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and Ivan Plaščak 1
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Abstract: While SoilGrids is an important source of soil property data for a wide range of envi-
ronmental studies worldwide, there is currently an extreme lack of studies evaluating its accuracy
against independent ground truth soil sampling data. This study aimed to provide a comprehensive
insight into the accuracy of SoilGrids layers for three physical soil properties representing soil texture
components (clay, silt, and sand soil contents) using ground truth data in the heterogeneous land-
scape of Croatia. These ground truth data consisted of 686 soil samples collected within the national
project at a 0–30 cm soil depth, representing the most recent official national data available. The main
specificity of this study was that SoilGrids was created based on zero soil samples in the study area,
according to the ISRIC WoSIS Soil Profile Database, which is very sparse for the wider surroundings
of the study area. The accuracy assessment metrics indicated an overall low accuracy of the SoilGrids
data compared with the ground truth data in Croatia, with the average coefficient of determination
(R2) ranging from 0.039 for silt and sand to 0.267 for clay, while the normalized root-mean-square
error (NRMSE) ranged from 0.362 to 2.553. Despite the great value of SoilGrids in a vast range of
environmental studies, this study proved that the accuracy of its products is highly dependent on the
presence of ground truth data in the study area.

Keywords: accuracy assessment; ground truth; national scale; soil properties; soil samples

1. Introduction

Digital soil mapping refers to the collection and analysis of data to produce detailed
maps of soil properties such as soil type, texture, and organic matter content [1]. These
maps are essential for understanding the physical, chemical, and biological characteristics
of soils in a particular area, which is critical for making informed decisions about land use
and management [2]. For this reason, digital soil mapping at the country level provides a
comprehensive overview of the soil conditions across a nation and allows the development
of effective policies to manage this vital resource. Supporting agricultural production is
one of the primary reasons for soil mapping’s importance at the country level [3]. In most
countries, agriculture is a key source of income and employment, and soil conditions are
important for optimizing crop yields and minimizing environmental impacts [4,5]. Soil
maps can also indicate areas that are vulnerable to erosion, nutrient depletion, and other
factors that can negatively affect crop yield [6]. In addition to supporting agricultural
production, soil mapping can also help to mitigate the effects of climate change [7]. Soils
are the major component of the global carbon cycle, and soil mapping provides valuable
information on soil organic matter content, which is a key indicator of carbon sequestration
potential [8]. Similarly, soil mapping is important for managing natural resources such
as forests, wetlands, and grasslands. These ecosystems rely on healthy soils to support
their functioning and provide valuable ecosystem services such as water regulation and
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biodiversity conservation [9–11]. Soil maps provide information on soil conditions in these
areas, which can be used to develop effective management strategies that maintain soil
health and support ecosystem functioning. Another important reason for soil mapping
is to support land use planning and infrastructure development at the country level [12].
Understanding soil conditions can help to identify areas that are suitable for different land
uses, such as agriculture, urban development, or conservation. This information can be
used in the planning process and to ensure sustainable development [13], in addition to
being able to improve soil health.

Despite the importance of soil mapping at the country level, many countries still lack
comprehensive soil maps [14,15]. This is often due to a lack of resources or expertise, as
soil mapping can be a complex and time-consuming process [16]. However, technological
advances and the availability of global soil databases, such as SoilGrids [17–19], have made
soil mapping more accessible and cost-effective than ever before. SoilGrids is a global soil
mapping platform that uses machine learning algorithms and environmental covariate
data to produce high-resolution maps of soil properties, produced by the International Soil
Reference and Information Center (ISRIC) [17]. SoilGrids provides a range of data products
that provide information on soil properties, including soil texture components (clay, silt,
and sand soil contents). This information is essential for the development of sustainable
land management practices and can be used by farmers, land managers, and policymakers
to make informed decisions about land use [20]. One of the key advantages of SoilGrids
is its global coverage. The platform provides soil information for every country in the
world, and the data are available at resolutions of up to 250 m [18]. Another advantage of
SoilGrids is its accessibility, as all SoilGrids data are available online free of charge. The
platform is also user-friendly, with a number of tools and resources available to help users
navigate and interpret the data, including its availability on Google Earth Engine [21].

