/
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regions including Tibet and Xinjiang. The output values of animal husbandry were re-
trieved only for the Chinese pastoral areas that include Xinjiang, Tibet, Qinghai, Gansu,
and Inner Mongolia (Figure 1) due to the high frequency of open grazing in unfenced areas
that occurs in those areas [39].

To quantify the effect of the factors on the vegetation NPP, the indicators for the factors
were analyzed separately for six different regions (NE, SC, E, N, NW, and SW). The Pearson
correlation coefficients (r) between the factors and NPP were calculated for each region.
Traditional correlation analysis and regression methods focus on the relationship between
the mean values of variables, which is less likely to reflect the complexity of ecological
processes. Meanwhile, because the relationship between human activities and vegetation
NPP is not simply one-to-one, it is difficult to explain the relationship between them with
traditional methods. The constraint line method focuses on the data boundary between
two variables in a complex ecological process, and it is easier to use to find the causal
relationship and limiting effect between variables than the traditional methods, so the
constraint line method was chosen to analyze the relationship between human activities
and NPP [40]. To calculate the constraint relationships for each region, the datasets were
divided into 100 subgroups equally, and the 99% quantile of each subgroup was selected as
the boundary point for least-squares fitting. The statistical analysis and necessary program
were written in R software (version 4.2.0).

3. Results
3.1. Spatial Distribution Patterns of Retired Farmlands

During the implementation of the GFGP in 1999, the major target regions were the
northeastern mountains (NE), the Yunnan-Guizhou Plateau (SW), and the hilly areas in
the middle and lower reaches of the Yangtze River (E). From 2001 to 2010, the total area
of retired farmlands was 131,298 km2, of which 70,694 km2 was converted to forests and
shrublands, and 60,604 km2 was converted to grasslands (Table 1). Most of the retired
farmlands were in SC (24%), followed by SW (22%) and N (20%). Those three regions
accounted for more than 66% of the total retired farmlands in this decade (Figure 2). When
the retired farmlands were upscaled to the county level, the counties with more square
kilometers of farmlands converted to grasslands were mainly concentrated in the NE, N,
and the eastern part of the NW region, whereas the counties with more square kilometers
of farmlands converted to forests and shrublands were mainly concentrated in the SW, SC,
and western parts of the NE (Figure S1a,c).

Table 1. Area of retired farmlands in the six regions from 2001 to 2020: km2.

Group of Retired
Farmlands

Land Conversion
Type NE N E NW SW SC

L01–10
To forests and

shrublands 6248.34 3969 10,818.36 4744.17 18,509.31 26,404.38

To grasslands 8712.36 22,658.94 3408.48 11,101.86 9725.67 4996.89

L11–20
To forests and

shrublands 11,634.03 3232.71 15,419.97 4361.85 20,088.81 21,274.65

To grasslands 9579.06 17,849.97 3986.82 9901.44 8803.89 4092.12

Note: NE, Northeast China; NW, Northwest China; SW, Southwest China; SC, South Central China; E, East China;
N, North China; L01–10, lands retired between 2001 and 2010; L11–20, lands retired between 2011 and 2020.
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In the last decade, from 2011 to 2020, the total spatial extent of retired farmlands
was 130,225 km2. Among the retired farmlands, 58% were converted to forests and
shrublands (Table 1). Most of the retired farmlands were in the NW region (22%),
followed by the SC (20%), NE (16%), and N (16%) regions. The NW and SC accounted
for more than 42% of the total retired farmlands in this decade. At the county level,
the overall pattern of land conversion was roughly consistent from 2001 to 2010, but
the number of counties that converted farmlands to forests and shrublands increased
(Figure S1b,d).

3.2. Spatial and Temporal Variation in NPP on Retired Farmlands

By comparing the area-specific NPP in the six regions (Table 2), SW had the highest
area-specific NPP for L01–10 and L11–20, followed by SC and E. The lowest average NPP
was found in N for L01–10 and L11–20. Between the two groups of retired farmlands
(L01–10 and L11–20), the average NPP of L11–20 in the E and NE regions was slightly
higher than that of L01–10, and the NPP of L11–20 in the NW, SW, and N regions was
slightly lower than that of L01–10 (Table 2).
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Table 2. Average values of net primary productivity (NPP) for vegetation on fallow land in six regions
from 2011 to 2020.

