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Abstract: Globally, the loss of forest vegetation is a significant concern due to the crucial roles that
forests play in the Earth’s system, including the provision of ecosystem services, participation in
biogeochemical cycles, and support for human well-being. Forests are especially critical in mountains
environments, where deforestation can lead to accelerated biodiversity loss, soil erosion, flooding,
and reduced agricultural productivity, as well as increased poverty rates. In response to these
problems, China has implemented a series of ecological restoration programs aimed at restoring
forests. However, there is a lack of knowledge as to whether the forest cover is increasing or
decreasing, as well as the relative roles played by natural and human factors in forest change. Here,
we aim to address these issues by analyzing the pattern and process of the forest changes in Guizhou
province, a typical mountainous karst area with a fragile environment in southwestern China,
between 1980 and 2018, and evaluating the extent to which these forest changes were influenced
by natural and anthropogenic driving forces. Using a temporal sequence of satellite images and
a Markov model, we found that the forest cover increased by 468 km2, and that over 33% of the
cropland in Guizhou province was converted into forest between 1980 and 2018, with the most
significant increases in the forest cover occurring in Qiandongnan. Through correlation analyses
and generalized linear model (GLM) regression, we demonstrate that management factors exerted
a more significant positive impact on the forest cover than climate change. While the mean annual
precipitation and temperature were mostly stable during the period studied, the effects of population
and gross domestic product (GDP) on the forest changes weakened, and the influence of land-use
change markedly increased. These findings provide valuable information for resource managers
engaging in forest protection, deforestation prevention, and ecological restoration in similar regions.

Keywords: factors; forest change; Guizhou

1. Introduction

Globally, forest loss due to plantation forestry, agriculture, mining-related wildfires,
and urbanization has enormous implications, particularly for climate change and biodiver-
sity. As a result, governments, conservationists, and even private corporations are engaged
in efforts to curb these losses and promote forest recovery [1–4]. In China, a series of
ecological restoration programs have been implemented at the national, regional, and local
scales over the past several decades, including the Grain for Green Program (1999–2020)
and the Rocky Desertification Treatment Program (2008–2020) [5]. These interventions have
greatly improved the sustainability of China’s land systems, with the rate of forest cover
increasing from 8.6% in 1949 to 23.04% in 2020 [6]. Substantial forest recovery has been
detected through remote-sensing imagery, revealing an overall increase in greening since
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2000, most notably in China and India [7]. This trend is particularly prominent in certain
provinces, including Guizhou province, where the forest cover increased from 11.98% in
1949 to 61.5% in 2020 [8]. Ecological restoration interventions have significantly increased
the vegetation growth and carbon stock in China more generally [9,10]. It is clear that
continuous and long-term ecological restoration projects can, among other benefits, help
forests accumulate nutrients [11], and that embracing the implications of restoration inter-
ventions can contribute to the United Nation’s Sustainable Development Goals. It is the
interaction between the natural environmental and socio-economic factors that determines
forest dynamics, including recovery. Natural factors include those related to soil [12] and
climate, especially the mean annual temperature and rainfall [13–15]. However, the spatial
and temporal aspects of forest change in remote and environmentally fragile regions are
not fully understood, and the trajectory of the forest changes in China as a whole is still
subject to debate. While some locations have undergone ‘greening,’ others remain subject
to forest clearance [16–18]. Therefore, it is important to establish the details of recent trends
in forest cover, and their driving forces, especially in environmentally vulnerable regions,
such as the karst area of southwestern China, which has historically endured significant
levels of rocky desertification [19].

Guizhou province has a total area of 176,167 km2, of which 92.5% is hilly and 61.9% is
karst [20], and it is considered to be among the most environmentally vulnerable regions in
China. Karst topsoil is typically shallow, so if the forest vegetation is cleared, it is highly
susceptible to erosion [21] and produces a particular form of land degradation, known as
rocky desertification, which, in turn affects regional socioeconomic development. This has
led Guizhou to become the least developed province in China [22]. China has responded
to this land-degradation crisis in the karst region of its southwestern area, including
Guizhou province, through an integrated portfolio of ecosystem-restoration programs since
the 1980s. A number of previous studies described rocky desertification and associated
spatio-temporal variations in land-use change, the mechanisms underlying these processes,
and restoration responses [23–25]. Accelerated soil erosion and its underlying causes
have been a particular focus [26–28]. However, relatively little attention has been paid to
forest loss, which is an important element in land degradation and rocky desertification,
particularly in Guizhou province. The forests of Guizhou Province, lying in the central
part of southwestern China’s karst area, play a crucial role in the ecological security and
ecosystem services of a region that forms a part of an ecological safety barrier between
the Pearl River and the Yangtze River catchments, which makes it ecologically critical, but
highly vulnerable [29]. Understanding forest change is central to achieving sustainability
and providing support for decisions regarding land-use management in the region.

Land-use and land-cover change (LULCC) is the alteration of natural or semi-natural
landscapes due to human activities, such as urbanization, agricultural expansion, and
deforestation [30]. In previous research, developed numerous models were developed
to explore LULCC, in order to detect the changes in land use at specific locations and
analyze its drivers [31,32]. From the perspective of landscape ecology, these models can
be classified into three types: whole-landscape models, distributional models, and spatial-
landscape models [33]. However, these focus mainly on ecological processes while tending
to underplay or even ignore the role of human decision-making [34]. By the end of the
1990s, a considerable amount of tropical-deforestation-modeling work, represented by
Lambin [35] and Kaimowitz and Angels [36] emerged that considered the role of human
decision-making. Models of LULCC, including empirical–statistical models, stochastic
models, optimization models, dynamic simulation models, and integrated models [37],
can be categorized according to different criteria. Agarwal et al. [38] listed 19 models,
including Markov models, spatial-simulation models, and regression models, based on
their space, time, and decision-making characteristics. Among these, the Markov chain
(MC) model is widely used in the spatiotemporal evaluation of LULC changes [39]. The
choice of the model depends, to a large extent, on the particular scientific questions to be
answered, along with data availability. Although LULCC modeling has made significant
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progress in understanding the dynamics and effects of land-use change [40], there remains
a pressing need for more interdisciplinary research that integrates multiple drivers and
factors affecting land-use decisions. This includes the development of more advanced
modeling techniques that combine multiple methods [41]. The understanding of the
interaction between scales and across scales is likely to remain the research frontier of the
modeling of land-use/cover changes in the future.

The aim of this paper is to evaluate the change in forest cover and the relative impor-
tance of selected contributing factors in Guizhou province over four decades (1980–2018),
with a view to determining the relative influence of human and natural factors. Using a
remote-sensing monitoring dataset of multi-period land use and land cover from Landsat,
we employed a Markov model to analyze the forest change in the study area. Additionally,
we considered a range of environmental (e.g., soil erosion, karstification intensity, drought
index) and socio-economic (e.g., population, gross domestic product (GDP), and acces-
sibility) data to investigate the factors that influence forest change through a correlation
analysis and a generalized linear model (GLM) regression. The systematic understanding
of the forest change in Guizhou province in this paper has the potential to be used more
widely to develop ecological restoration strategies and promote more sustainable land-use
management in the future.

2. Materials and Methods
2.1. Study Area

Guizhou (24◦37′–29◦13′ N, 103◦36′–109◦35′ E) is representative of China’s southwest-
ern karst region, with over 60% of its land area consisting of the karst landform [42]
(Figure 1). The region encompasses a variety of landforms, including mountains, hilly
areas, plateaus, basins, and river valleys. Unlike other karst provinces, there are no exten-
sive plain areas, and the mean elevation is approximately 1100 m. The climate is classified
as subtropical humid monsoon, with an average annual temperature of around 15 ◦C
and an annual precipitation of approximately 1200 mm [43]. The environment is highly
susceptible to degradation, and it is particularly prone to accelerated soil erosion, resulting
in rocky desertification [44]. By 2016, karst-rock desertification in Guizhou was reported to
extend across almost 250,000 km2 of the province, making it was the most degraded karst
province in the country [45]. The region’s economy has experienced significant growth in
recent years. Agriculture, particularly cash crops such as oranges, peaches, and dragon
fruit, contributes greatly to rural livelihoods, although, due to the area’s ecological vul-
nerability, this focus on agriculture has led to environmental problems, such as ecosystem
fragmentation, a decline in biodiversity, soil erosion, and reduced surface runoff [46]. With
a population of 360 million in 2018, including a rural population of 189 million, the pressure
on the land has become unbearable, exacerbating land degradation in the study area [47].
Furthermore, national policies have led to the improvement and proliferation of highways
and high-speed railways, which have contributed to economic development, but they have
also led to the removal of vegetation and loss of ecosystem services [44].
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Figure 1. The geographical location of Guizhou province.