However, there are also some potential issues with using SoilGrids. SoilGrids relies
on a range of data sources, including soil profile data, remote sensing data, and climate
data, which may be inaccurate or outdated [22]. The accuracy of SoilGrids has been val-
idated via numerous studies comparing its predicted soil properties with ground truth
data as a part of its development, with an R2 ranging from 0.540 to 0.834 [18]. Addition-
ally, de Sousa et al. [23] determined the root-mean-square error of SoilGrids in the range
of 4.6–5.1% for soil organic matter. Poggio et al. [24] produced median model efficiency
coefficients within the 0.22–0.73 range based on 9 soil parameters. Besides studies by the
SoilGrids developers, as well as many instances in which SoilGrids rasters were used as
covariates in machine learning prediction [25,26], there has been no independent compre-
hensive validation of these products according to independent ground truth soil sampling
data. Another potential limitation of SoilGrids is its reliance on environmental covariate
data, which may not always accurately capture soil properties. SoilGrids has been de-
veloped using global data, and while this approach is useful for broad-scale studies, its
application in local conditions may not always be accurate [27]. In addition, SoilGrids is
also limited by the quality and quantity of the soil data used to train the machine learning
algorithms. Soil data are often limited, particularly in developing countries where access to
soil data is scarce, meaning that the accuracy of SoilGrids may be limited due to the lack of
adequate training data [28].

The aim of this study is to evaluate to provide an accurate representation of physical
soil parameters based on the most recent ground truth soil sampling data in Croatia,
according to independent ground truth soil sampling data. Since there are currently no
comprehensive studies on SoilGrids’s accuracy using an independent soil sampling dataset,
these results are expected to aid in developing a comprehensive and independent outlook
on the ability of SoilGrids to provide an accurate representation of physical soil parameters.
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2. Materials and Methods

The study workflow for the SoilGrids accuracy analysis in Croatia was divided into
three steps: (1) acquisition and preprocessing of SoilGrids data, (2) acquisition of the ground
truth soil sampling data, and (3) accuracy assessment of SoilGrids based on the ground
truth data (Figure 1). A total of three physical soil properties were evaluated, including
clay, silt, and sand soil contents. Despite the availability of several chemical soil properties
in the ground truth data, soil texture components were selected for the accuracy assessment
of SoilGrids as very stable soil properties [29] with a tendency to remain stable over several
years [30,31]. Therefore, the potential effect of temporal discrepancy in the soil sampling
was minimized.
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Figure 1. The workflow for the accuracy analysis of the SoilGrids data in Croatia.

2.1. Study Area and Ground Truth Soil Sampling Data

The study area covered the Republic of Croatia, a 56,594 km2 area that includes three
distinct biogeoregions: the Continental, Alpine, and Mediterranean regions (Figure 2).
According to Corine 2018 Land Cover data, the terrestrial land cover classes are dominantly
represented by forest and semi-natural areas (55.7%) and agricultural areas (40.1%), while
artificial surfaces and wetlands cover 3.8% and 0.4%, respectively. Previous studies in
Croatia noted the high heterogeneity of soil properties on a national level, including the
components of soil texture [32]. Other soil properties, such as soil organic carbon, total
nitrogen [33], and soil organic matter [34] yielded similar observations. Climate conditions
are also very heterogeneous in the study area, ranging from a temperate climate with
dry and hot summers to a cold climate with no dry season and cold summers, as per the
Köppen–Geiger classification by Beck et al. [35] (Table 1, Figure 3).
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Figure 2. The location of the study area according to: (a) soil sampling locations and CORINE 2018
Land Cover classes; (b) Köppen–Geiger climate classes according to Beck et al. [35]; (c) biogeoregions.

Table 1. The coverage of Köppen–Geiger climate classes in the study area according to Beck et al. [35].