Group of Retired Farmlands Year
Annual NPP (gC·m−2·Year −1)

NE NW SW SC E N

L01–10

2011 632.56 534.73 890.34 842.80 822.43 491.12
2012 691.51 578.58 841.94 841.66 855.53 551.59
2013 673.97 584.40 917.12 872.12 826.74 580.40
2014 683.32 588.37 895.52 855.03 844.99 561.12
2015 692.02 579.25 972.97 913.92 889.83 541.28
2016 689.01 580.68 963.43 913.25 866.39 573.25
2017 693.13 585.00 941.29 899.10 867.77 563.44
2018 681.28 616.57 938.70 916.97 920.11 568.71
2019 730.02 623.79 939.64 855.52 829.80 605.34
2020 787.22 648.10 883.01 875.23 846.06 547.49

L11–20

2011 656.70 523.30 880.76 845.32 840.12 477.77
2012 720.03 573.02 833.98 840.83 876.69 546.32
2013 700.70 578.10 921.68 872.28 837.28 562.85
2014 707.25 583.15 893.28 859.53 877.12 549.81
2015 724.36 570.37 976.22 919.06 912.73 530.13
2016 726.10 571.05 963.10 917.86 886.71 559.53
2017 712.11 577.13 941.48 904.67 893.72 552.44
2018 706.46 610.40 947.68 916.33 942.04 557.08
2019 763.05 617.93 947.24 852.65 845.69 595.65
2020 802.53 637.82 891.64 882.56 873.12 541.29

Note: NE, Northeast China; NW, Northwest China; SW, Southwest China; SC, South Central China; E, East China;
N, North China; L01–10, lands retired between 2001 and 2010; L11–20, lands retired between 2011 and 2020.

Among the six regions, the annual NPP increment in L01–10 was the highest in SC
(26,455–28,783 GgC·year−1), followed by the SW (23,771–27,471 GgC·year−1) and NW
(8473–10,269 GgC·year−1), the latter of which was the lowest. In contrast, the annual NPP
increment in L11–20 was the highest in the SW (24,095–28,205 GgC·year−1), followed by
SC (21,320–23,303 GgC·year−1), and the lowest was also in NW (7464–9097 GgC·year−1)
(Table S2). The total carbon stored by the retired farmlands was 2014 TgC from 2011 to 2020.

Based on the Mann–Kendall trend test and Theil-Sen slope results, at the grid cell level,
over 71 and 73% of grid cells presented increasing trends in NPP in the L01–10 and L11–20
time periods (Table 3). The percentages of grid cells with extremely significant increasing
trends in NPP were 2.76 and 3.03% in the L01–10 and L11–20 grounds, respectively
(Table 3). The percentages of grid cells with extremely significant increasing trends in NPP
were concentrated in the northeastern mountains in NE, N, and in the Yunnan-Guizhou
Plateau area in SW (Figure 3). The percentages of grid cells with an extremely significant
reduction in NPP were 0.35% in L01–10 and 0.23% in L11–20 (Table 3). Those grid cells
were distributed in N and in the hilly areas in the middle and lower reaches of the Yangtze
River (Figure 3).

3.3. Factors Affecting NPP

In this study, the annual mean air temperature and precipitation were analyzed as
climatic factors. In both periods for retired farmlands, NPP had positive correlations with
annual mean air temperature in all six regions (Figure 4). The regression coefficients for
the linear correlations can be found in the Supplementary Information (Table S3). All the
climate relationships with NPP were significant except in the NE and NW regions. The
coefficients of determination were higher in L11–20 than in L01–10. The strongest linear
correlations were found between annual mean air temperature and NPP in SC (R2 = 0.573,
p < 0.001 for L01–10 and R2 = 0.707, p < 0.001 for L11–20).
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Table 3. Statistics of the change in net primary production in six major regions from 2011 to 2020.