2.2. Data
2.2.1. Land-Use Data

Land use (1-km-resolution raster) data, based on visual interpretation of Landsat
TM/ETM imagery, were obtained for the years 1980, 1990, 2000, 2010, and 2018 from the
Resource and Environment Data Cloud Platform (China’s multi-period land-use–land-
cover remote-sensing data-monitoring set (CNLUCC); Resource and Environment Data
Registration and Publishing System) [48]. The dataset is the most freely available dataset in
China and has been widely used for detecting land-use change and analyzing ecosystem
services from local to national scale. Its accuracy in identifying cropland and built-up areas
is over 85%; its average accuracy for other land-use types exceeds 75%. Primary land-use
categories identified were cropland, forest, grassland, water, built-up, and ‘others’ (Table 1);
secondary categories included 25 sub-types of land use.

Table 1. Land-use–land-cover classification in Guizhou, China.

Class l Class 2/25 Land Use Sub-Types

Cropland Paddy field, dryland
Forest Forest land, shrubland, sparse woods, other forest areas

Grassland Highly covered grassland, middle-covered grassland, low-covered grass land
Water Canals, lakes, reservoirs and ponds, permanent ice and snow, intertidal zone, shoals

Built-up area Urban land, rural residential land, other built-up areas
Others Sand, Gobi, saline–alkali land, marshland, bare land, bare rocky land, others

2.2.2. Forest-Change Drivers

In addition to the mapping of land-use changes, several other drivers were considered
in developing the model. Given the vulnerability of the region to rocky desertification,
karstification intensity (KI) was included as a potentially important factor. The KI was
obtained from the Guizhou Institute of Mountain Resources. Slopes were also considered
important, as these influence the spread of forests that affect forest growth [49]. We derived
the slope factor from a digital elevation model (DEM) (2009) at a 30-m resolution from
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Geospatial Data Cloud (https://www.gscloud.cn/ (accessed on 30 January 2020)). Climate
characteristics, particularly drought frequency and intensity, also have a significant impact
on vegetation cover [50], and Guizhou is frequently affected by drought, which restricts
forest growth. As a result, both the drought index (the ratio of annual evaporation capacity
to annual precipitation) and mean annual precipitation were included as potential drivers.
The drought index was provided by the Guizhou Institute of Mountainous Climate and
Environment. Other factors relating to human activities, including urbanization, are known
to play significant roles in forest change [51]. Land-use change and ecological restoration
projects are considered direct human-activity factors [52,53] and, given that Guizhou has
been at the forefront of China’s economic growth since 2000, with the highest growth rate
in the country for the last three consecutive years, balancing economic development with
environmental protection is highly challenging [54]. Accordingly, we also included factors
associated the anthropogenic influence: GDP, population, and accessibility for analyzing
forest dynamics. The mean annual temperature/precipitation, accessibility, population
(people/km2), and GDP of nine municipalities in Guizhou were obtained from the Resource
and Environment Data Cloud Platform (REDCP) [48].

2.3. Methods
2.3.1. Data Preprocessing

Primary data were obtained and processed according to the methods presented in
Table 2, while a flow chart illustrating the methodology employed in this study is presented
as Figure 2:

Table 2. Data and methods of potential factors.

Drivers Original Data Source Processing Method Period

LUC Landsat TM/ETM
Resource and

Environment Data
Cloud Platform

Markov model and R 1980, 1990, 2000,
2010, 2018

P Land use, night light,
settlement density

Resource and
Environment Data

Cloud Platform
Spatial analysis 1995, 2000, 2010, 2015

GDP GDP, land use, night
light, settlement density

Resource and
Environment Data

Cloud Platform
Spatial analysis 1995, 2000, 2010, 2015

A State, county, and
township roads

Guizhou Institute of
Mountainous Resources Spatial analysis 2010

KI Lithological data Guizhou Institute of
Mountainous Resources Spatial analysis 2010

DI, MAP, MAT Precipitation,
evaporation

Guizhou Institute of
Mountainous Climate

and Environment,
Resource and

Environment Data
Cloud Platform

Spatial analysis 1980–2015

S DEM Geospatial Data Cloud Spatial analysis 2009

Notes that LUC, P, GDP, A, KI, DI, MAP, MAT, and S represent land-use change, population, gross domestic
product, accessibility, karstification intensity, drought index, mean annual precipitation, mean annual temperature,
and slope, respectively.

https://www.gscloud.cn/
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Figure 2. Flow chart of methodology employed.

Forest change: Based on a Markov transition matrix [55] and spatial analysis function
of ArcGIS, a transfer matrix of different land types was obtained, and on this basis, land-use
changes, including forest cover, were estimated. Chord diagrams of land transformation
were constructed for Guizhou province and each of its nine major municipalities using R.

Land-use transition involves the changes in regional land-use patterns, and they are
significant components of land-use-transition studies [56]. Markov modeling is commonly
used to consider the processes and mechanisms of landscape-dynamics changes over the
longer term [55,57]. We adopted a transition matrix as the core part of the Markov model
(see Formula (1)), which is generally applied in estimations of land-cover changes [58,59].
While different types of conversion may occur, more attention was paid to those that
account for most of the forest change. In addition, we calculated the conversion ratio of the
main converted types through Formula (2). All analyses were conducted by ArcGIS and R.

T =


D11 D12 . . . D1n
D21 D22 . . . D2n
. . . . . . . . . . . .
Dn1 Dn2 . . . Dnn

 (1)

where T refers to the conversion matrix of different types of land-use change from 1980 to
2018, Dnn refers to the change in the area (unit: km2) from one land-use type to another
during the study period, and n refers to the area of a certain type of land that was involved
in the computation.

Rij = Aij/Bi (2)

where Rij refers to the rate of the i type of land use converted to j type, Aij represents the
area of i type of land use converted to j grade, and Bi is the total area of i type of land in
1980 (unit: km2).

Population and Gross Domestic Product (GDP): These data were analyzed spatially in
ArcGIS 10.3. According to REDCP, population data were processed as follows:

POPij = POP×
(

Qij/Q
)

(3)
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where POPij is the population-spatial-distribution data in a 1 km × 1 km grid, Qij is the
total weighting of land-use type, night light, and settlement density in a grid, POP is the
population of the county-level administrative unit in which the grid is located, and Q is the
total weighting of land-use type, night light, and settlement density for the county-level
administrative unit in which the grid is located.

According to REDCP, GDP data were processed as follows:

GDPij = GDP×
(

Qij/Q
)

(4)

where GDPij is the GDP-spatial-distribution data in a 1 km × 1 km grid, Qij is the total
weighting of land-use type, night light, and settlement density in a grid, GDP is the
GDP of the county-level administrative unit in which the grid is located, and Q is the
total weighting of land-use type, night light, and settlement density for the county-level
administrative unit in which the grid is located.

Accessibility (A): This parameter refers to the accessibility of a location in terms of
transportation, including national, provincial, county, and township roads. The Euclidean
distance was calculated for each of the different levels of road, weighted according to
ranking of their importance (national > provincial > county > township), and then ana-
lyzed spatially.

Karstification intensity (KI): The degree of karstification was classified as follows, accord-
ing to the purity of carbonate: detrital carbonate-reservoir rock (DCRR), carbonate-reservoir
rock with detrital reservoir rock (CRR-DRR), and non-carbonate rock (NCR). Weights were
assigned according to karstification intensity, whereby DCRR > CRR-DRR > NCR.