Köppen–Geiger Climate Class Description Coverage of Study Area (%)

Csa Temperate, dry summers, and hot summers 12.5
Csb Temperate, dry summers, and warm summers 1.0
Cfa Temperate, no dry season, and hot summers 28.4
Cfb Temperate, no dry season, and warm summers 7.6
Dsb Cold, dry summers, and warm summers 0.1
Dfa Cold, no dry season, and hot summers 0.1
Dfb Cold, no dry season, and warm summers 50.1
Dfc Cold, no dry season, and cold summers 0.2
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Figure 3. The display of harmonized preprocessed SoilGrids data used in this study.

The ground truth soil sampling data were acquired from the openly available web
feature service (WFS) provided by the Ministry of Economy and Sustainable Development
of the Republic of Croatia [36]. The field soil sampling was performed between April 2015
and October 2016 as a part of the national project “Change in soil carbon stocks and
calculation of total nitrogen and soil organic carbon trends and C:N”. The soil sampling
methodology was performed according to the “Soil Sampling Protocol to Certify the
Changes of Organic Carbon Stock in Mineral Soils Of European Union” by the Joint
Research Centre of the European Commission [37]. According to this protocol, soil samples
were georeferenced using the global positioning system (GPS) with a positioning accuracy
of a few meters and were distributed as point vector data. Each collected soil sample was
collected as a composite of 25 soil sampling points within the sampling grid, representing
the aggregated value of clay, silt, and sand soil contents in the specified proximity of each
point displayed in Figure 2. A total of 686 soil samples at a 0–30 cm soil depth were filtered
from the original 725 samples according to land cover classes which included agricultural
areas, forests and seminatural areas, and wetlands as per the CORINE classification [38].
Soil samples collected from artificial surfaces were removed from the analysis as SoilGrids
did not include soil data in these areas.
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2.2. Acquiring and Preprocessing of SoilGrids Data

SoilGrids data were acquired from the Google Earth Engine SoilGrids 250m v2.0
Application Programming Interface (API) [39]. Clay, silt, and sand soil contents were
acquired in the native 250 m spatial resolution and reprojected to WGS 84/Pseudo-Mercator
projection (EPSG: 3857) and clipped to the study area. Each soil property was downloaded
in 3 layers to match the soil depth of the ground truth data, with 0–5 cm, 5–15 cm, and
15–30 cm data. While SoilGrids provides more soil depth information, these layers were
selected to match the 0–30 cm soil information from the ground truth data. The units of
SoilGrids data were converted to the units of the ground truth data, as presented in Table 2.
The harmonized preprocessed SoilGrids layers are displayed in Figure 3.

Table 2. Unit conversion coefficients of the acquired SoilGrids data according to their native units [24].

Soil Parameter Native Units Conversion Coefficient Converted Units

Clay g/kg 10 g/100 g (%)
Silt g/kg 10 g/100 g (%)

Sand g/kg 10 g/100 g (%)

Figure 4 displays a comparison of the locations of the soil samples from the ground
truth data with those used for SoilGrids creation according to the ISRIC World Soil Infor-
mation Service (WoSIS) Soil Profile Database. It represented a data source of soil samples
for the latest SoilGrids products evaluated in this study [24] and was downloaded from
the webpage specified by the authors for clay [40], silt [41], and sand [42]. The WoSIS
Soil Profile Database included zero soil samples in the study area for SoilGrids, so the
ground truth data used in this study represent a fully independent dataset for its accuracy
assessment. The temporal range of the field soil sampling from the WoSIS Soil Profile
Database samples displayed in Figure 4 ranges from May 1963 to April 2009, but over
80% of them lacked temporal field sampling metadata. Therefore, it was assumed that the
ground truth data also represented more recent soil sampling results in the study area.

2.3. Accuracy Assessment of SoilGrids Based on the Ground Truth Soil Sampling Data

To minimize the effect of the unevenness of soil depths from the ground truth soil
sampling data and SoilGrids layers, the accuracy assessment was performed according to
5 evaluated layers for each soil property (Figure 5): (1) 0–5 cm layer; (2) 5–15 cm layer;
(3) 15–30 cm layer; (4) an average of 0–5 cm, 5–15 cm, and 15–30 cm data; and (5) a weighted
average according to the coverage of the ground truth 0–30 cm soil depth, in which 0–5 cm
data had a weight of 1, 5–15 cm data had a weight of 2, and 15–30 cm data had a weight of 3.