Group of Retired
Farmlands

Trend
Categories NE NW SW SC E N Total

L01–10

4 1498 757 697 558 258 711 4479
3 3474 2782 2963 2702 1097 2977 15,995
2 1135 1068 1206 1166 467 1390 6432
1 10,123 11,006 18,342 19,799 9044 19,391 87,705
−1 2151 3625 10,402 13,377 5914 7973 43,442
−2 29 88 357 357 196 168 1195
−3 49 185 713 645 402 228 2222
−4 8 51 177 148 147 31 562

L11–20

4 1997 655 805 429 339 644 4869
3 4839 2471 3285 2092 1537 2558 16,782
2 1695 1036 1411 916 703 1143 6904
1 14,444 10,069 19,912 15,967 12,470 15,632 88,494
−1 3083 3068 9433 11,061 8106 5688 40,439
−2 35 76 251 284 241 110 997
−3 80 172 475 467 452 219 1865
−4 7 62 97 87 81 34 368

Note: NE, Northeast China; NW, Northwest China; SW, Southwest China; SC, South Central China; E, East China;
N, North China; L01–10, lands retired between 2001 and 2010; L11–20, lands retired between 2011 and 2020; trend
categories are defined in Table S1.
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For the annual precipitation, the correlations to NPP were also positive in all six
regions (Figure 4). All the relationships were significant in both periods (Table S3), with
the highest coefficients of determination in NW, followed by the N, SC, and E regions.
The strongest linear regression models were in NW (R2 = 0.795, p < 0.001 for L01–10 and
0.805, p < 0.001 for L11–20), and the weakest linear regression models were found in SW
(R2 = 0.204, p < 0.001 for L01–10 and 0.173, p < 0.001 for L11–20).

The rural population density and the output value of animal husbandry were ana-
lyzed as anthropogenic factors. The NPP of the GFGP and rural population density were
positively correlated in the NW, N, and NE regions, and the correlations were negative in
SW, E, and SC (Table S3). All the correlations were insignificant (Figure 4). The highest
coefficients of determination were found in the NW region (R2 = 0.296, p < 0.001 in L01–10,
and R2 = 0.306, p < 0.001 in L11–20). For the NPP and animal husbandry output value,
the NW and N regions showed weak positive correlations, and the remaining regions
showed weak negative correlations (Table S3). All the correlations were insignificant. The
highest coefficients of determination were 0.16 (p < 0.001) in the E region in L01–10 and
0.184 (p < 0.001) in the SC region in L11–20 (Figure 4).

Although the linear regression could not detect a significant relationship between
the anthropogenic factors and NPP, the constraint relationships were analyzed based on
the highly clustered scatter points. At the national level, the influence of rural population
density on NPP was confined as a quadratic line (Figure 5a,b). The constraint relationships
were significant in both groups (R2 = 0.655 in L01–10 and R2 = 0.543 in L11–20). Strong
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constraint relationships were detected between the output value of animal husbandry and
the NPP of the pastoral areas in the GFGP (Figure 5c,d), and the output value of animal
husbandry had a stronger constraint effect on the NPP of L11–20 (R2 = 0.659) than that of
L01–10 (R2 = 0.605).

Land 2023, 12, x FOR PEER REVIEW 10 of 16 
 

  

(a) (b) 

  

(c) (d) 

Figure 5. National-level constraint relationships between net primary production (NPP) and (a) ru-

ral population density in L01–10 and (b) in L11–20, as well as between NPP and animal husbandry 

output value in (c) L01–10 and (d) L11–20 in pastoral areas. Note: RMB, renminbi. 

