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Abstract: The land use and land cover pattern of the Qinghai-Tibet Plateau (QTP) is an important
basis for the structure and function of the QTP ecological barrier. It is of great significance to
simulate the land use pattern and landscape ecological risk of the QTP under future scenarios for the
construction of the QTP barrier area and to promote the sustainable use of land resources. The QTP
was selected as the study area. Based on the spatial pattern of land use in 2010 and 2020, the PLUS
model was used to predict the land use patterns of the QTP in 2030 under the two scenarios of natural
development and ecological conservation. The landscape ecological risk index was constructed to
evaluate the past, present, and future landscape ecological risk of the QTP. The natural break point
method was used to divide the landscape ecological risk index into five levels: lower ecological risk,
low ecological risk, medium ecological risk, high ecological risk, and higher ecological risk. The
results showed that: (1) Under the natural development scenario, the area of cropland, forestland,
grassland, and unused land decreased continuously, while the areas of water and built-up land
increased gradually. Under the ecological conservation scenario, the areas of forestland and grassland
increased by 130 km2 and 2293 km2, respectively, compared with the natural development scenario.
(2) Under the natural development scenario, the overall ecological risk of the QTP increased from
2010 to 2030, which showed that the proportions of lower ecological risk area decreased, while the
proportion of medium and high ecological risk area increased. Under the ecological conservation
scenario, compared with the natural development scenario, the area of lower, low, and high ecological
risk increased by 4044 km2, 2484 km2, and 6401 km2, respectively, while the areas of medium and
higher ecological risk decreased by 6333 km2 and 6597 km2, respectively.

Keywords: Qinghai-Tibet Plateau; land use simulation; future scenarios; landscape ecological risk

1. Introduction

The Qinghai-Tibet Plateau (QTP) is known as the “roof of the world” and the “world’s
third pole” [1]. Its unique geographical location and rich natural resources make it an
ecological security barrier for China and even Asia, meaning it plays an important role
in ecological conservation [2]. However, the QTP’s ecosystem is fragile and its natural
environment is complex [3]. Under the combined influence of human and natural factors,
the LUCC, which form an important basis for supporting the structure and function of the
QTP ecological barrier, is prone to change. Such change significantly impacts the QTP’s
internal ecological environment and its development, thus affecting the whole world [4].

An important topic in ecological risk assessment at the regional scale, landscape
ecological risk refers to the possible adverse consequences of the interaction between
landscape patterns and ecological processes under the influence of natural or human
factors [5]. It affects the intensity of regional ecological risk, and then causes natural
disasters [6–8]. With the development of computer technology, the models used for land
use simulation are developing apace. In CLUE-S, FLUS, and PLUS models [9–11], for
example, the accuracy of land use model simulation is constantly improving. Therefore,
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researchers have begun to assess regional ecological risk status from the perspective of
landscape ecology by land use pattern [12]. This plays an important role in determining
the overall characteristics and trends of change of regional ecological risk and in carrying
out ecological risk management.

At present, research on land use change in the QTP mainly focus on densely populated
areas and climate sensitive areas. Such areas include the Yellow River-Huangshui River
Valley, the “One River and Two Rivers Streams” area [13–17], the Northern Tibet Plateau,
the Three-River Headwaters Region [18–22], and the Qomolangma National Nature Re-
serve [23–25]. Moreover, the land use types studied are specific, and there is a lack of
systematic understanding of the LUCC process for the whole of the QTP. There is little
research on land use simulation of the QTP. Most studies on the landscape ecological risk
assessment of the QTP focus on small areas, such as cities, river basins, wetlands, and
infrastructure construction areas [26–31]. Large-scale systematic landscape ecological risk
assessment studies under current and future scenarios for the whole QTP are still lacking.
Therefore, the simulation and assessment of land use change and ecological risk for the
QTP have become important in the sustainable development and ecological conservation
of the QTP. It is, therefore, crucial to better understand the overall characteristics and
developmental trends of land use change and ecological risk on the QTP.

The QTP, therefore, was selected as the study area. Using land use data from the QTP
for 2010 and 2020, the PLUS model was adopted to predict the land use under natural
development and ecological conservation scenarios for 2030. The landscape ecological
risk index was constructed to evaluate the overall landscape ecological risk characteristics
of the QTP from 2010 to 2020 and different future scenarios for 2030. This study aims to
promote the sustainable utilization of land resources on the QTP, to provide a reference
for the construction of an ecological conservation barrier area and ecological civilization
plateau and to provide a theoretical reference for the LUCC simulation and landscape
ecological risk assessment of plateau regions across the world.

2. Materials and Methods
2.1. Study Area

The QTP covers an area of more than 250× 104 km2 in China, with an average altitude
of more than 4200 m covering six regions (Figure 1): Tibet, Qinghai, Gansu, Sichuan,
Yunnan, and Xinjiang [32]. The QTP has an average annual temperature of −6–20 ◦C
and annual precipitation of 50–2000 mm [33]. It is the cradle of the great rivers: the
Yangtze River, Yellow River, and Yarlung Zangbo River and is known as the “Asian Water
Tower” [34]. The QTP has complex terrains, diverse landforms, and a large amount of
frozen soil. The frozen soil area of the QTP is about 115.02 × 104 km2, making the QTP
rank first among all the frozen soil regions in the middle-latitude of the world [35].