The three statistical metrics selected for the accuracy assessment were the coefficient
of determination (R2), root-mean-square error (RMSE), and normalized RMSE (NRMSE),
which are complementary metrics for the accuracy assessment of soil properties as they
provide different aspects of accuracy [43,44]. The R2 provided an indication of the goodness
of fit of the evaluated soil data, the RMSE provided information on the absolute magnitude
of the errors, and the NRMSE provided a relative measure of the accuracy of the evaluated
SoilGrids data. RMSE is sensitive to outliers, and it emphasizes large errors more than
small errors, while NRMSE ensures that the RMSE metric is comparable across different
soil properties [45]. Higher R2 values and lower RMSE and NRMSE values indicated a
proportionally higher accuracy of the SoilGrids data according to the ground truth soil
sampling data. The R2, RMSE, and NRMSE values for the accuracy assessment of the
SoilGrids data according to the ground truth soil sampling data were calculated according
to Equations (1)–(3):

R2= 1 − ∑n
1 (yi −

^
yi)

2

∑n
1 (yi −

-
yi)

2
, (1)
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RMSE =

√
∑n

1 (yi −
^
yi)

2

n
, (2)

NRMSE =
RMSE

-
yi

, (3)

where yi is the ground truth soil sampling data,
^
yi is the evaluated SoilGrids data,

-
yi is

the average of ground truth soil sampling data per soil parameter, and n is the number of
ground truth soil samples.
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Figure 5. The soil datasets used for the accuracy assessment, including three native SoilGrids layers
and two derived layers.

3. Results

The medians and value ranges of the evaluated SoilGrids layers resulted in high
variability in comparison with the ground truth soil sampling data. These are presented
in violin plots (Figure 6) containing the density information about the ground truth data
and evaluated SoilGrids rasters, as well as boxplots, which indicate the median, minimum,
maximum, and first and third quartile values [46]. The median values based on the average
of 3 SoilGrids layers per soil parameter differed from the medians of the ground truth data
by 19.4%, 64.1%, and 84.5% for clay, silt, and sand, respectively. Moreover, the SoilGrids
layers had much lower value ranges for the evaluated soil texture components, with a
maximum average clay value of 48.04% (78.51% for the ground truth data) and a maximum
average silt value of 46.62% (87.89% for the ground truth data). The values of the SoilGrids
layers per soil texture component had similar value ranges regardless of the soil depth.
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Figure 6. The violin plots of the value distributions for the ground truth soil sampling data and
evaluated SoilGrids layers. GTD: ground truth data, A: average, and WA: weighted average.

Based on the 686 ground truth soil samples, the SoilGrids layers had a low average
accuracy represented as R2, which varied from 0.039 for silt and sand to 0.267 for clay
(Table 3). The average NRMSE ranged from 0.362 for clay to 2.553 for sand soil content.
Overall, the SoilGrids did not show a tendency for any individual native soil depth to
be superior in terms of accuracy, while all soil parameters resulted in slightly higher
accuracy for either the 5–15 cm or 15–30 cm layer. The average and weighted average only
performed better for clay compared with the most accurate individual layers of evaluated
soil parameters. The accuracy of the weighted average values was particularly less affected
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by the lower accuracy of the 0–5 cm data for silt in comparison with the 5–15 cm and
15–30 cm soil layers. The absolute accuracy represented by the RMSE and NRMSE values
and the relative accuracy represented by R2 generally matched in terms of ranking the
evaluated SoilGrids layers per soil parameter. A slight exception occurred for clay and
sand, which had similar R2, RMSE, and NRMSE values for individual soil layers, but their
mutual rankings in terms of absolute and relative accuracy were in disagreement. The
accuracy assessment of the native SoilGrids layers according to the Köppen–Geiger climate
classes and major CORINE Land Cover 2018 classes is presented in Appendix A. Overall,
the Csb climate class resulted in the highest accuracy for all 3 evaluated soil parameters,
but its coverage of 1.0% of the study area possibly skewed the results. Among other climate
classes, consistently low accuracy was achieved for the temperate Csa class with hot and
dry summers. The land cover classes had a minor effect on the accuracy per soil property,
while no consistent effect was observed for their respective soil depth layers.