When the six regions were analyzed separately, the constrained relationship between 

rural population density and NPP was significantly higher for L01–10 than for L11–20 in 

all six regions except for SW (Figure S3a,b). The strongest constraint relationships were in 

E (R2 = 0.63 for L01–10 and R2 = 0.46 for L11–20), followed by SC (R2 = 0.566 for L01–10 and 

R2 = 0.432 for L11–20). The weakest constraint relationships were in SW for L01–10 (R2 = 

0.294) and in the NE region for L11–20 (R2 = 0.211). The constraint relationships between 

the animal husbandry output value and NPP in pastoral areas had the highest coefficient 

of determination only in N (R2 = 0.633 for L01–10 and R2 = 0.579 for L11–20) (Figure S3c,d). 

The shapes of the constraint lines changed among regions. 

4. Discussion 

4.1. Retired Farmlands 

The GFGP focuses on converting farmlands on steep slopes to forests, shrublands, 

and grasslands; it is also known as the Sloped Land Conversion Program [41]. Thus, large 

areas of retired farmlands were concentrated in the SC, SW, and NW as well as the middle 

and lower reaches of the Yangtze River with hilly areas with more sloping farmlands. 

Farmers’ willingness to retire farming has changed over time. Many local farmers were 

very willing to retire their farmlands in the first round of the GFGP (1999–2013), because 

they were provided with subsidies that had the potential to improve their livelihoods; a 

considerable portion of the farmers planned to return the retired farmlands to cultivation 

after the subsidies ended in 2018 [42]. At the same time, reclamation cannot be avoided if 

the government does not assist the farmers in their non-agricultural work [43]. In addition, 

a new round of the GFGP was launched in 2014, although the duration of subsidies was 

Figure 5. National-level constraint relationships between net primary production (NPP) and (a) rural
population density in L01–10 and (b) in L11–20, as well as between NPP and animal husbandry
output value in (c) L01–10 and (d) L11–20 in pastoral areas. Note: RMB, renminbi.

When the six regions were analyzed separately, the constrained relationship between
rural population density and NPP was significantly higher for L01–10 than for L11–20 in
all six regions except for SW (Figure S3a,b). The strongest constraint relationships were in
E (R2 = 0.63 for L01–10 and R2 = 0.46 for L11–20), followed by SC (R2 = 0.566 for L01–10
and R2 = 0.432 for L11–20). The weakest constraint relationships were in SW for L01–10
(R2 = 0.294) and in the NE region for L11–20 (R2 = 0.211). The constraint relationships
between the animal husbandry output value and NPP in pastoral areas had the highest
coefficient of determination only in N (R2 = 0.633 for L01–10 and R2 = 0.579 for L11–20)
(Figure S3c,d). The shapes of the constraint lines changed among regions.

4. Discussion
4.1. Retired Farmlands

The GFGP focuses on converting farmlands on steep slopes to forests, shrublands,
and grasslands; it is also known as the Sloped Land Conversion Program [41]. Thus, large
areas of retired farmlands were concentrated in the SC, SW, and NW as well as the middle
and lower reaches of the Yangtze River with hilly areas with more sloping farmlands.
Farmers’ willingness to retire farming has changed over time. Many local farmers were
very willing to retire their farmlands in the first round of the GFGP (1999–2013), because
they were provided with subsidies that had the potential to improve their livelihoods; a
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considerable portion of the farmers planned to return the retired farmlands to cultivation
after the subsidies ended in 2018 [42]. At the same time, reclamation cannot be avoided if
the government does not assist the farmers in their non-agricultural work [43]. In addition,
a new round of the GFGP was launched in 2014, although the duration of subsidies was
shorter than in the first round [7]. Therefore, the result is that the area of retired farmlands
from 2011 to 2020 is slightly lower than that of the previous decade.

The distribution of retired farmlands varied among regions. Besides the differences in
topography and land-use patterns, the implementation of the GFGP by local governments
has also led to spatial heterogeneity in land conversion. As China’s poverty eradication
efforts progressed, the GFGP also tilted toward serving more economically depressed
areas, and thus the concentration of retired farmlands shifted from areas with better
hydrothermal conditions to those areas with environmental conditions that were less
suitable for farming [44]. The final vegetation type that thrives after farmland retirement
depends on the local environment; thus, the policy of the GFGP was dedicated to growing
grasses or forests whenever conditions would permit. Therefore, the possibility of retired
farmlands that are converted into forests is greater in southern China, where water and
heat conditions are good, and the possibility of retired farmlands that are converted into
grasslands is greater in northern China. The effect of fallowing is evident in N due to the
dense distribution of farmlands and the shift of the center of farmland reclamation [45],
and the Loess Plateau region is a priority area for GFGP implementation due to severe soil
erosion [46].