Drought index and mean annual precipitation/temperature: A drought index [60]
was obtained from Formulae (5)–(7). Next, based on Kriging interpolation in ArcGIS10.3,
the map of drought index was made.

K = E′/P′ (5)

P′ = P/PP (6)

E′ = E/EP (7)

where K denotes the drought index of any period, P′ describes the relative rate of change in
precipitation during the period (1980–2015), P represents annual total precipitation for 2015,
PP is the mean annual precipitation during the period (1980–2015), E′ describes the relative
rate of change in evaporation during the period (1980–2015), E represents the evaporation
in 2015, and EP is the mean annual evaporation during the period (1980–2015).

Slope: Following image cutting and splicing, DEM was used to classify slopes, as
follows: 0–6◦, 6–15◦, 15–25◦, 25–35◦, and >35◦.

2.3.2. Analysis of Drivers

Firstly, we explored the relationship between forest area in 2018 and its drivers. Data
for the most recent available year were used to consider potential drivers as indicated: land
use change (2018), population (2015), gross domestic product (GDP, 2015), accessibility
(2010), karstification intensity (2010), drought index (2015), mean annual precipitation
(2015), and slope (2009). Using them as baseline values, we then determined the influence
of these factors on forest change over time.

To assess the influence of these factors on forest change over time, we conducted a
correlation analysis between forest changes and the various drivers and then applied gener-
alized linear model (GLM) regression to quantify the relative contribution of each variable.
The GLM regression extends linear model regressions by expanding the distribution range
of dependent variables and introducing a continuous function, and it is generally applicable
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to non-normally distributed data [61]. As Formulae (8)–(10) show, the model is a function
of mean µ with a linear combination xβ formed from regressor x and coefficient vector β.

µi = E(YI |X1, X2, . . . , Xk), i = 1, . . . , n (8)

ηi = g(µi) (9)

g(µi) = ηi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + . . . + βkXik (10)

where X is explanatory variables (factors driving forest change), YI is dependent variables
(the area of forest), µi is n independent samples subject to exponential distribution; ηi
represents k linear combinations of explanatory variables; g(µi) refers to a function linking
µi and ηi, and k is the number of explanatory variables.

3. Results
3.1. Spatio-Temporal Patterns of Forest Change in Guizhou Province
3.1.1. Forest Transition

Forest transition describes the range of forest change, from shrinking to expansion [62,63].
According to Table 3, forests were the largest land-use type (53%) from 1980 to 2018 and,
while their distribution remained relatively stable, some increases over time were evident
(Figure 3a: Forest change in Guizhou Province). Notably, the forest cover reached its
lowest value in 2000. In terms of the forest subtypes, Table 4 shows that the greatest
increase was in the category ‘forest land’ (i.e., forests with greater biomass and substantial
tree-canopy cover).
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Table 3. Guizhou land-use changes from 1980 to 2018.

Year
Cropland Forest Grassland Water Built-Up Area Others Total Area

Area
(km2) (%) Area

(km2) (%) Area
(km2) (%) Area

(km2) (%) Area
(km2) (%) Area

(km2) (%) Area (km2)

1980 49,037 27.92 94,304 53.69 31,423 17.89 363 0.21 484 0.28 36 0.02 175,647
1990 48,926 27.85 94,413 53.75 31,366 17.86 380 0.22 517 0.29 44 0.03 175,646
2000 49,318 28.08 93,378 53.16 31,951 18.19 395 0.22 561 0.32 44 0.03 175,647
2010 49,184 28.01 94,540 53.84 30,718 17.49 467 0.27 641 0.37 37 0.02 175,587
2018 48,552 27.64 94,772 53.95 29,382 16.72 721 0.41 2225 1.27 30 0.02 175,682

Table 4. Forest subtypes in Guizhou from 1980 to 2018 (km2).

Forest Subtypes 1980 1990 2000 2010 2018 Changes

Forest land 24,038 24,048 23,673 23,818 24,392 354
Shrubland 43,617 43,675 43,163 43,339 43,469 −148

Sparse woods 26,364 26,403 26,238 27,073 26,615 251
Other forest areas 285 287 304 310 296 11

3.1.2. Spatial Changes

The distribution of the forest area in Guizhou is uneven, decreasing from east to west.
Figure 3b shows the mean annual proportion of total forest cover in the province’s nine
major municipalities from 1980 to 2018. Qiandongnan, in the southeast, and Zunyi, in the
north, have the greatest forest cover, accounting for 40% of the overall total, followed by
Qiannan (south), Bijie (northwest), Tongren (northeast), and Qianxinan (southwest) with
15%, 12%, 11%, and 9%, respectively. Liupanshui (west), Anshun (next to Liupanshui), and
Guiyang (central) have the lowest forest cover.

Based on temporal changes over the last 40 years, Figure 4 and Table 5 suggest that the
forest cover was either maintained or increased, with the exception of Tongren, Qiannan,
Qianxinan, and Anshun, all of which experienced some degree of forest loss. Qiandongnan
experienced the greatest degree of forest increase, with 478 km2 (2.6%), followed by Bijie
and Guiyang, with increases of 202 km2 (2.5%) and 138 km2 (3.6%), respectively. Zunyi
and Liupanshui both experienced only very limited increases in forest area (34 km2 and
14 km2, respectively).

Table 5. Forest changes from 1980 to 2018 in nine municipalities (km2).

Year 1980 1990 2000 2010 2018 Changes

Anshun 4442 4447 4417 4457 4432 −10
Bijie 11,388 11,397 11,380 11,548 11,590 202

Guiyang 3872 3874 3869 3883 4010 138
Liupanshui 3947 3959 3970 4021 3961 14
Qiandongnan 18,563 18,587 18,458 18,773 19,041 478

Qiannan 14,640 14,651 14,279 14,422 14,515 −125
Qianxinan 8010 8017 7948 8067 7980 −30
Tongren 10,155 10,156 9846 9972 9922 −233
Zunyi 19,287 19,325 19,211 19,397 19,321 34
Total 94,304 94,413 93,378 94,540 94,772 468
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3.2. Possible Drivers of Forest Change
3.2.1. Land-Use Change

Although the overall forest increase during the study period was relatively small
across the province as a whole, in very substantial areas, forests replaced agriculture.
Figure 5 demonstrates that forests replacing cropland happened in all nine municipalities
in Guizhou Province, which is attributable largely to the implementation of the Grain for
Green (GFG) project. Indeed, 36% of the cropland was converted into forests, which is
significantly higher than the equivalent values for the grassland and construction land.
With respect to individual municipalities, 47% of the farmland was converted into forests
in Qiandongnan, followed by Zunyi, Qiannan, and Tongren, where 40%, 39%, and 37% of
the land, respectively, was converted from agricultural land. Bijie had the smallest portion
of cropland converted into forest land (29%).

The implementation of the Grain for Green program accounts for a considerable, and
indeed increasing, proportion of the total forest changes in Guizhou (Figure 6). Prior to the
implementation of this policy in Guizhou in 2000, the forest cover was largely unchanged.
For instance, the forest area increased by only 109 km2 from 1980 to 1990, which was
much less than the change during the periods of 1990–2000, 2000–2010, and 2010–2018
(see Figure 3a) and, indeed, the forest cover actually decreased across the province in
2000. In Figure 6, it can be seen that, in 2018, 17% of the cropland was converted into
forests in Guizhou. Given that Guizhou is located in the upper and middle reaches of
the Yangtze and Pearl Rivers, the forest-cover change has also been brought about by the
implementation of two of China’s eight major shelterbelt projects (the Shelterbelt Program
for Upper and Middle Reaches of the Yangtze River, 1989 and the Shelterbelt Program for
the Pearl River, 1996).
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land in 1980, which converted into the i class of land in 2018; 1 = grassland, 2 = construction land,
3 = cropland, 4 = forest. Red arrows indicate percentages of i-type land in 1980 converted into forests
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3.2.2. Population Effects

Figure 7a indicates that the population densities are generally higher in the western
part of the province and this, in effect, reflects the forest distribution. At a very basic level,
therefore, population density influences forest disturbance or clearance, a relationship that
is further illustrated through the correlation analysis in Table 6.
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Table 6. Correlations between and multiple GLM analyses of the relationships between forest areas
and factors.

