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Abstract: Historic agricultural practices have played a dominant role in shaping landscapes, creating
a heritage which must be understood and conserved from the perspective of sustainable development.
Agroforestry (i.e., the practice of combining trees with agriculture or livestock) has existed since
ancient times in European countries, and it has been recognised as one of the most resilient and multi-
functional cultural landscapes, providing a wide range of economic, sociocultural, and environmental
benefits. This research explores aspects of the history, physical characteristics, decline, and current
state of conservation of historic agroforestry systems on the Northern Apennines in Italy, using an in-
terdisciplinary approach combining archival sources, landscape archaeology, dendrochronology, and
GIS analysis. Furthermore, through computer-based modelling, this research aims to evaluate how
the abandonment of this historic rural land-use strategy impacted slope geomorphic processes over
the long term. The importance of environmental values attached to traditional rural landscapes has
received much attention even beyond the heritage sector, justifying the definition of transdisciplinary
approaches necessary to ensure the holistic management of landscapes. Through the integration of
the Unit Stream Power-Based Erosion Deposition (USPED) equation with landscape archaeological
data, the paper shows how restoring the historic agroforestry landscape could significantly mitigate
soil mass movements in the area. Thus, the interdisciplinary workflow proposed in this study enables
a deep understanding of both the historical evolution of agroforestry systems and its resulting effects
for cumulative soil erosion and deposition in the face of climate change.

Keywords: remote sensing and GIS; historic landscape characterisation; slope processes; landscape
archaeology; landscape modelling; transdisciplinary landscape studies; geomorphometry; alberata emiliana

1. Introduction

Agriculture represents the largest land-use type worldwide, and deciphering the
processes that created today’s rural landscapes is fundamental to understanding how
human activities have altered natural resources and geomorphic processes in the past [1–5].
Recent environmental studies and policies have recommended maintaining traditional
rural landscape features such as intercropping, agroforestry, and cross-slope barriers (e.g.,
hedgerows, stone walls, earth banks, ridges, and furrows) for their potential benefits to
ecosystems [6,7]. Over the long term, agroforestry systems (i.e., the practice of combining
trees with agriculture or livestock) are among the most resilient types of rural land use [8].

Agroforestry has existed since ancient times in European countries, and it has given
rise to a wide variety of multifunctional historic landscapes [9], such as dehesa in Spain [10],
montado in Portugal [11], plužiny in the Czech Republic [12], and streuobst in Germany [13].
Agroforestry systems are still widely implemented [14] in tropical areas where geoarchae-
ological studies have also demonstrated their central economic, cultural, and ecological
role even in past societies [15–17]. During the 20th century, as climate change emerged as a
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pressing global issue, agroforestry as a polyculture strategy garnered significant attention
as a promising way to manage land, providing a wide range of economic, sociocultural,
and environmental benefits [18,19]. Some of those include sustaining biodiversity [14], pro-
moting carbon sequestration [20], improving the water balance, lowering risk of wildfire,
and preserving traditional agricultural landscapes and rural knowledge [21]. Moreover,
numerous studies [21–24] have demonstrated the significant impact of agroforestry systems
on slope stability. Furthermore, the practice of integrating trees, shrubs, and other perennial
plants with crops plays a crucial role in holding soil together and resisting mass movement
in landslides, making them an effective measure to prevent slope instability and promote
soil conservation.

Soil erosion caused by water is a complex process that occurs in three stages. Firstly,
the soil particles become detached from the soil mass due to the force of rainfall or runoff.
Secondly, the detached particles are transported by the moving water, as either dissolved
or suspended solids. Finally, the transported soil is deposited somewhere away from its
original location [25]. The extent and severity of soil erosion can vary widely depending on
a range of site-specific and regional factors. These include the slope gradient, soil type, vege-
tation cover, and rainfall intensity and frequency [26,27]. Intensive storm events can trigger
rainfall-induced landslides [28] with severe consequences on the environment (e.g., loss of
topsoil and destruction of vegetation and habitat for wildlife) [29], human settlements (e.g.,
damage to infrastructure), economy (e.g., increased costs for disaster response and recovery
efforts) [30], and cultural heritage [31,32]. Since land-use and land-cover dynamics are
the major anthropogenic drivers of soil erosion and degradation [33], the development of
sustainable rural strategies is fundamental to cope with this environmental hazard.

Italy is among the European countries most affected by the natural hazard of slope
instability, which leads to an increased risk of landslides [34]. In Northern and Central
Italy, agroforestry was widespread in the past [35] but survives only in a few areas in
the form of relics. The Italian term coltura promiscua indicates the typical association of
trees, vines and arable crops. It was practised widely in the Po-Venetian Plain and on the
Tuscan–Emilian Apennines under different names corresponding to regional agroforestry
subtypes with their own technical characteristics (alteno in Piedmont, piantata in Lombardy,
Emilia Romagna, and Veneto, and alberata on the Apennines) [36–38].