2.2. Data Source

The 30 m land use data from the Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences were reclassified (Table 1), pruned, and resampled
to produce land use data sets with a resolution of 1 km for the QTP in 2010 and 2020. The
other data source is shown in Table 2.
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Table 1. Reclassification of land use types for the dataset.

Reclassification
Number

Reclassification
Name Original Number Original Description

1 Cropland 11 Paddy field
12 Dry land

2 Forestland

21 Forestland
22 Shrubland
23 Sparse woodland
24 Other woodlands

3 Grassland
31 High cover grassland
32 Medium cover grassland
33 Low cover grassland

4 Water

41 River and canals
42 Lakes
43 Reservoir pit
44 Permanent glacial snow

5 Built-up land
51 Urban land
52 Rural settlement
53 Other construction land

6 Unused land

61 Sand
62 Gobi
63 Salt alkali soil
64 Wetland
65 Bare ground
66 Bare rock stony ground
67 Other
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Table 2. Data source.

Data Time Resolution Source

DEM 2010 1 km Resource and Environment Science and Data Center
https://www.resc.cn/ (accessed on 31 January 2023)Temperature 2010, 2020 1 km

Precipitation 2010, 2020 1 km
Population density 2010, 2020 1 km
GDP 2010, 2020 1 km

Frozen soil 2010, 2020 1 km National Qinghai Tibet Plateau Scientific Data Center
https://data.tpdc.ac.cn/ (accessed on 31 January 2023)

QTP boundary 2019
Roads 2010 National Geographic Information Resource Directory Service

System https://www.webmap.cn/ (accessed on 31 January 2023)Railway 2010
Rivers 2010

Lakes 2010 A Big Earth Data Platform for Three Poles
http://poles.tpdc.ac.cn/ (accessed on 31 January 2023)

2.3. Methods

This study focused on the simulation of LUCC under future scenarios and assessed
the ecological risk under different scenarios. The framework of this study was as follows:
(1) Optimization of PLUS-model parameters. Continuously adjusting the model-run param-
eters using the two-phase LUCC and driver factors dataset to optimize the accuracy of the
simulated LUCC and to obtain data such as land expansion, development potential, and
optimal-run parameters. (2) Constructing future scenarios parameters. The land demands
under the two scenarios were constructed using Markov chain models, transfer probability
matrices, scenario states, and government planning policies. (3) Ecological risk assessment.
The landscape ecological risk index was constructed to assess ecological risk.

The overall research framework of the study is shown in Figure 2.
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2.3.1. Selection of Driving Factors

In recent years, the increasing intensity of human activities on the QTP combined
with natural conditions, such as an uneven distribution of precipitation and a complex
topography, has led to changes in regional land use types [36]. LUCC is the result of
the interaction between humans and nature [37,38]. Based on existing research [39,40]
combined with the actual situation of the study area, the driving factors of land use
simulation were selected from the aspects of nature and socioeconomic; ArcGIS was used
to make the driving factors dataset (Figure 3). All the driving factors were resampled into
1 km raster, and the number of rows and columns was 1982 and 2549, respectively. The
projection was unified as Asia_Lambert_Conformal_Conic. As there is a large amount of
frozen soil in the QTP, which is different from other regions in terms of driving factors
selection, this study tested the rationality of the selection of frozen soil factors. With the
participation of frozen soil, land use development potential is A. Then, according to the
land use data of 2010 and the land use development potential A, the land use data C was
simulated. Without the participation of frozen soil, land use development potential is B.
Then, according to the land use data of 2010 and the land use development potential B, the
land use data D was simulated. Finally, the actual land use data of 2020 and the simulated
land use data C and D, for 2020, were tested using a Kappa test. When the sampling rate
was 10%, the Kappa coefficient for land use data C was 0.995, which was higher than D.
This indicates that the model simulation accuracy was higher when there was frozen soil in
the driving factors.
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(c) (dem), (d) (frozen soil), (e) (slope); socioeconomic factors: (f) (population density), (g) (GDP), (h)
(distance from rivers), (i) (distance from roads), (j) (distance from railway), (k) (distance from lakes)).

2.3.2. PLUS Model

The full name of the PLUS model is the patch-generating land use simulation model,
which was developed by the Guan’s group in 2021 [11]. The PLUS model, an improvement
of the FLUS model, achieves higher simulation accuracy and better results than other land
use simulation models [41]. The PLUS model mainly consists of two parts: land expansion
analysis strategy (LEAS) and Cellular Automata acronym (CA) based on multiple random
patch seeds (CARS) [11]. In this study, land demands for equal time intervals were first
obtained in the Markov chain module using LUCC from 2010 to 2020. Secondly, we input
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LUCC for 2010, development potential, conversion constrains, transition matrix, LUCC
weights, and land demands and model parameters (Neighborhood Size, Patch generation,
and Expansion coefficient) in the CARS module to simulate the LUCC for 2020. Then,
the accuracy of Kappa was checked against the actual LUCC (10% of the sampling points
were chosen for the Kappa test), the simulation parameters and LUCC weights were
continuously adjusted to obtain the best results. The weights for cropland, forestland,
grassland, water, built-up land, and unused land are shown in Table 3. Finally, we used
the 2020 LUCC as the base year so that the model could be used to predict 2030 LUCC.
The Kappa test is a method to verify the accuracy of model results, which can detect and
analyze simulation results from both quantity and position. It is often used to measure the
accuracy of prediction results [42]. For a sampling rate of 10%, the Kappa coefficient in this
study is as high as 0.995, indicating that the PLUS model had extremely high applicability
for the QTP. The PLUS model can be downloaded at https://github.com/HPSCIL.