Method Correlation Analysis Multiple-GLM Regression

Variable r p SS, %
Drought index 0.084 0.460 0.64

Karstification intensity −0.097 0.394 0.85
Mean annual precipitation −0.296 ** 0.008 0.97

GDP −0.255 * 0.024 1.88
Population −0.281 * 0.012 2.23

Land-use change (LUC) 0.580 ** 0.000 2.27
Accessibility 0.388 ** 0.000 2.29

Slope of 15–25◦ 0.882 ** 0.000 88.87
* p < 0.05, ** p < 0.01; SS, proportion of variances explained by the variable.

3.2.3. GDP

Figure 7b illustrates the GDP per km2, which also takes land use, night light, and
settlement density into account (for more details, see sections on methods and data). In
parallel with the population density, the western parts of Guizhou province also have high
GDP values and lower forest cover, so there is an inverse relationship between GDP and
forest area (Table 5). The areas with higher GDP exhibit forest loss as a consequence of
economic development and urban expansion.

3.2.4. Accessibility

Figure 7c indicates that access to local transport routes negatively influences forest
cover. The road and railway density are greatest in the western and southwestern parts
of the province, and the effect of this on forest change is clearly evident. Qiandongnan is
characterized by lower accessibility levels and is richer in forest resources, while Guiyang,
Anshun, and Liupanshui have greater densities of both road and railway routes, which
negatively affect forest recovery.

3.2.5. Karstification Intensity

The substantial karst area in Guizhou province is an important factor because the
lack of surface water and relatively thin soils constrain forest development. Indeed, the
distribution of karst (Figure 7d) has a negative influence on the forest cover (Table 6).

3.2.6. Drought Index (DI)

The balance between moisture inputs, in the form of precipitation, and outputs, in the
form of evaporation, is a key determinant of the vegetation type, and the drought index
is used here to account for this balance. Figure 7e illustrates marked spatial patterns in
the occurrence of drought in Guizhou province, and suggests that the lower values in
Qiandongnan are associated with greater forest cover. Statistically, however, the effect of
moisture stress is less marked than may have been expected (Table 6).

3.2.7. Slope

In this study, the slope angle was classified into five categories: 0–6◦, 6–15◦,15–25◦,
25–35◦, and >35◦ (Figure 7f). Specifically, the forests are distributed preferentially on slopes
of 15–25◦ and occur less frequently on lands with lower slope angles, presumably because
these lands are more suited to agriculture and urban development. Table 6 illustrates a
very strongly positive correlation between slopes of 15–25◦ and forest area.

From the correlation analysis and multiple general linear models, it can be seen
(Table 6) that 15–25◦ slopes play a dominant role in the forest areas, explaining 88.87% of the
variation, while accessibility and land-use change account for 2.29% and 2.27%, respectively,
followed by population effects (2.23%), GDP (1.88%), mean annual precipitation (0.97%),
karstification intensity (0.85%), and drought index (0.64%).
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Table 6 further reveals that the mean annual precipitation, GDP, population effects,
land-use changes, accessibility, and slopes of 15–25◦ all play a role in forest change. Due to
data-availability constraints, we ultimately selected mean annual precipitation, GDP, popu-
lation, and land-use change (LUC) for further analysis as drivers of forest-cover changes.

3.3. Relative Importance of Drivers Changes over Time

To determine the relative importance of the drivers for forest change over time, we
conducted a correlation analysis and multiple-GLM regression for the different periods
(Table 7), taking the mean annual precipitation (MAP), annual mean temperature (MAT),
population, GDP, and cropland conversion into forest as key drivers of forest changes over
time, although, given the data limitations, the analysis was conducted only from 1990 to
2018, and the data for GDP and population in 1995 were used for 1990.

Table 7. Changes in drivers of forest variation over time.

Year Variable MAP MAT Population GDP LUC

1990
Correlation analysis r 0.095 0.064 −0.379 ** −0.150 –

sig 0.391 0.565 0.000 0.174 –
Multiple-GLM regression SS, % 3.34% 3.59% 74.44% 18.62% –

2000
Correlation analysis r −0.013 0.095 −0.283 ** −0.261 * –

sig 0.908 0.391 0.009 0.016 –
Multiple-GLM regression SS, % 25.63% 11.12% 63.08% 0.18% –

2010
Correlation analysis r 0.111 0.006 −0.317 ** −0.310 ** 0.236 *

sig 0.345 0.960 0.006 0.007 0.042
Multiple-GLM regression SS, % 9.77% 13.70% 9.28% 0.07% 67.18%

2018
Correlation analysis r −0.064 0.012 −0.312 ** −0.282 * 0.784 **

sig 0.583 0.921 0.006 0.014 0.000
Multiple-GLM regression SS, % 0.34% 2.78% 3.04% 2.04% 91.81%

Notes: Annual precipitation (AP, mm), annual mean temperature (AMT, ◦C), population (per person/km2), GDP
(RMB 10,000/km2), LCU (km2); * p < 0.05, ** p < 0.01; SS, proportion of variances explained by the variable.

In Table 8, it can be seen that, prior to 2000, the population exerted the most significant
impact on the forests but, after 2000, its influence was reduced to 3.04%. This may be
attributed to the type of economic development in Guizhou before 2000 [64], whereby the
inhabitants exploited forests for firewood [65] or settled on unused land [46]. Currently,
the substitution of gas and hydropower for firewood helps to reduce the pressures of the
population on the forests [65]. The negative effect of GDP on forest change diminished over
the years, probably due to the transformations associated with economic development,
which has reduced dependence on the direct consumption of natural resources, including
forests [66]. The impact of the land-use change, mainly the conversion of cropland into
forests, increased to 91.81% by 2018, probably as a consequence of the implementation of
GFG [67]. While some fluctuations were observed during dry periods, the influence of
MAP and MAT on the forest cover did not vary substantially in recent years.

Table 8. Comparison of results of this study with other products (areas in km2).

Data Resolution 1980 1990 2000 2010 2018 Changes
2000–2018

Changes
1980–2018

CNLUCC (this study) 1 km 94,304 94,413 93,378 994,540 94,772 1394 468
GlobeLand30 30 m – – 83,079 84,472 83,329 250 –
GLASS-GLC 5 km 4868 6110 6270 6969 7018 748 2150

MODIS/006/MCD12Q1 500 m – – 10,696 12,707 22,762 12,066 –
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4. Discussion
4.1. Validation of Forest Change in Guizhou through Comparison with Other Data Sources

We compared the results of our study with those of other land-use products to verify
the trends in the forest changes (Tables 8 and 9). We used ArcGIS spatial analysis to
determine the forest change according to MODIS/006/MCD12Q1, GlobeLand30, and
GLASS-GLC. It can be seen in Table 6 that all the products show an increasing trend
in forest cover during recent decades, albeit with some interannual differences. Table 8
reveals that the data sources, definition/classification criteria, classification technique, and
spatial resolution of the land-use data underlie the differences in the estimation of different
annual forest areas and forest changes [68,69]. For example, the differences in spatial
resolution between GLASS-GLC and CNLUCC may affect the land-cover classification
and explain the minor differences in forest-change estimation. Moreover, shrubland is a
single class in Global Land 30, and it is not classified as forest land, which may explain
why the forest-change increase in Global Land 30 is lower than that in this study. Some
grasslands are misclassified as shrublands in MODIS/006/MCD12Q1 and, since shrublands
are components of ‘forest’ [70], the forest change from 2000 to 2018 in that product is
much greater than in the results presented by CNLUCC, in which grassland is a single
category, independent of forest cover. Moreover, CNLUCC is obtained through detailed
field data [71], and it has been widely applied in many major projects, such as the Western
Development of China and the second national soil-erosion survey of China, among
others (http://www.resdc.cn/data.aspx?DATAID=95 (accessed on 30 January 2020)), which
indicates its reliability. It is noteworthy that in CNLUCC, the forest area decreased in 2000,
while in GLASS-GLC, it marginally increased. This difference has two possible causes, viz.
the two products differ in terms of spatial resolution and classification technique. Notably,
the spring and summer droughts in 1989 and the serious drought in southwestern China in
2000 may have interrupted the otherwise consistent increase in forest cover over time [72].