Table 3. The accuracy of SoilGrids layers according to the ground truth soil sampling data.

Soil Property Accuracy Metric
Evaluated SoilGrids Layers

0–5 cm 5–15 cm 15–30 cm Average Weighted Average

Clay (%)
R2 0.264 0.258 0.260 0.267 0.266

RMSE 13.173 12.866 12.016 12.594 12.398
NRMSE 0.378 0.370 0.345 0.362 0.356

Silt (%)
R2 0.034 0.041 0.038 0.039 0.040

RMSE 24.311 23.790 25.698 24.570 24.799
NRMSE 0.451 0.441 0.477 0.456 0.460

Sand (%)
R2 0.037 0.035 0.043 0.039 0.040

RMSE 29.324 28.279 28.744 28.742 28.642
NRMSE 2.605 2.512 2.553 2.553 2.544

The statistical metrics indicating the highest accuracy per evaluated soil property are bolded.

Figure 7 displays the value distributions of the square residuals according to the
ground truth soil sampling data. All evaluated soil properties showed a very similar
distribution of values across the soil depths, while the medians and value ranges per soil
property only slightly differed. The spatial distributions of the square residuals according
to the ground truth soil samples from which they were calculated are presented in Figure 8.
The largest squared residuals for clay were observed at distinct locations in the entire study
area, which was not related to the biogeoregions. The northern part of Croatia, dominantly
present in the Continental biogeoregion, contained the largest residuals for silt and sand.
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4. Discussion

The accuracy assessment of SoilGrids, as well as future potential soil parameter pre-
diction products, can generally be conducted using cross-validation and independent
validation. Out of the two, cross-validation’s accuracy is well documented as part of the
scientific papers on SoilGrids 1km [17], SoilGrids 250m [18], and SoilGrids 250m v2.0 [24],
of which the latter was evaluated in this study. This approach involved dividing the soil
sampling data into training and test sets, using the training set to develop the SoilGrids
model, and testing its accuracy using the test set. These soil sampling data sets were created
by harmonizing the data from several national and international agencies [17], as compara-
ble to the source of the independent ground truth soil sampling dataset used in this study.
The first official SoilGrids product resulted in an amount of explained variation values
ranging from 22.9% to 50.5%, based on the 5-fold cross-validation [17]. While this metric
was based on the RMSE values, it included additional parameters for its calculation [47],
which does not allow objective comparison with the accuracy assessment results from this
study. However, the comparable metrics were calculated in SoilGrids 250m [18], which is
also represented in the same spatial resolution as the products analyzed in this study. The
results of repeated 10-fold cross-validation ranged from 0.635 to 0.834, represented by R2