Through an interdisciplinary archaeo-historical approach, this research aims to recon-
struct the origin and physical characteristics of the typical coltura promiscua of the Northern
Apennines (aka “alberata emiliana”) and to evaluate its current state of conservation. Fur-
thermore, in the last two decades, intensive rainfall events have triggered dozens of soil
slips in the Northern Apennines [39], and recent climate change projections indicate that
increasingly severe storm intensity will induce greater soil mass movements via water
erosion in the future than in the past [40,41].

To address these challenges, GIS (Geographic Information Systems) modelling has
been employed to simulate the effect of historic rural landscape change for slope geo-
morphic processes. Computer-based modelling can provide a quantitative and consistent
approach to estimate soil erosion under a wide range of conditions, representing one of the
most versatile tools for planning suitable landscape protection measures. In the Central
and Northern Apennines, researchers have employed several computational methods to
measure, estimate, and monitor soil erosion rates [42,43]. Of these methods, the Revisited
Universal Soil Loss Equation (RUSLE) is the most widely applied model for identifying
areas susceptible to soil erosion in a region of interest. This empirical model predicts annual
soil loss due to sheet and rill water erosion [44]. The results of RUSLE modelling often
identify human activities such as grazing, forestry, and agriculture as the most responsible
factors for land degradation [45].

However, one limitation of the RUSLE equation is its inability to simulate deposition
processes. Conversely, the GIS modelling approach adopted in this study provides a
comprehensive understanding of soil mass movements, highlighting areas where soil is
removed and deposited using the Unit Stream Power-Based Erosion Deposition (USPED)
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equation. A similar approach was successfully employed in the Central Apennines to
assess human-induced soil erosion processes resulting from forest harvesting [46]. This
previous study revealed that forestry activities led to a noticeable increase in soil mass
movements, although it did not account for the effects of historic landscape transformation
in the model. On the other hand, a recent paper used a GIS modelling approach to estimate
soil loss variation in the Northern Apennines in accordance with the level of conservation
of historic landscape features (e.g., terrace farming and field boundaries) [47], but it did not
explore the effect of historic land-use change on soil deposition processes.

The main innovation of this study is the integration of the USPED equation with
information regarding changes in the historic rural landscape. This could be used to
develop more effective landscape conservation strategies in the region. Therefore, this
research not only aims (1) to understand the historic background of polyculture strategies
in the study area (see Section 4.1), but also seeks (2) to explore its potential for mitigating
downslope soil erosion and deposition in the face of climate change (see Section 4.2).

2. Study Area

This research focused on a portion of the Tuscan–Emilian Apennines coinciding with
the municipality of Vetto d’Enza (Emilia Romagna Region, northern Italy). The main
characteristics of this historic rural landscape trace their origin back to the Middle Ages in
the period of the Great Countess Matilda of Canossa (10th–11th century CE) and the area’s
land management system appears to have remained largely unaltered until the end of the
19th century CE [47] (Figure 1).
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Among the most distinctive characteristics of this historic landscape are relics of
traditional alberata emiliana and well-preserved stone walls and earth banks that have been
used extensively between steeply sloping fields to delimit tenurial boundaries and to face
agricultural terraces [48].

The environmental setting of the study area, including the lithological composition,
fault systems, soil properties, and climatic factors, contribute to the prevalence of geomor-
phological slope processes [49]. According to the Köppen–Geiger Climate Classification,
the prevailing climate in the study area is warm-temperate, with warm summers and no
distinct dry season (Cf—subcontinental/continental temperate) [50]. The faults are mainly
located close to the surface, and, when combined with the active uplift of the external rim
of the outer chain, they significantly amplify the surface effects of seismic events [49]. The
predominant rock type in the study area consists of sedimentary rocks that exhibit a high
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proportion of clay, such as sandstone and marl [51]. Soils in the area exhibit varying levels
of development, ranging from scarce to moderately developed, and are characterised by
moderate alkalinity, considerable depth (ranging from 3 to 4 m), and high fertility. Slope
geomorphic processes are particularly evident in soils that originate from silty–clayey
flysch formations which are particularly vulnerable to erosion and degradation [52,53]
(Figure 2).
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3. Materials and Methods

The interdisciplinary approach proposed combines different disciplines and tools to
study the transformation of the historic landscape in the area and the resulting implications
for slope geomorphic processes. The first part focuses on the development of the historic
AFS landscape. Historical sources (see Section 3.1) were employed to reconstruct the
genesis and development of the historic AFS. Using historic cartography, as well as aerial
and satellite images, Historic Landscape Characterisation (HLC, see Section 3.2) was used
to analyse the landscape transformation of the area from the late 19th century CE to the
present day. Dendrochronological analysis (see Section 3.3) on relics of AFS completed the
HLC retrogressive analysis, marking the last possible phase of use of AFS in the region.
Secondly, the GIS HLC data were employed to model the effect of historic landscape
transformation for slope geomorphic processes (see Section 3.4) in order to provide insights
for potential future holistic landscape management strategies.