Table 9. Parameters of data products relating to forest-cover estimation.

Data Spatial Resolution Data Source Classification
Technique Accuracy Subclass or Description

CNLUCC 1 km HJ-1A/B, Landsat
TM/ETM+/OLI Visual interpretation Above 75% Forest land, shrubland, sparse

woods, other forest areas

GlobeLand30 30 m Landsat TM/ETM+ POK-based method

2000/2010:
80.33 ± 0.2%

2020:
85.72%

Over 30% of land covered with
trees and vegetation, including

deciduous broad-leaved
forests, evergreen broad-leaved
forests, deciduous coniferous
forests, evergreen coniferous

forests, mixed forests, and
sparse forests with crown

coverage of 10–30%

GLASS-GLC 5 km Landsat TM/ETM+

Conventional
maximum-likelihood

classifier, J4.8
decision-tree classifier,

Random Forest
classifier, and

support-vector-machine
classifier

82.81%

Broad leaf, leaf on; broad leaf,
leaf-off; needle leaf, leaf on;

needle leaf, leaf off; mixed leaf
type, leaf on; mixed leaf type,

leaf off.

MODIS/006/MCD12Q1 500 m MODIS Decision-tree
classification algorithm 66.42%

Evergreen needleleaf forests;
evergreen broadleaf forests;

deciduous needleleaf forests;
deciduous broadleaf forests;

mixed forests; closed
shrublands; open shrublands

Notes: sources of the table are from [67,68].

4.2. The Effects of Ecological Restoration Policy on Forest Change

Guizhou has the largest karst area in the world [73]. Since the release of the “Decision
on Basic Greening of Guizhou in Ten Years” in 1990, China has implemented a batch
of key projects to protect and restore the fragile ecological environment. These include
the Shelterbelt Program for Upper and Middle Reaches of the Yangtze River (1989), the
Natural Forest Protection Project (1998), and the Grain for Green program (1999), all

http://www.resdc.cn/data.aspx?DATAID=95


Land 2023, 12, 1004 16 of 20

of which were applied in Guizhou and contribute to greening [74,75]. In 2008, China
imposed the “Outline of Comprehensive Control Plan for Rocky Desertification in Karst
Areas,” which included 55 counties in Guizhou Province among China’s 100 pilot counties
for the comprehensive control of rocky desertification, with the aim of further restoring
the ecological environment. In subsequent years, Guizhou vigorously supported the
development and protection of forest resources through various initiatives, such as the
Afforestation Planning across County and Township and Village in Guizhou Province
(2014–2017), the Three Year Action Plan for Green Guizhou Construction (2015–2017), the
Guizhou Forestry Industry Three Year Multiplication Plan (2015–2017), the Implementation
Plan on Promoting the Development of Forestry Industry in Guizhou Province, and the Ten
Forestry Industry Bases Construction Plan of Guizhou Province (2018–2020). Additionally,
to strengthen the protection of forest resources, Guizhou strictly implemented a forest-
cutting quota system to ensure that the total growth of trees was far greater than the total
consumption. It also carried out forest-ecological-benefit compensation (2004) and enforced
a special law enforcement campaign to protect forest (2014). Guizhou has also reviewed
and approved the use of forest land and defined the forestry ecological red line to strictly
protect and rationally use forest land resources [76].

In short, China as a whole, and Guizhou in particular, have implemented various
targeted policies to hasten vegetation restoration and protect their forests, all of which have
contributed to the increase in forest cover (Figure 8). With the implementation of ecological-
restoration and protection programs, this trend seems set to continue [16]. According
to the Guizhou Statistical Yearbook, forest cover is defined as the ratio of the forest area
to the total land area, expressed as a percentage. According to national regulations, this
also includes shrublands and farmland–forest mosaic areas. Therefore, the level of forest
resources and greening is even greater than that recorded in our study.
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4.3. Limitations and Prospects

Although forest changes may be driven by multiple factors, not all of which are
addressed in this study, our analysis, based on the conditions of the study area, considers
the factors that are most likely to be significant. The findings offer important support for
the government in identifying key areas for forest conservation and restoration.

Nevertheless, there are some limitations. For example, the data relating to some of the
explanatory variables were not available for the entire period, meaning that in some cases,
we used data from the closest suitable year in the analysis. Other relevant driving factors
should be the subject of future research and analysis, such as the choice of afforestation
species, the method of production of seedlings, and specific planting-environment condi-
tions. Species selection, in particular, is a key challenge in afforestation [77,78], and the
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selection of the correct species mixtures can markedly increase the success of the restoration.
In addition, the choice of appropriate species for specific environments, which can adapt to
current and future environmental conditions, is crucial [79]. In degraded ecosystems, plant-
ing species that can withstand particular environmental constraints should be used. Other
factors, such as the occurrence of vegetation fires, also need to be considered [80], as these
may affect the rate of tree recruitment, forest-age structure, and species composition [81,82].
The effects of soil humidity on forest recovery are complex and may be important in seed
germination [83], while soil moisture is a further constraint on successful regeneration [84].

5. Conclusions

In Guizhou province, forests are a prominent land type due to the favorable hydrother-
mal conditions, and the results of this study show that the forest cover has increased over
the last few decades. In terms of area, Qiandongnan holds the largest share of forest, and
experienced the most substantial increase of all the nine municipalities during the study
period. On the other hand, Liupanshui, in the west of Guizhou, has the lowest forest
cover and exhibited very little change overall. While forest changes are the result of both
natural and artificial factors, the relative influence of these factors shifted over time. Prior
to 2000, the population exerted a much stronger influence on the forests but, since then,
the function of other factors has increased, particularly land-use changes. The nine major
municipalities in Guizhou experienced different outcomes as a result, with Qiandongnan
exhibiting the highest percentage of farmland converted into forest, at 47%, followed by
Zunyi, with 40%, Qiannan, with 39%, and Tongren, with 37%. Bijie has the smallest portion
of cropland converted into forest (29%). These results emphasize the dynamic nature of
driving forces in determining forest cover and demonstrate the value of geospatial analysis
in understanding their emerging influence. The methodology and modeling approach
adopted here are used to illustrate the relative roles of natural and management factors
and may be applied in other similar regions to reduce forest degradation and increase
forest restoration.

Author Contributions: Conceptualization: R.C.; methodology: X.G., Q.L. and Z.X.; writing—original
draft: X.G. and R.C.; writing—review and editing: X.G., R.C., M.E.M., Q.L., Z.X. and Z.P. All authors
have read and agreed to the published version of the manuscript.

Funding: This study was conducted with the support of the National Social Science Fund of China
(Grant No.20ZDA085), the National Key Research and Development Program of China (Grant No.
2017YFC1503001), and the China Postdoctoral Science Foundation (Grant No. 2022M722055 &
2022TQ0205).

Data Availability Statement: The source of relevant data acquisition has been described in the text.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108.