for the soil properties evaluated in this study, which is significantly higher than the results
from the independent evaluation in this study. The RMSE values for the physical soil
parameters were in the range of 9.5–10.9, which is comparable to the accuracy results for
clay in this study, while silt and sand had more than double the RMSE values of these. The
10-fold cross-validation accuracy assessment results for SoilGrids 250m v2.0 [24], which
was evaluated in this study, had higher RMSE values for clay, silt, and sand in comparison
with the previous version of SoilGrids. However, these results ranging from 13.0–18.0 are
comparable to the results from this study, while silt and sand still performed with lower
accuracy than the cross-validation results. Their results across the soil depths were mutu-
ally similar with slightly more accurate predictions in the top 0–5 cm soil layer, which is
contrary to the observations in this study.
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The independent validation involved the accuracy assessment of SoilGrids according
to soil sampling data, which were not used for the prediction of soil properties as a part
of SoilGrids’ creation. This approach provided an unbiased estimate of the accuracy of
SoilGrids, and it is essential to ensure that the model is valid for use in the study area [48].
One of the critical factors in accuracy assessment is the selection of appropriate ground
truth data [49]. The ground truth soil sampling data used for the validation of SoilGrids
data in this study met the criteria of representativeness of the soil variability within the
study area. They were also collected using a robust sampling design that accounts for the
spatial variability of soil properties [36]. However, the main specificity of this study was
that SoilGrids was created based on zero soil samples in the study area, according to the
ISRIC WoSIS Soil Profile Database. Additionally, the minor limitation of the used approach
was that the soil sampling depths of the ground truth data did not directly match the soil
depths of the SoilGrids layers. The high heterogeneity of the landscape and climate classes
in the study area, as well as the presence of three distinct biogeoregions, also potentially
affected the accuracy assessment. The 250 m spatial resolution of SoilGrids likely disabled
the representation of local variations in soil properties that were otherwise contained in the
ground truth data. The cause of such challenges in the independent accuracy assessment
of SoilGrids is the lack of a comprehensive global soil sampling program. Global soil
sampling programs, such as the Global Soil Partnership [50], the Harmonized World Soil
Database [51], and the SoilGrids program, provide valuable data for validation. The spatial
coverage and density of soil sampling data are often limited, which can affect the accuracy
of SoilGrids predictions, particularly in areas with high soil variability. Despite the great
value of SoilGrids in a vast range of environmental studies, this study proves that the
accuracy of its products is highly dependent on the presence of ground truth data in the
study area.

The major challenge of achieving the uniform accuracy of SoilGrids products remains,
as recent and independent soil sampling data are scarce, which is the reason this study
is among the very few of its kind. SoilGrids has often been used in previous studies
as an important soil covariate for total carbon stock estimates [52], soil mapping [25],
and cropland suitability prediction [26], but its reliability has not been considered. Soil
properties can vary significantly at different spatial scales, from small-scale variations
within fields to large-scale variations across continents [53–55]. Therefore, the accuracy
of SoilGrids predictions should be assessed at multiple spatial scales to ensure that it is
suitable for various applications. In heterogeneous landscapes, such as Croatia, where soil
properties can vary widely over short distances [56], the reliability of SoilGrids predictions
may be a concern. Additionally, the temporal offset between the ground truth soil sampling
data between 2015 and 2016 from the soil sampling of the training data used for SoilGrids’
creation could provide further discrepancy in future studies in evaluating chemical soil
properties [57]. The potential upgrades of this study in terms of accuracy assessment
according to soil types, biogeoregions, climate classes, and land cover classes could provide
a more thorough insight into SoilGrids and potential similar future programs. Future
studies will also aim to perform digital soil mapping of physical soil parameters using
ground truth soil sampling data on a national level. This will likely provide a supplement
to SoilGrids for areas with existing soil samples not included in the training of SoilGrids, as
was the case in Croatia.
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5. Conclusions

The results of the SoilGrids accuracy evaluation in Croatia based on independent
ground truth soil sample data show a low level of accuracy for all three evaluated com-
ponents of soil texture. Despite low resulting R2 values, the RMSE values were similar to
those of the cross-validation as part of the SoilGrids creation process. The main feature
of this validation was that SoilGrids used zero soil samples in the study area, based on
the ISRIC WoSIS Soil Profile Database. This implies that a similar accuracy for soil texture
components in the 0–30 cm soil layer from SoilGrids can be expected in other study areas
that were sparsely represented in soil samples during the training process and have a high
heterogeneity in terms of landscape and climate properties. Moreover, future global map-
ping initiatives based on environmental data might encounter similar unevenness in terms
of mapping accuracy in areas sparsely represented in the ground truth data. Additionally,
the time frames of the field sampling of the ground truth data and data used to create
SoilGrids did not match, as the ground truth data represented significantly more recent
field data. This study minimized this potential problem by using the most recent official
ground truth soil sampling data in Croatia, as well as the most recent SoilGrids data. The
minor limitation of this study was a minor discrepancy in the soil sampling depths of
the ground truth data (0–30 cm) and the native soil depth of the SoilGrids layers, which
were segmented into 0–5 cm, 5–15 cm, and 15–30 cm soil depths. Finally, due to the high
heterogeneity of the landscape, climate, and biogeoregions in the study area, the variability
in soil texture components in Croatia likely could not be contained in the globally trained
SoilGrids data at a 250 m spatial resolution.