3.1. Historical Sources

For a general overview of the origin of the alberata emiliana, the book published by
Emilio Sereni in the mid-20th century CE [55] provides a helpful starting point. The oldest
agronomical documentation available about coltura promiscua dates back to 1674 [56], while
the most exhaustive historical report about the rural landscape of the study area was carried
out in the 19th century CE [57].

3.2. GIS—Historic Landscape Characterisation

The application of GIS and remote sensing technologies is becoming increasingly
acknowledged as a potent tool in landscape archaeology [58,59], as well as in geomor-
phological studies [60]. Furthermore, the advent of free and open-source software (FOSS)
geospatial tools has further widened the user base and improved accessibility to these
powerful technologies [61].

HLC is a specific landscape archaeological GIS tool to map the chronological and
spatial complexity of historic landscapes with particular reference to their historical devel-
opment through a systematic interpretation of rural landscape components [62,63]. In each
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HLC study, GIS is used to map the “Historic Landscape Character types” (HLC types) on
the basis of unique features resulting from known historical processes. The HLC method
employs a qualitative but formalised technique to map the chronological and spatial intrica-
cies of historical landscapes [64]. The mapping procedure involves identifying the smallest
“uniform diachronic unit” (UDU), represented by a polygon whose size and shape depend
on the variability of the HLC type over time [63]. In the study area, the GIS HLC dataset
was developed using various sources including historical maps, 19th century cadastral
records, declassified satellite images, and aerial photography (Table 1). Further data about
historic land use were recovered in the regional geodatabase [65]. The resulting geodataset
consisted of a GeoPackage (.gpkg) [66] vectorial layer of the historic landscape changes
that occurred since the 19th century CE [48].

Table 1. List of the historic sources employed in this study.

Name Publication Type Scale Source

Google© Satellite 2022 Satellite images - QuickMapServices plugin [67]
in QGIS 3.22 [68]

Bing© Satellite 2022 Satellite images - QuickMapServices plugin [67]
in QGIS 3.22 [68]

Carta Tecnica Regionale (CTR) 2018 Cadastral map 1:5000 WMS service [69]

Compagnia Generale Riprese
(CGR) Aeree 2018 Aerial photos - WMS service [70]

AGEA (Agenzia per le
Erogazioni in Agricoltura) 11 2011 Aerial photos - WMS service [71]

AGEA (Agenzia per le
Erogazioni in Agricoltura) 08 2008 Aerial photos - WMS service [72]

Volo Compagnia Generale
Riprese Aeree (CGRA) 1976–1978 Aerial photos 1:13,500

Photos retrieved at the Ufficio
cartografico della Provincia di

Reggio Emilia [73]

KH-9 (Hexagon) 1974 Satellite images -
Declassified image retrieved at

the US Geological Survey
website [74]

Volo GAI (Gruppo
Aereo Italiano) 1954–1955 Aerial photos 1:33,000

Photos retrieved at the Istituto
Geografico Militare (IGM)

website [75]

Nuovo Catasto Terreni 1886–1900 Cadastral map 1:2000
Map retrieved at the Ufficio

cartografico della Provincia di
Reggio Emilia [76]

Carta Storica Regionale
Emilia Romagna 1853 Historical map 1:50,000 WMS service [77]

Second military survey of the
Habsburg Empire 1818–1829 Historical map 1:28,800 Map retrieved at the Mapire

website [78,79]

Viaggio Agronomico per La
Montagna Reggiana E Dei

Mezzi Di Migliorare
L’agricoltura Delle

Montagne Reggiane

1800 Historic document - [57]

L’economia del cittadino in
villa, del signor Vincenzo

Tanara libri 7. Riueduta, ed
accresciuta in molto luoghi dal

medesimo auttore, con
l’aggiunta delle qualita

del cacciatore

1713 Historic document - [56]

3.3. Dendrochronology

Dendrochronology as a method for scientific dating provides accurate chronologies
because, in principle, each ring represents a year in a tree’s life. In geomorphological
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studies this technique has been employed in exploring the temporal variation of slope
geomorphic processes and the resulting impact on slope instability in recent decades [80,81].
Furthermore, tree-ring analyses have been applied to the study of agroforestry, especially
to assess which species return the best benefit in terms of climate change mitigation (e.g.,
carbon storage) [82,83].

In this study, dendrochronological analysis was employed to assess the last phase of
alberata emiliana in relics of agroforestry systems detected during the GIS HLC mapping
process. An increment borer (Pressler; inner diameter: 5 mm) was used to extract core
samples from the trunks at “breast height” (about 1.30 m above the ground) [84]. All
extracted samples were dried at room temperature, glued on wood profiles, and sanded, to
clearly expose all tree rings. The number of annual rings was used to estimate the terminus
post quem since each tree was established.