[CrossRef] [PubMed]
2. McAlpine, C.; Johnson, A.; Salazar, A.; Syktus, J.; Wilson, K.; Meijaard, E.; Seabrook, L.; Dargusch, P.; Nordin, H.; Sheil, D. Forest

loss and Borneo’s climate. Environ. Res. Lett. 2018, 13, 044009. [CrossRef]
3. Viña, A.; McConnell, W.J.; Yang, H.; Xu, Z.; Liu, J. Effects of conservation policy on China’s forest recovery. Sci. Adv. 2016,

2, e1500965. [CrossRef] [PubMed]
4. Siqueira-Gay, J.; Sonter, L.J.; Sánchez, L.E. Exploring potential impacts of mining on forest loss and fragmentation within a

biodiverse region of Brazil’s northeastern Amazon. Resour. Policy 2020, 67, 101662. [CrossRef]
5. Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s response

to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [CrossRef]
6. Hong, Y.; Du, M. Greening Efforts Push China’s Forest Coverage Rate to over 23 Pct. Available online: http://en.people.cn/n3/2

021/0629/c90000-9866358.html (accessed on 30 December 2021).
7. Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India

lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [CrossRef]
8. Guizhou Statistics Bureau. Guizhou Statistical Yearbook; China Statistics Press: Beijing, China, 2021.

https://doi.org/10.1126/science.aau3445
https://www.ncbi.nlm.nih.gov/pubmed/30213911
https://doi.org/10.1088/1748-9326/aaa4ff
https://doi.org/10.1126/sciadv.1500965
https://www.ncbi.nlm.nih.gov/pubmed/27034980
https://doi.org/10.1016/j.resourpol.2020.101662
https://doi.org/10.1038/s41586-018-0280-2
http://en.people.cn/n3/2021/0629/c90000-9866358.html
http://en.people.cn/n3/2021/0629/c90000-9866358.html
https://doi.org/10.1038/s41893-019-0220-7


Land 2023, 12, 1004 18 of 20

9. Tong, X.; Brandt, M.; Yue, Y.; Ciais, P.; Rudbeck Jepsen, M.; Penuelas, J.; Wigneron, J.-P.; Xiao, X.; Song, X.-P.; Horion, S.; et al. Forest
management in southern China generates short term extensive carbon sequestration. Nat. Commun. 2020, 11, 129. [CrossRef]

10. Tong, X.; Brandt, M.; Yue, Y.; Horion, S.; Wang, K.; Keersmaecker, W.D.; Tian, F.; Schurgers, G.; Xiao, X.; Luo, Y.; et al. Increased
vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 2018, 1, 44–50. [CrossRef]

11. Huang, L.; Wang, B.; Niu, X.; Gao, P.; Song, Q. Changes in ecosystem services and an analysis of driving factors for China’s
Natural Forest Conservation Program. Ecol. Evol. 2019, 9, 3700–3716. [CrossRef]

12. Xiong, Q.; Li, L.; Luo, X.; He, X.; Zhang, L.; Pan, K.; Liu, C.; Sun, H. Driving forces for recovery of forest vegetation after harvesting
a subalpine oak forest in eastern Tibetan Plateau. Environ. Sci. Pollut. Res. 2021, 28, 67748–67763. [CrossRef]

13. Zhao, Y.; Ren, H.; Li, X. Forest Transition and Its Driving Forces in the Qian-Gui Karst Mountainous Areas. J. Resour. Ecol. 2020,
11, 59–68.

14. Sitters, J.; Holmgren, M.; Stoorvogel, J.J.; López, B.C. Rainfall-Tuned Management Facilitates Dry Forest Recovery. Restor. Ecol.
2012, 20, 33–42. [CrossRef]

15. Bronson, D.R.; Gower, S.T.; Tanner, M.; Van Herk, I. Effect of ecosystem warming on boreal black spruce bud burst and shoot
growth. Glob. Change Biol. 2009, 15, 1534–1543. [CrossRef]

16. Wang, H.; Lv, Z.; Gu, L.; Wen, C. Observations of China’s forest change (2000–2013) based on Global Forest Watch dataset.
Biodivers. Sci. 2015, 23, 575–582. [CrossRef]

17. Li, H.; Ma, Y.; Liu, W.; Wenjun, L. Clearance and fragmentation of tropical rain forest in Xishuangbanna, SW, China. Biodivers.
Conserv. 2009, 18, 3421–3440. [CrossRef]

18. Zhai, D.; Xu, J.; Dai, Z.; Cannon, C.H.; Grumbine, R.E. Increasing tree cover while losing diverse natural forests in tropical Hainan,
China. Reg. Environ. Change 2013, 14, 611–621. [CrossRef]

19. Zhang, J.Y.; Dai, M.H.; Wang, L.C.; Zeng, C.F.; Su, W.C. The challenge and future of rocky desertification control in karst areas in
southwest China. Solid Earth 2016, 7, 83–91. [CrossRef]

20. Xiong, K. Remote-Sensing and GIS-Based Typical Study of Rock Desertification in Karst Areas; Chinese Geological Press: Beijing,
China, 2002.

21. Wang, S.; Ji, H.; Ouyang, Z.; Zhou, D.; Zhen, L.; Li, T. Preliminary study on carbonate rock weathering pedogenesis. Sci. China
1999, 42, 572–581. [CrossRef]

22. Chen, R.; Ye, C.; Cai, Y.; Xing, X. Integrated Restoration of Small Watershed in Karst Regions of Southwest China. AMBIO 2012,
41, 907–912. [CrossRef]

23. Yan, X.; Cai, Y. Multi-scale anthropogenic driving forces of karst rocky desertification in southwest China. Land Degrad. Dev. 2015,
26, 193–200. [CrossRef]

24. Li, D.; Liu, J.; Chen, H.; Zheng, L.; Wen, L.; Wang, K. Forage grass cultivation increases soil organic carbon and nitrogen pools in a
karst region, southwest China. Land Degrad. Dev. 2018, 29, 4397–4404. [CrossRef]

25. Liu, X.; Zhang, W.; Wu, M.; Ye, Y.; Wang, K.; Li, D. Changes in soil nitrogen stocks following vegetation restoration in a typical
karst catchment. Land Degrad. Dev. 2019, 30, 60–72. [CrossRef]

26. Dai, Q.; Peng, X.; Wang, P.; Li, C.; Shao, H. Surface erosion and underground leakage of yellow soil on slopes in karst regionS of
southwest China. Land Degrad. Dev. 2018, 29, 2438–2448. [CrossRef]

27. Bai, X.Y.; Zhang, X.B.; Chen, H.; He, Y.B. Using Cs-137 fingerprinting technique to estimate sediment deposition and erosion rates
from Yongkang depression in the karst region of Southwest China. Land Degrad. Dev. 2010, 21, 474–479. [CrossRef]

28. Dai, Q.; Peng, X.; Zhao, L.; Shao, H.; Yang, Z. Effects of underground pore fissures on soil erosion and sediment yield on karst
slopes: Soil erosion and sediment on karst slopes. Land Degrad. Dev. 2017, 28, 1922–1932. [CrossRef]

29. Guo, F.; Jiang, G.; Yuan, D.; Polk, J.S. Evolution of major environmental geological problems in karst areas of Southwestern China.
Environ. Earth Sci. 2013, 69, 2427–2435. [CrossRef]

30. Liu, B.; Pan, L.; Qi, Y.; Guan, X.; Li, J. Land Use and Land Cover Change in the Yellow River Basin from 1980 to 2015 and Its
Impact on the Ecosystem Services. Land 2021, 10, 1080. [CrossRef]

31. Heistermann, M.; Müller, C.; Ronneberger, K. Land in sight? Achievements, deficits and potentials of continental to global scale
land-use modeling. Agric. Ecosyst. Environ. 2006, 114, 141–158. [CrossRef]

32. Verburg, P.H.; Kok, K.; Pontius, R.G.; Veldkamp, A. Modeling Land-Use and Land-Cover Change. In Land-Use and Land-Cover
Change: Local Processes and Global Impacts; Lambin, E.F., Geist, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 117–135.
[CrossRef]

33. Baker, W.L. A review of models of landscape change. Landsc. Ecol. 1989, 2, 111–133. [CrossRef]
34. Brown, D.G.; Walker, R.; Manson, S.; Seto, K. Modeling Land Use and Land Cover Change. In Land Change Science: Observing,

Monitoring and Understanding Trajectories of Change on the Earth’s Surface; Gutman, G., Janetos, A.C., Justice, C.O., Moran,
E.F., Mustard, J.F., Rindfuss, R.R., Skole, D., Turner, B.L., Cochrane, M.A., Eds.; Springer: Dordrecht, The Netherlands, 2012;
pp. 395–409. [CrossRef]

35. Lambin, E.F. Modelling and monitoring land-cover change processes in tropical regions. Prog. Phys. Geogr. Earth Environ. 1997,
21, 375–393. [CrossRef]