4.2. NPP of Retired Farmlands

This study showed that the distribution of NPP in retired farmlands had a pattern in
the study area that was high in the southeast and low in the northwest. This pattern was
consistent with the national-scale NPP patterns obtained by Sun et al. [47] and Ge et al. [48].
The high NPP in the SC and SW was attributed to the suitable environmental conditions for
tree growth in the southern part of China, where most of the plantation forests were fast-
growing species, such as Eucalyptus urophylla S.T.Blake and Pinus armandi Franch [49,50]. In
the northern part, soil desertification, soil erosion, high evapotranspiration rates, and soil
infertility caused the vegetation to have low productivity [51].

Many studies have proven that ecological restoration projects are effective in restoring
and managing degraded environments [49,52]. In the present study, the dynamic changes
in the NPP in retired farmlands across the country revealed an overall increasing trend and
indicated positive feedback to vegetation restoration. Due to the continued cumulative
increase in land vegetation biomass over time, the increase in NPP was more significant
in L11–20 than in L01–20, which is the result of the GFGP implementation [53], and side
by side, it shows that there is was certain negative impact at the beginning of the GFGP
implementation and a certain time lag in ecological effects [54]. The extremely significant
decrease in NPP was clustered in areas in N and the middle and lower reaches of the
Yangtze River, where ecological restoration is ineffective. The poor results of ecological
restoration efforts in these areas may be caused by the selection of fast-growing and barren-
tolerant tree species that were not adapted to the local environment, or they may be the
consequences of afforestation failure caused by improper early management and care [55].
Therefore, it is urgent to improve the management tools of the fragile areas of the GFGP,
such as the ban on grazing in grasslands and the planting of site-specific tree species.

4.3. Factors for NPP Variation

Air temperature and precipitation have direct effects on the growth of vegetation [56].
Therefore, the NPP among different regions is generally positively correlated with these
two factors. In arid and semi-arid regions (e.g., NW), the NPP had a weak correlation
with air temperature, whereas in the wetter SC, strong correlations with air temperature
were obtained. In arid and semi-arid regions, the limiting factor for the NPP is not only
air temperature; that is, excessive warming is harmful to the water balance and enzyme



Land 2023, 12, 1078 12 of 16

activity and also inhibits the photosynthetic effect [57]. Precipitation was the major driver
of vegetation NPP in the arid and semi-arid regions, such as the NW [58], and it had weak
correlations with the NPP in the SW. In the arid and semi-arid regions, water availability is
the limiting factor because of low precipitation (<600 mm·yr−1) and high evapotranspira-
tion rates (annual precipitation/annual potential evapotranspiration < 0.65) [59]. Therefore,
vegetation NPP in these regions was more sensitive to variations in precipitation. In the
SW, high vegetation cover in the hilly areas in the SW resulted in a strong water retention
capacity, so the NPP in these regions was less sensitive to the change in the precipitation
rate [60]. In addition, there is a limiting effect of altitude on vegetation growth, with SW
showing higher sensitivity to temperature due to high altitude [61].