Despite a few limitations, this study represents an important contribution to the very
few studies that have evaluated the accuracy of SoilGrids using independent soil sampling
data. The proposed approach of evaluating SoilGrids in various study areas globally, as
well as for similar global mapping projects, can be systematically performed with the sole
requirement of independent and reliable ground truth data. SoilGrids currently represents
the most comprehensive global open-source soil data, and its reliability affects scientific
studies in several environmental disciplines. With respect to the SoilGrids accuracy as-
sessment results from this study and their potential limitations, further studies are needed
to provide a reliable and independent conclusion on SoilGrids’s accuracy in more loca-
tions, globally. Besides an independent validation of SoilGrids in study areas with varying
densities of soil samples from the ISRIC WoSIS Soil Profile Database, the inclusion of soil
properties from deeper soil layers will likely aid in developing a more complete knowledge
of the accuracy of SoilGrids and similar future initiatives.
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Appendix A

Table A1. The accuracy assessment of native SoilGrids layers per Köppen–Geiger climate classes in
the study area according to Beck et al. [35].

Soil Property Statistical Metric Soil Layer Csa Csb Cfa Cfb Dfb

Clay

R2
0–5 cm 0.009 0.572 0.354 0.138 0.247
5–15 cm 0.008 0.456 0.344 0.126 0.251

15–30 cm 0.014 0.813 0.337 0.127 0.248

RMSE
0–5 cm 12.402 4.243 10.618 10.943 9.511
5–15 cm 12.413 4.784 10.696 11.020 9.489

15–30 cm 12.371 2.806 10.752 11.017 9.507

Silt

R2
0–5 cm 0.026 0.478 0.010 0.129 0.000
5–15 cm 0.024 0.449 0.014 0.131 0.000

15–30 cm 0.012 0.596 0.019 0.165 0.000

RMSE
0–5 cm 11.004 4.621 13.469 12.481 12.159
5–15 cm 11.017 4.749 13.442 12.469 12.160

15–30 cm 11.080 4.067 13.409 12.218 12.160

Sand

R2
0–5 cm 0.020 0.416 0.014 0.094 0.078
5–15 cm 0.022 0.536 0.012 0.091 0.070

15–30 cm 0.030 0.238 0.013 0.074 0.090

RMSE
0–5 cm 16.347 0.667 12.742 11.131 12.994
5–15 cm 16.333 0.595 12.753 11.144 13.049

15–30 cm 16.264 0.762 12.749 11.248 12.907

Csa: temperate, dry summers, and hot summers; Csb: temperate, dry summers, and warm summers; Cfa:
temperate, no dry season, and hot summers; Cfb: temperate, no dry season, and warm summers; Dfb: cold, no
dry season, and warm summers.

Table A2. The accuracy assessment of native SoilGrids layers per major CORINE Land Cover 2018
classes in the study area.

Soil Property Statistical Metric Soil Layer Agricultural Areas Forests and Seminatural Areas

Clay R2 0–5 cm 0.303 0.271
5–15 cm 0.307 0.256

15–30 cm 0.291 0.262
RMSE 0–5 cm 9.886 10.862

5–15 cm 9.857 10.971
15–30 cm 9.975 10.927

Silt R2 0–5 cm 0.020 0.049
5–15 cm 0.025 0.055

15–30 cm 0.032 0.049
RMSE 0–5 cm 13.901 12.375

5–15 cm 13.868 12.333
15–30 cm 13.816 12.370

Sand R2 0–5 cm 0.028 0.080
5–15 cm 0.027 0.073

15–30 cm 0.030 0.087
RMSE 0–5 cm 13.196 12.863

5–15 cm 13.203 12.909
15–30 cm 13.182 12.814
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