3.4. GIS Geomorphic Modelling

The Geographic Resources Analysis Support System (GRASS) GIS software [85] was
employed to simulate how historic land-use changes affected downslope soil erosion and
deposition. The module r.landscape.evol was specifically designed to simulate the
cumulative effect of erosion and deposition on a landscape over time [86]. It takes as
input a raster digital elevation model (DEM) of surface topography and an input raster
DEM of bedrock elevations, as well as several environmental variables, such as the rainfall
erosivity factor (R factor, measured in MJ·mm·ha−1·h−1·year−1), the soil erodibility factor
(K factor, Mg·h·MJ−1·mm−1), the land-cover management factor (C factor, dimensionless
value ranging between 0 and 1), and the support practices factor (P factor, dimensionless
value ranging between 0 and 1). The R factor represents the erosive power of raindrops
on the soil surface, while the K factor represents the susceptibility of the soil to erosion.
The C factor represents the effect of vegetation and land management practices on erosion.
Vegetation cover can protect the soil from erosion by intercepting raindrops and reducing
runoff [87]. Lastly, the P factor represents the effect of erosion control practices to reduce
erosion by slowing down water flow and reducing the length of slope (e.g., contour farming,
terracing, and hedgerows) [44].

In the module r.landscape.evol, three different equations can be used to compute
the net change in elevation due to erosion and deposition: the stream power equation, the
shear stress equation, and the USPED equation [88]. All three equations estimate transport
capacity as the force required to move a unit area of fluid at a unit velocity (kg/m·s),
thus eventually yielding the erosion/deposition (ED) rate as mass flux per unit area per
unit time (kg/m2·s). The unit kg/m2·s represents a measure of mass flux density or mass
transfer rate per unit area per unit time. It is commonly used in chemical engineering and
related fields to express the rate of mass transfer between two phases or the rate of mass
flow through a surface. It is also the standard unit of momentum (i.e., mass in motion) [89].

The USPED equation was employed in this study because it is best suited for modelling
erosion and deposition on hillslopes and relies on the rainfall intensity factor during the
simulation process.

The DEM (5 m resolution), R, and K environmental parameters employed in this
study were supplied by the Emilia–Romagna region geological service [90], as well as the
regional soil maps used to generate the bedrock elevation raster map. The first modelling
step focused on estimating the soil depth. This parameter is crucial as it provides a
depth-based limitation on the amount of erosion that can occur at any particular cell.
In this research, these data were retrieved from the regional soil map vector file [65]
and transformed into a raster file using the GRASS module v.to.rast. Then, a bedrock
elevation map was estimated subtracting the soil depth raster from the DEM using the
GRASS module r.mapcalc. To simulate the potential of historic agroforestry landscapes
in mitigating downslope soil erosion and deposition in the face of climate change, the
global rainfall erosivity projections for the year 2050 [91] were employed in the modelling
process. Moreover, the C and the P factors were developed using the HLC data about
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historic land-use changes that occurred during the 20th century CE. The cover management
factor was obtained by associating the European Soil Data Centre (ESDAC) C Factor
numerical values [87] to the corresponding Regional LULC categorical data [65] for each
HLC chronological period. The ESDAC C factor values were chosen to potentially extend
the reproducibility of this protocol in other European regions. Lastly, the support practices
factors (i.e., P factors) were developed using the equation proposed in Brandolini et al.,
2023 [47], which calculates the effectiveness of historic landscape features (i.e., terraces and
field boundaries) in reducing soil erosion hazards according to their state of conservation
and regional topography (Figure 3).
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4. Results
4.1. Historic Agroforestry Landscape: Genesis, Characteristics, and Decline

In Northern Italy, agroforestry systems have been documented in written sources
since Roman times [92]. In his “Naturalis Historia”, Pliny the Elder mentioned the use of
agroforestry to grow grapes and fruit trees together. The same technique was reported by
Varro (“De re rustica”, first century BCE), Columella (“De re rustica”, first century CE), and
finally by Palladius in his “Opus agriculturae” (fourth century CE). These authors provide
evidence that agroforestry was a common practice in Northern Italy during the Roman
Empire [55,92]. The 14th century the Italian agronomist Pietro de’ Crescenzi wrote about
the practice of planting trees among crops to provide shade and shelter for animals in his
book “Ruralia commoda” [55]. In 1674, the agronomist Vincenzo Tanara still described this
polyculture strategy with the Latin terms arbustum gallicum and arbustum italicum [56]. In
these agroforestry systems, fields were divided into long arable strips separated by rows
of vines trained on the trees with intercrops of cereals, vegetables, or forage [37]. The
alberata (arbustum italicum) differs from the piantata (arbustum gallicum) in terms of the field’s
extension (15–30 m), the width of the arable strips (4–6 m), and the species (elm—Ulmus
minor; mulberry—Morus nigra; maple—Acer campestre) used to sustain the branches of
the vines woven from one tree to another along the same row. The Piantata was typically
adopted in the Po-Venetian Plain, while the alberata (aka, alberata emiliana and alberata
tosco-umbro-marchigiana) was largely employed in the Northern Apennines [55,93,94].