36. Kaimowitz, D.; Angelsen, A. Economic Models of Tropical Deforestation: A Review; Center for International Forestry Research
(CIFOR): Bogor, Indonesia, 1989.

https://doi.org/10.1038/s41467-019-13798-8
https://doi.org/10.1038/s41893-017-0004-x
https://doi.org/10.1002/ece3.4925
https://doi.org/10.1007/s11356-021-15367-3
https://doi.org/10.1111/j.1526-100X.2010.00761.x
https://doi.org/10.1111/j.1365-2486.2009.01845.x
https://doi.org/10.17520/biods.2015122
https://doi.org/10.1007/s10531-009-9651-1
https://doi.org/10.1007/s10113-013-0512-9
https://doi.org/10.5194/se-7-83-2016
https://doi.org/10.1007/BF02877784
https://doi.org/10.1007/s13280-012-0296-z
https://doi.org/10.1002/ldr.2209
https://doi.org/10.1002/ldr.3200
https://doi.org/10.1002/ldr.3204
https://doi.org/10.1002/ldr.2960
https://doi.org/10.1002/ldr.983
https://doi.org/10.1002/ldr.2711
https://doi.org/10.1007/s12665-012-2070-8
https://doi.org/10.3390/land10101080
https://doi.org/10.1016/j.agee.2005.11.015
https://doi.org/10.1007/3-540-32202-7_5
https://doi.org/10.1007/BF00137155
https://doi.org/10.1007/978-1-4020-2562-4_23
https://doi.org/10.1177/030913339702100303


Land 2023, 12, 1004 19 of 20

37. Lambin, E.F.; Rounsevell, M.D.A.; Geist, H.J. Are agricultural land-use models able to predict changes in land-use intensity?
Agric. Ecosyst. Environ. 2000, 82, 321–331. [CrossRef]

38. Agarwal, C.; Green, G.M.; Grove, J.M.; Evans, T.P.; Schweik, C.M. A Review and Assessment of Land-Use Change Models: Dynamics of
Space, Time, and Human Choice; U.S. Department of Agriculture, Forest Service, Northeastern Research Station: Burlington, NJ,
USA, 2002.

39. Verburg, P.H.; Alexander, P.; Evans, T.; Magliocca, N.R.; Malek, Z.; Rounsevell, M.D.A.; van Vliet, J. Beyond land cover change:
Towards a new generation of land use models. Curr. Opin. Environ. Sustain. 2019, 38, 77–85. [CrossRef]

40. Regasa, M.S.; Nones, M.; Adeba, D. A Review on Land Use and Land Cover Change in Ethiopian Basins. Land 2021, 10, 585.
[CrossRef]

41. Wang, J.; Bretz, M.; Dewan, M.A.A.; Delavar, M.A. Machine learning in modelling land-use and land cover-change (LULCC):
Current status, challenges and prospects. Sci. Total Environ. 2022, 822, 153559. [CrossRef]

42. Bai, X.; Zhang, S.; Li, C.; Xiong, L.; Song, F.; Du, C.; Li, M.; Luo, Q.; Xue, Y.; Wang, S. A carbon neutrality capacity index for
evaluating carbon sink contributions. Environ. Sci. Ecotechnol. 2023, 15, 100237. [CrossRef]

43. Wu, J.; Zhang, F.; Cao, G.; Li, W.; Zhao, X. Temporal and spatial analysis of precipitation in Guizhou based on TRMM 3B42
satellite data. IOP Conf. Ser. Earth Environ. Sci. 2017, 81, 012076. [CrossRef]

44. Tian, Y.; Wang, S.; Bai, X.; Luo, G.; Xu, Y. Trade-offs among ecosystem services in a typical Karst watershed, SW China. Sci. Total
Environ. 2016, 566–567, 1297–1308. [CrossRef]

45. China’s State Forestry Administration. The Bulletin of Rocky Desertification in China; China’s State Forestry Administration: Beijing,
China, 2012.

46. Zhao, L.; Hou, R. Human causes of soil loss in rural karst environments: A case study of Guizhou, China. Sci. Rep. 2019, 9, 3225.
[CrossRef]

47. Guizhou Statistics Bureau. Guizhou Statistical Yearbook; China Statistics Press: Beijing, China, 2019.
48. Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. China’s Multi-Period Land Use Land Cover Remote Sensing Monitoring Data Set

(CNLUCC); Resource and Environment Data Registration and Publishing System: Beijing, China, 2018. [CrossRef]
49. Baltaci, U.; Yildirim, F. Effect of Slope on the Analysis of Forest Fire Risk. Hacet. J. Biol. Chem. 2020, 48, 373–379. [CrossRef]
50. Ding, Y.; Xu, J.; Wang, X.; Peng, X.; Cai, H. Spatial and temporal effects of drought on Chinese vegetation under different coverage

levels. Sci. Total Environ. 2020, 716, 137166. [CrossRef]
51. Yin, L.; Dai, E.; Zheng, D.; Wang, Y.; Ma, L.; Tong, M. What drives the vegetation dynamics in the Hengduan Mountain region,

southwest China: Climate change or human activity? Ecol. Indic. 2020, 112, 106013. [CrossRef]
52. Padilla, F.M.; Vidal, B.; Sanchez, J.; Pugnaire, F.I. Land-use changes and carbon sequestration through the twentieth century in

a Mediterranean mountain ecosystem: Implications for land management. J. Environ. Manag. 2010, 91, 2688–2695. [CrossRef]
[PubMed]

53. Yang, H.; Mu, S.; Li, J. Effects of ecological restoration projects on land use and land cover change and its influences on territorial
NPP in Xinjiang, China. Catena 2014, 115, 85–95. [CrossRef]

54. Rao, C.; Yan, B. Study on the interactive influence between economic growth and environmental pollution. Environ. Sci. Pollut.
Res. 2020, 27, 39442–39465. [CrossRef]

55. Muller, M.R.; Middleton, J. A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landsc. Ecol.
1994, 9, 151–157.

56. Long, H.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120.
[CrossRef]

57. Urban, D.L.; Wallin, D.O. Introduction to Markov models. In Learning Landscape Ecology: A Practical Guide to Concepts and
Techniques; Gergel, S.E., Turner, M.G., Eds.; Springer: New York, NY, USA, 2017; pp. 129–142. [CrossRef]

58. Zhu, E.; Deng, J.; Zhou, M.; Gan, M.; Jiang, R.; Wang, K.; Shahtahmassebi, A. Carbon emissions induced by land-use and
land-cover change from 1970 to 2010 in Zhejiang, China. Sci. Total Environ. 2018, 646, 930–939. [CrossRef]

59. Bai, X.Y.; Wang, S.J.; Xiong, K.N. Assessing spatial-temporal evolution processes of karst rocky desertification land: Indications
for restoration strategies. Land Degrad. Dev. 2013, 24, 47–56. [CrossRef]

60. Wang, J.; Guo, J.; Qing, J. Application of a kind of k drought index in the spring drought analysis in northwest China. J. Nat.
Resour. 2011, 22, 709–717. [CrossRef]

61. Araromi, D.O.; Majekodunmi, O.T.; Adeniran, J.A.; Salawudeen, T.O. Modeling of an activated sludge process for effluent
prediction—A comparative study using ANFIS and GLM regression. Environ. Monit. Assess. 2018, 190, 495. [CrossRef]

62. Mather, A.S. The Forest Transition. Area 1992, 24, 367–379.
63. Oliveira, T.M.; Guiomar, N.; Baptista, F.O.; Pereira, J.M.C.; Claro, J. Is Portugal’s forest transition going up in smoke? Land Use

Policy 2017, 66, 214–226. [CrossRef]
64. Yu, X. Environmental development and governance in western China since 2000: A case from Guizhou Province. Int. J. Environ.