In this study, the rural population density was chosen as an anthropogenic factor,
because the spatial pattern of trends in population characteristics was consistent with trends
in vegetation NPP [62]. The animal husbandry output was analyzed with the consideration
that grazing is one of the main uses of grasslands in the northern agro-pastoral belt and is a
potential cause of disturbance for the NPP [63]. Although no significant correlation was
found between rural population density, livestock output value, and NPP in the regression
analysis, the constraint lines showed good fits (most were quadratic curves with a single
peak), which implies a good constraint relationship between anthropogenic factors and
the NPP. On the left side of the curves (Figure 5), the low intensity of anthropogenic
disturbance with low NPP could be caused by negative environmental conditions, such
as extreme drought and soil salinization [64]. On the right side of the curve, frequent
human activities such as overgrazing and agricultural activities have caused some damage
to the ecosystem, and the vegetation recovery is equally poor. With a moderate level
of disturbance, an increase in species’ richness and biomass accumulation rate can be
expected [65,66]. China’s pastoral areas include Xinjiang and Tibet, where the population
density is low, as well as the northern agricultural and pastoral zones, where human
activities are frequent. These areas have poor soil conservation and serious grassland
sanding degradation, and although some pressure was alleviated after the implementation
of the GFGP, in some overgrazed areas, population growth and improper management
practices have led to a tendency of secondary land degradation [67]. Therefore, in the
implementation of the GFGP, decision makers should balance vegetation productivity and
local farmers’ livelihoods to achieve healthy long-term ecological development.

4.4. Limitations and Uncertainties

The retired farmlands in the present study were identified by a dataset with three
phases of land use and separated into two groups: those retired within the last 10 years
and those retired over 10 years ago. A finer resolution of the year of retirement than that
employed in the present study could facilitate the analysis of driving forces. Moreover, the
retired farmlands can be reconverted back and forth between farmland and other habitats
several times, which could cause insignificance in the NPP trend and driving force analysis.

The CASA model was used to estimate the NPP from NDVI. This model has been
intensively validated in China [6,68,69]. However, the CASA introduces uncertainty when
implemented using a high-resolution dataset. The same vegetation type in different regions
may have different characteristics and require region-specific calibration to improve model
accuracy [70]. In the present study, two climate factors and two anthropogenic factors were
selected for analysis. The mechanisms of factors influencing ecosystems are complex [71].
The selection of grazing intensity as an anthropogenic factor is a more realistic reflection of
the relationship between grazing and vegetation growth than livestock production value.
Most studies have used the number of cattle and sheep as the baseline data [72]; however, in
the present study, obtaining the actual grazing intensity data proved to be difficult through
the number of cattle and sheep produced because of the difference between captive- and
open-stocking grazing methods in each region [73]. In future studies, more factors should
be introduced for comprehensive consideration, and interactions among factors should be
analyzed to explore the driving forces for vegetation NPP.
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5. Conclusions

In this study, the retired farmlands involved in the GFGP were identified using the
GlobeLand30 land-use dataset, and the NPP of the retired farmlands was estimated by the
CASA model. The total retired farmland reached 261,523 km2 from 2001–2020, with the
largest area of retired farmlands being in the SC region of China from 2001 to 2010 and in
the N region from 2011 to 2020. The NPP of retired farmlands increased significantly in
most regions where the GFGP was implemented, with the highest area-specific NPP in the
SW region and the lowest in N. The highest total NPP was in the SW for L01–10 and in
the SC for L11–20, and the lowest was in the NW in the two groups of retired farmlands.
The analysis of driving forces showed that precipitation was the dominant factor in arid
and semi-arid regions, whereas temperature was more significant in high-elevation hilly
regions. Significant constraint relationships existed between anthropogenic factors and
the NPP, and moderate disturbances were associated with high biomass accumulation
rates. This study provides details related to the spatial and temporal distribution of retired
farmlands and the associated carbon sequestration capacity of those lands. The conclusions
could offer critical information and guidance for the future implementation policy of the
GFGP and other ecological restoration projects.
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density on L11–20, (c) animal husbandry output value on L01–10, and (d) animal husbandry output
value on L11–20; Figure S3: Six regions’ constraints between NPP and (a) rural population density on
L01–10, (b) rural population density on L11–20, (c) animal husbandry output value on L01–10 in pastoral
areas, and (d) animal husbandry output value on L11–20 in pastoral areas; Table S1: Significance test
for variation trend in NPP based on β and Z; Table S2: Total NPP for vegetation on fallow land in six
regions from 2011 to 2020; Table S3: Regression model statistical information.
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