The integration of different plants in the same field provides multiple benefits, in
addition to food production such as hay and tree fodder to feed animals, domestic fuel
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(logs), and construction materials (timber) [55]. In the study area, the alberata was largely
adopted since the 13th century CE, along with a sharecropping system [93,95,96]. In
1800, the agronomist Filippo Re described [57] this rural land management system which
appeared to have persisted largely unaltered until the end of the 19th century CE [97–99].
However, in the early 20th century CE, this traditional agroforestry system experienced a
substantial decline of around 20% between 1913 and 1957 [55].

The GIS HLC mapping process enables the identification of the relics of alberata and
quantification of its progressive reduction over the last 70 years (1950s, 1970s, 2000s, and
2010s). Indeed, in the absence of reliable land-use data for the 19th century chronological
phase, this period is not considered in this research. Information retrieved in the sources
available (Table 1) enabled the compilation of detailed information about the land-use
changes that occurred since 1954.

In the mid-20th century, the extent of agroforestry in the study area began to decline.
Between the 1950s and the 1970s, the area covered by polyculture fields decreased from
10.2% to 3.7%. This decline continued over the years; today, the historic agroforestry
landscape has almost completely disappeared, representing only 0.1% of the study area
(Figure 4).
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Figure 4. Pie charts summarising the land-use changes in the study area since the 1950s showing the
gradual disappearance of alberata emiliana (i.e., agroforestry). To highlight the progressive decline in
agroforestry, key ESDAC land-use types were merged in the pie charts as follows: woodland (“mixed
forest” and “transitional woodland/shrub”); grassland (“natural grassland” and “pastures”), and arable
land (“complex cultivation patterns” and “non-irrigated arable land”). The maps show schematically
where agroforestry was located in the study area for each time period.

Relics of alberata near Vetto d’Enza conserve some of the main characteristics of this
historic agroforestry landscape as they were described in historical sources: small fields
(max 15–20 m side) divided into strips by regular rows (ca. 5 m distance) of vines trained
on maple trees (Acer campestre). The tree management and shade-regulation operation
employed is pollarding, and all branches are cut at a height of ca. 2 m above ground
(Figure 5). Dendrochronological analysis was performed on these remnants of historic
agroforestry systems detected remotely through the GIS HLC mapping process. The
maples (Acer campestre) sampled on the historical agricultural terraces of Vetto d’Enza were
likely planted between 1949 and 1980, marking the last phase of the historic agroforestry
landscape in the area.
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(A) aerial view of a traditional alberata emiliana field; (B) detail of a pollarded maple tree; (C) ground
view of vines trained on pollarded maple trees (© F.B.).

4.2. GIS Modelling of Slope Geomorphic Processes

Three models were developed to simulate changing slope geomorphic processes across
the landscape in three different scenarios. Four environmental parameters were constant
(DEM, bedrock elevation map, K factor, and R factor) in all the three models, while the P
and C factors were changed to reproduce three different scenarios. The first model (model
“1950”) considers the historic rural landscape as it was in the 1950s before changes due to
20th century socioeconomic dynamics. In this model, agroforestry is still the dominant
component of the rural landscape (Figure 4). The second model (model “2020”) reflects
present-day land management practices in the area, with the C and P factors adjusted
accordingly. In this model, the historic agroforestry landscape has almost completely
disappeared, and the rural activities are now primarily devoted to forage production for
the local dairy industry (Figure 4). The third model (model “AFS”) represents a scenario in
which the present-day rural landscape is occupied only by historic polyculture activities
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(i.e., “agroforestry”). In this model, the historic agroforestry landscape replaces all other
agro-pastoral land-use types (i.e., “complex cultivation patterns”, “non-irrigated arable land”,
“natural grassland”, and “pastures”) (Figure 6).
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Figure 6. Details of the three GRASS models (1950, 2020, AFS) are shown in correspondence with
the area south of Vetto d’Enza (RE, Italy). The estimates of erosion/colluvial deposition rates vary
significantly across the three models due to differences in the distribution of agroforestry systems
in the study area. Shades of red indicate areas of soil colluvial deposition, while shades of blue
represent zones prone to erosion. The full rasters covering the entire study area are provided in the
Supplementary Materials.

As displayed in Figure 6, the estimates of erosion/deposition rates varied significantly
across the three models due to differences in the distribution of agroforestry systems in
the study area. In particular, shades of red indicate areas of soil colluvial deposition,
while shades of blue represent zones prone to erosion. The results of the GIS geomorphic
modelling conducted in the study area revealed that Model “1950” exhibited the highest
soil loss score (Table 2). Although the total soil loss in Model “2020” was 8% lower than in
Model “1950”, it remained slightly higher than that in Model “AFS” (+1.5%) (Figure 7).