Stud. 2016, 73, 791–805. [CrossRef]
65. Zhang, X.; Zha, T.; Zhao, Y.; Qin, J.; Lyv, Z.; Ma, Z.; Yu, H.; Zhu, Y.; Wang, G.; Tettenborn, F.; et al. Sustainable effects of small

hydropower substituting firewood program in Majiang County, Guizhou Province, China. Sustainability 2017, 9, 988. [CrossRef]
66. Dong, S.; Zhao, Y.; Li, X. Spatial Differentiation Characteristics and Driving Forces of Forest Transition: A Case Study of Zunyi

City, Guizhou. J. Resour. Ecol. 2018, 9, 341–351.

https://doi.org/10.1016/S0167-8809(00)00235-8
https://doi.org/10.1016/j.cosust.2019.05.002
https://doi.org/10.3390/land10060585
https://doi.org/10.1016/j.scitotenv.2022.153559
https://doi.org/10.1016/j.ese.2023.100237
https://doi.org/10.1088/1755-1315/81/1/012076
https://doi.org/10.1016/j.scitotenv.2016.05.190
https://doi.org/10.1038/s41598-018-35808-3
https://doi.org/10.12078/2018070201
https://doi.org/10.15671/hjbc.753080
https://doi.org/10.1016/j.scitotenv.2020.137166
https://doi.org/10.1016/j.ecolind.2019.106013
https://doi.org/10.1016/j.jenvman.2010.07.031
https://www.ncbi.nlm.nih.gov/pubmed/20705387
https://doi.org/10.1016/j.catena.2013.11.020
https://doi.org/10.1007/s11356-020-10017-6
https://doi.org/10.1016/j.landusepol.2017.03.021
https://doi.org/10.1007/978-1-4939-6374-4_8
https://doi.org/10.1016/j.scitotenv.2018.07.317
https://doi.org/10.1002/ldr.1102
https://doi.org/10.1016/j.oneear.2021.03.005
https://doi.org/10.1007/s10661-018-6878-x
https://doi.org/10.1016/j.landusepol.2017.04.046
https://doi.org/10.1080/00207233.2016.1199417
https://doi.org/10.3390/su9060988


Land 2023, 12, 1004 20 of 20

67. Wang, B.; Gao, P.; Niu, X.; Sun, J. Policy-driven China’s Grain to Green Program: Implications for ecosystem services. Ecosyst.
Serv. 2017, 27, 38–47. [CrossRef]

68. Zeng, Z.; Estes, L.; Ziegler, A.; Chen, A.; Searchinger, T.; Hua, F.; Guan, K.; Jintrawet, A.; Wood, E. Highland cropland expansion
and forest loss in Southeast Asia in the twenty-first century. Nat. Geosci. 2018, 11, 556–562. [CrossRef]

69. Lei, G.; Li, A.; Bian, J.; Zhang, Z. The roles of criteria, data and classification methods in designing land cover classification
systems: Evidence from existing land cover data sets. Int. J. Remote Sens. 2020, 41, 5062–5082. [CrossRef]

70. Zeng, T.; Zhang, Z.; Zhao, X.; Wang, X.; Zuo, L. Evaluation of the 2010 MODIS Collection 5.1 Land Cover Type Product over
China. Remote Sens. 2015, 7, 1981–2006. [CrossRef]

71. Wu, B.; Yuan, Q.; Yan, C.; Wang, Z.; Xinfang, Y.; Li, A.; Ma, R.; Huang, J.; Chen, J.; Chang, C.; et al. Land Cover Changes of China
Form 2000 to 2010. Quat. Sci. 2014, 34, 723–731.

72. Yan, X.; Li, Y.; Xia, Y.; Hu, Y.; Yang, C. Analysis of characteristics and causes of persistent drought in Guizhou during 1961—2016.
Mid-Low Latit. Mt. Meteorol. 2019, 43, 1–7.

73. Han, G.; Liu, C. Water geochemistry controlled by carbonate dissolution: A study of the river waters draining karst-dominated
terrain, Guizhou Province, China. Chem. Geol. 2004, 204, 1–21. [CrossRef]

74. An, H.; Liu, M. Analysis on the benefits of Grain for Green Project and sustainable development of Guizhou Province. Subtrop.
Soil Water Conserv. 2008, 20, 1–4.

75. Zhang, B.; Nie, C.; Zhu, J.; Yao, Y.; Mo, S.-g.; Luo, Y.; Cen, G. Dynamic change of forest resources in Guizhou province. Geogr. Res.
2003, 22, 725–732.

76. Han, D.; Yang, T.; Pan, T.; Chen, T.; Zhang, X. Analysis on measures of forest resources growth and change in guizhou province.
Agric. Technol. 2020, 40, 73–75.

77. Sabir, M.; Ali, Y.; Khan, I.; Salman, A. Plants Species Selection for Afforestation: A Case Study of the Billion Tree Tsunami Project
of Pakistan. J. Sustain. For. 2022, 41, 537–549. [CrossRef]

78. Dey, D.C.; Gardiner, E.S.; Kabrick, J.M.; Stanturf, J.A.; Jacobs, D.F. Innovations in afforestation of agricultural bottomlands to
restore native forests in the eastern USA. Scand. J. For. Res. 2010, 25, 31–42. [CrossRef]

79. Cunningham, S.C.; Mac Nally, R.; Baker, P.J.; Cavagnaro, T.R.; Beringer, J.; Thomson, J.R.; Thompson, R.M. Balancing the
environmental benefits of reforestation in agricultural regions. Perspect. Plant Ecol. Evol. Syst. 2015, 17, 301–317. [CrossRef]

80. Babintseva, R.M.; Titova, Y.V. Effects of Fire on the Regeneration of Larch Forests in the Lake Baikal Basin. In Fire in Ecosystems of
Boreal Eurasia; Goldammer, J.G., Furyaev, V.V., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 358–365. [CrossRef]

81. Goldammer, J.G.; Furyaev, V.V. Fire in Ecosystems of Boreal Eurasia: Ecological Impacts and Links to the Global System. In
Fire in Ecosystems of Boreal Eurasia; Goldammer, J.G., Furyaev, V.V., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 1–20.
[CrossRef]

82. Chu, T.; Guo, X. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest
Regions: A Review. Remote Sens. 2014, 6, 470–520. [CrossRef]

83. Xiao, S.-C.; Xiao, H.-L.; Peng, X.-M.; Tian, Q.-Y. Daily and seasonal stem radial activity of Populus euphratica and its association
with hydroclimatic factors in the lower reaches of China’s Heihe River basin. Environ. Earth Sci. 2014, 72, 609–621. [CrossRef]

84. Curtin, D.; Beare, M.H.; Hernandez-Ramirez, G. Temperature and Moisture Effects on Microbial Biomass and Soil Organic Matter
Mineralization. Soil Sci. Soc. Am. J. 2012, 76, 2055–2067. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ecoser.2017.07.014
https://doi.org/10.1038/s41561-018-0166-9
https://doi.org/10.1080/01431161.2020.1724349
https://doi.org/10.3390/rs70201981
https://doi.org/10.1016/j.chemgeo.2003.09.009
https://doi.org/10.1080/10549811.2020.1830802
https://doi.org/10.1080/02827581.2010.485822
https://doi.org/10.1016/j.ppees.2015.06.001
https://doi.org/10.1007/978-94-015-8737-2_31
https://doi.org/10.1007/978-94-015-8737-2_1
https://doi.org/10.3390/rs6010470
https://doi.org/10.1007/s12665-013-2982-y
https://doi.org/10.2136/sssaj2012.0011

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Land-Use Data 
	Forest-Change Drivers 

	Methods 
	Data Preprocessing 
	Analysis of Drivers 


	Results 
	Spatio-Temporal Patterns of Forest Change in Guizhou Province 
	Forest Transition 
	Spatial Changes 

	Possible Drivers of Forest Change 
	Land-Use Change 
	Population Effects 
	GDP 
	Accessibility 
	Karstification Intensity 
	Drought Index (DI) 
	Slope 

	Relative Importance of Drivers Changes over Time 

	Discussion 
	Validation of Forest Change in Guizhou through Comparison with Other Data Sources 
	The Effects of Ecological Restoration Policy on Forest Change 
	Limitations and Prospects 

	Conclusions 
	References