Table 2. Simulated soil loss (i.e., the result of erosion and deposition processes) (t·ha−1·year−1) in
the three models (“1950”, “2020”, and “AFS”) for each land-use type and totals. Positive numbers
indicate depositions, while negative numbers indicate erosion.

Land Use Type

Model “1950” Model “2020” Model “AFS”

Area (ha) Soil Loss
(t·ha−1·year−1) Area (ha) Soil Loss

(t·ha−1·year−1) Area (ha) Soil Loss
(t·ha−1·year−1)

Agroforestry 1024.83 0.93 5.66 0.02 1730.15 −1.54

Arable land 1220.20 −4.65 657.00 −1.55 nd nd

Grassland 253.66 0.63 1067.49 −0.89 nd nd

Rough ground 190.02 −3.29 190.74 −6.50 190.74 −6.55
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Table 2. Cont.

Land Use Type

Model “1950” Model “2020” Model “AFS”

Area (ha) Soil Loss
(t·ha−1·year−1) Area (ha) Soil Loss

(t·ha−1·year−1) Area (ha) Soil Loss
(t·ha−1·year−1)

Urban area 65.24 −0.28 184.26 −0.45 184.26 −0.30

Woodland 2577.43 2.86 3226.22 5.90 3226.22 4.98

Total 5331.37 −3.80 5331.37 −3.47 5331.37 −3.41
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Figure 7. Estimation of the total soil loss (t ha−1 year−1) in the three models (1950, 2020, and AFS).
The simulation indicates that replacing current agro-pastoral land management with agroforestry
systems would reduce the soil loss by 40%. Images in .tiff format covering the entire study area are
provided in the Supplementary Materials.

In the original publication, there was a mistake in Figure 8 as published. The total soil
loss results were not correct due to an error in the conversion of the data from Kg/m2·s to
t ha−1 year−1. The corrected Figure 8 appears below.
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Figure 7. Estimation of the total soil loss (t·ha−1·year−1) in the three models (1950, 2020, and AFS).
The simulation indicates that replacing current agro-pastoral land management with agroforestry
systems would reduce the soil loss by 40%. Images in .tiff format covering the entire study area are
provided in the Supplementary Materials.

In Model “1950” and Model “2020”, soil loss generated by rural activities accounted
for 57% and 69% of the total, respectively. Thus, focusing only on rural areas can help
in highlighting the effects of historic landscape changes for slope geomorphic processes.
To ensure consistency in the comparisons among the three models, we only considered
the present rural area. Indeed, farmland extension has experienced a decline since the
1950s, primarily replaced by urban areas and woodlands (Figure 4). The present-day
agro-pastoral activities represent 32.4% of the study area with an extension of 1731.72 ha
(Figure 7). Interestingly, in this context, Model “2020” presented the highest soil loss with a
percentage increase of 9.7% compared to Model “1950”. Conversely, as displayed in Model
“AFS”, the simulated restoration of historic agroforestry systems generated a reduction in
the total amount of soil loss in rural areas by 40% (Figure 7).

To evaluate the efficacy of restoring historic agroforestry land use in mitigating downs-
lope soil erosion and deposition in the face of climate change, two additional models were
developed. Climate change projections indicate that the increasing severity of storms will
result in greater water erosion and soil loss in the future compared to the past [40,41]. In
light of this, we updated Model “2050” and Model “AFS” with global rainfall erosivity
projections for 2050 [91]. Model “2050LU20” estimated erosion and deposition rates in
the study area by simulating the interaction between existing environmental factors and
land management practices with rainfall erosivity projections for 2050. Similarly, Model
“2050AFS” evaluated the response of agroforestry systems in mitigating soil loss with the
same forecasts of rainfall-induced erosion.

The results of these two models showed the same trends as observed in Models “2050”
and “AFS”. When considering the entire region, the benefits of replacing current agro-
pastoral systems with agroforestry strategies to reduce erosion and deposition rates appear
to be limited. However, when looking only at the current rural area, the total soil loss due
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to future rainfall-induced erosion was projected to be 36% lower in “Model 2050AFS” than
in Model “2050LU20” (Figure 8).
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Figure 8. Estimation of the total soil loss (t ha−1 year−1) in Model “2050LU20” and in Model
“2050AFS” considering the rainfall erosivity projections for the year 2050. The simulation indicates
that restoring agroforestry systems would reduce the soil loss of rural area by 36%. Images in .tiff
format covering the entire study area are provided in the Supplementary Materials.

Error in Table

In the original publication, there was a mistake in Table 2 as published. The total soil
loss results indicated in Table 2 are not correct due to an error in the conversion of the data
from Kg/m2·s to t ha−1 year−1. Furthermore, for the sake of clarity, ‘soil loss’ indicates
the resulting amount of soil eroded/deposited in the area. Positive numbers indicate
depositions, while negative numbers indicate erosion. The corrected Table 2 appears below.

Table 2. Simulated soil loss (i.e., the result of erosion and deposition processes) (t ha−1 year−1) in
the three models (“1950”, “2020”, and “AFS”) for each land-use type and totals. Positive numbers
indicate depositions, while negative numbers indicate erosion.

Land Use Type
Model “1950” Model “2020” Model “AFS”

Area (ha) Soil Loss
(t ha−1 year−1) Area (ha) Soil Loss

(t ha−1 year−1) Area (ha) Soil Loss
(t ha−1 year−1)

Agroforestry 1024.83 0.93 5.66 0.02 1730.15 −1.54

Arable land 1220.20 −4.65 657.00 −1.55 nd nd

Grassland 253.66 0.63 1067.49 −0.89 nd nd

Rough ground 190.02 −3.29 190.74 −6.50 190.74 −6.55

Urban area 65.24 −0.28 184.26 −0.45 184.26 −0.30

Woodland 2577.43 2.86 3226.22 5.90 3226.22 4.98

Total 5331.37 −3.80 5331.37 −3.47 5331.37 −3.41

General Clarification: As suggested by the development of r.landscape.evol, the USPED
equation is best suited for modeling erosion and deposition on hillslopes and small gullies.
However, it tends to significantly overpredict erosion/deposition in channels and streams.
Nevertheless, the research goal was to display the trend variation of erosion/deposition
processes according to different Land Use/Land Cover scenarios. In this regard, the
r.landscape.evol module yielded invaluable results regarding the potential benefits of restor-
ing historic agroforestry systems in the area to mitigate soil erosion processes.

The authors state that the scientific conclusions are unaffected. This correction was
approved by the Academic Editor. The original publication has also been updated.

Figure 8. Estimation of the total soil loss (t·ha−1·year−1) in Model “2050LU20” and in Model
“2050AFS” considering the rainfall erosivity projections for the year 2050. The simulation indicates
that restoring agroforestry systems would reduce the soil loss of rural area by 36%. Images in .tiff
format covering the entire study area are provided in the Supplementary Materials.

5. Discussion

The combination of historical sources and landscape archaeological mapping enabled
the analysis of agroforestry systems in the Northern Apennines. This ancient historic
rural strategy is mentioned in Roman and Mediaeval documents, and it was still widely
employed in the 19th century as reported by the agronomist Filippo Re in 1800. The GIS
HLC retrogressive analysis enabled a quantitative assessment of the progressive abandon-
ment of agroforestry and the resulting historic landscape changes which occurred during
the 20th century CE. The last phase of use of alberata emiliana occurred in the 1980s as
suggested by preliminary dendrochronological analysis. As registered in other European
regions [100], the decline in polyculture strategies such as the alberata in the study area
appears to be a consequence of post-World War II socioeconomic dynamics such as the
rapid modernisation and mechanisation of agriculture and the expansion of urban areas
(Figures 3 and 9). Furthermore, in the study area, the progressive decline of agroforestry
systems since the mid-20th century CE reflects further local socioeconomic trends: the
progressive reduction in rural activities in mountainous regions, the consequent process
of rewilding abandoned agricultural areas [101], and the need for forage for the regional
dairy industry [102]. These dynamics led the agroforestry fields to be replaced mainly by
woodland, pastures, and grassland (Figures 3 and 9).

The disappearance of historic agricultural practices had relevant consequences on
land vulnerability. The results of the GIS geomorphic modelling showed how the current
overall erosion/deposition rate in the study area (Model “2020”) was lower than in the past
(Model “1950”) (Figure 7), a situation likely due to the afforestation process that occurred in
the last 70 years. Indeed, the extension of woodland in the area, higher than in the mid-20th
century, has positive benefits in mitigating land degradation (Table 2). Furthermore, the
overall soil loss scores of the three models seem to suggest that the reconversion of the
present-day agro-pastoral activities to agroforestry appear to be limited when considering
the entire region (Figure 7). Nevertheless, the interpretation of the geomorphic simulations
cannot ignore the fact that the current rural area accounts for more than 60% of the total soil
loss registered, despite being only one-third of the entire region (Table 2). In addition, the
current extent of the agricultural area is lower than in the 1950s, but the simulation returned
a higher soil loss score than in the past (Table 2). The potential benefits of restoring the
historic agroforestry systems (still widely employed in the mid-20th century) in place of the



Land 2023, 12, 1054 13 of 20

current agro-pastoral strategies were highlighted by Model “AFS”. The third simulation
returned a significant reduction of potential soil loss in the area, giving valuable indications
for future landscape management strategies. Even in the future scenario of increasingly
severe storm intensity (Model “2050LU20” and Model “2050AFS”), the replacement of
current agro-pastoral strategies with agroforestry seems to be particularly effective in
mitigating downslope soil erosion and deposition (Figure 8).
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The abandonment of agroforestry in the area also had negative consequences for the
cultural values of landscape. Indeed, in addition to an environmental deterioration, the
progressive loss of farmers’ know-how of such rural practices correspond to deep physical
modifications of the regional landscape heritage [21]. In the last 10 years, both EU and
regional policies have encouraged repopulation in rural mountain areas by providing
economic incentives to newcomers who choose to relocate from cities [103,104]. The aim of
such a policy is to limit the process of depopulation, thereby avoiding the loss of cultural
identity in rural regions while lowering population pressure in urban areas [105]. Further-
more, according to the latest Horizon Europe Strategic Plan [106] and the Agricultural
European Innovation Partnership workshop, the major challenge facing current and future
agricultural systems is reconciling production with sustainable land management [107].
To address this challenge, EU agencies encourage the development of innovative land-
scape management approaches that utilise nature-based solutions. Additionally, cultural
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heritage is identified as a potential driver for improving rural wellbeing and long-term
socioeconomic prospects [106].

Furthermore, the restoration of historic AFS has the potential to mitigate the nega-
tive impacts of anthropogenic landscape fragmentation and support the conservation of
biodiversity in mountain ecosystems. Anthropogenically induced landscape fragmenta-
tion, which results from direct physical transformations such as deforestation, agriculture,
urbanisation, and road building, is widely acknowledged as a significant threat to biodi-
versity [108,109]. However, the depopulation of rural mountain areas and the consequent
abandonment of traditional land management practices have emerged as major driving
forces behind changes in mountain ecosystems in Europe. This has led to decreased land-
scape connectivity, negatively impacting fauna associated with abandoned traditional
agro-pastoral habitats [110]. Several studies have shown that AFS can play a crucial role in
improving landscape connectivity. By creating corridors and connecting fragmented habi-
tats, AFS can enhance biodiversity, improve ecosystem services, and promote ecological
resilience [111,112].

On the other hand, environmentally sustainable rural LU types very often do not
provide an immediate and desirable economic return to farmers and these solutions need
to be implemented and adapted to meet site-specific needs at the local scale by inviting
stakeholders to contribute to policy development [113]. Nevertheless, EU-funded research
focused on AFS strategies have shown a return-on-investment time of about 5 years to
recover from workforce training and machinery costs [114], and it has been demonstrated
that even the partial integration of historical AFS within arable lands and pastures can
contribute strongly to lowering environmental pressures on landscape [20].

Thus, the development of transdisciplinary strategies is crucial to inform an envi-
ronmentally sustainable conservation of landscape heritage [115–118]. Synergies between
disciplines can actively contribute to achieving this goal, deciphering the ecological and
historical background of traditional and multifunctional cultural landscapes [119] such as
the alberata emiliana.

The workflow adopted in this research represents an effective interdisciplinary ap-
proach to inform potential holistic landscape strategies. By combining historical sources,
dendrochronology, and GIS retrogressive analysis, we were able to reconstruct the long-
term sociocultural values of AFS in the area. Furthermore, GIS modelling permitted us to
simulate the effects of the abandonment of traditional LU systems on slope instability. How-
ever, assessing the accuracy of model predictions is still challenging. Direct measurements
on the fields are the most effective way to validate this type of model [46,120]. Even when
validation data can be collected, it is usually limited to a small number of sites and a short
period, which may not be representative of the entire region or different climatic conditions.
As a result, the validation process may not capture the full range of spatial and temporal
variability [121]. Nevertheless, GIS modelling tools such as r.landscape.evol represent in-
valuable multiscale sources to simulate long-term annual land degradation across different
land management activities and environmental conditions. The scenarios proposed in this
study can simulate the effects of historic landscape transformation for the cumulative soil
erosion and deposition rates in the area to highlight the potential environmental benefits of
restoring historic AFS. Therefore, the development of landscape modelling approaches such
as that adopted in this research responds to the need of transdisciplinary tools for landscape
management. Indeed, the integration of retrogressive analysis within GIS modelling tools
has the potential to yield invaluable insights for embracing natural and cultural values of
landscapes as components of the same holistic landscape plans.

6. Conclusions

This study integrated historical documents, landscape archaeology, and GIS tools to
trace the evolution of the historic agroforestry (alberata emiliana) in the Northern Apennines.
It also quantified the decline in alberata emiliana during the 20th century CE and assessed
its impact on cumulative soil erosion and deposition. Moreover, the GIS HLC mapping
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process was utilised to create a comprehensive geospatial dataset to monitor the current
state of traditional AFS and provide recommendations for their future maintenance and
revitalisation while preserving the region’s historical landscape characteristics. Considering
the potential benefits of agroforestry systems in mitigating downslope soil erosion and
deposition, the GIS modelling showed that restoring the historic agroforestry landscape
could significantly reduce the land degradation rate in the area. This interdisciplinary
approach could inform the development of transdisciplinary management plans that
balance mitigating land degradation with preserving the landscape character and cultural
identity of a region. The workflow adopted in this research is potentially reproducible in
other areas with similar sociocultural and environmental characteristics, and it helps in
making historical knowledge useful for future landscape management.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/land12051054/s1: the GIS modelling rasters are provided in a .zip folder.
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