Table 3. Weights of different land use type.

Land Use Type Weight

Cropland 0.01
Forestland 0.01
Grassland 0.19

Water 0.42
Built-up land 0.07
Unused land 0.28

2.3.3. Future Scenarios Analysis

In this study, the natural development and ecological conservation scenarios were
combined with the PLUS model to predict multiple scenarios for LUCC on the QTP in
2030. The natural development scenario is one in which the conversion rate of land use
remains unchanged; moreover, the influence of various suitability factors on land use
change remains consistent with before, and land use change occurs mainly due to the
current socioeconomic development status and physical-geographical factors [43]. The
ecological conservation scenario is a comprehensive and sustainable future land use change
scenario. This scenario follows the principle of sustainable development and emphasizes
coordinated development and conservation [44]; it is also an ideal scenario for future land
use change on the QTP. Under the ecological conservation scenario forestland and grassland
are protected, the transfer of forestland to grassland is prohibited, the expansion of unused
land is restricted, and the transfer of water to other land is prohibited. The transition matrix
under different scenarios is shown in Table 4.

Table 4. Land use transition matrix for different future scenarios in PLUS model.

Land Use Natural Development Scenario Ecological Conservation Scenario
Type CL FL GL WA BL UL CL FL GL WA BL UL

CL 1 1 1 1 1 1 1 1 1 0 0 0
FL 1 1 1 1 1 1 0 1 0 0 0 0
GL 1 1 1 1 1 1 0 1 1 1 0 0
WA 1 1 1 1 1 1 0 0 0 1 0 0
BL 0 0 0 0 1 0 0 0 0 0 1 0
UL 1 1 1 1 1 1 1 1 1 1 1 1

CL, FL, GL, WA, BL, and UL represent cropland, forestland, grassland, water, built-up land, and unused land; 0
indicates that transition is not allowed, and 1 indicates that transition is allowed.

2.3.4. Landscape Ecological Risk Assessment

In this study, landscape ecological risk assessment for the QTP was realized by con-
structing the landscape ecological risk index. The landscape ecological risk index (ERIk)
of the QTP consists of the landscape disturbance index (Ei) and landscape vulnerability

https://github.com/HPSCIL
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index (Fi). The landscape disturbance index includes the landscape fragmentation index
(Ci), landscape separation index (Si), and landscape dominance index (Di). This study area
was divided into 10 km × 10 km, comprising a total of approximately 25,000 risk units.

(1) Landscape disturbance index (Ei)

The landscape disturbance index was used to reflect the degree of external disturbance
in the ecosystem represented by different land types on the QTP. The greater the disturbance,
the greater the ecological risk [45,46].

(i) Landscape fragmentation index (Ci)

The landscape fragmentation index represents the process in which patches of each
land cover type change from single continuous to complex discontinuous under natural or
human disturbance. The greater the value, the lower the stability of the ecosystem of the
corresponding land cover type [47]. The formula is:

Ci =
Ni
Ai

(1)

Ni is the number of patches of land use type i; Ai is the area of land use type i.

(ii) Landscape separation index (Si)

The landscape separation index represents the degree of separation of different patch
distributions in a single land cover type. The larger the value, the more geographically
dispersed and complex the distribution of the land cover type is [48]. The formula is:

Si =

√
Ni × A
2Ai

(2)

A is the area of risk assessment unit.

(iii) Landscape dominance index (Di)

The landscape dominance index represents the extent to which the land cover structure
is dominated by a certain type; it also reflects the influence of the land cover type on the
formation and change of the landscape pattern. The larger the landscape dominance index,
the higher the landscape ecological risk. The formula is:

Di = (Qi + Mi)/4 + Li/2 (3)

Qi is the ratio between the number of risk assessment units and the total number of
risk assessment units of land use type; i. Mi is the ratio of the number of patches of land
use type i to the total number of patches in the evaluation unit. Li is the ratio between
the patch area of land use type i and the total area of evaluation unit, namely, the relative
density of land use type i.

The weights of Ci, Si, and Di were, respectively 0.5, 0.3, and 0.2 [49–51], and the
formula for the landscape disturbance index is as follows:

Ei = a× Ci + b× Si + c× Di (4)

(2) Landscape vulnerability index (Fi)

Landscape vulnerability refers to the vulnerability of internal structures of ecosystems
represented by different landscapes; it reflects the resistance capacity of different landscape
types to external disturbances [52]. According to research results of others [53,54], and the
actual situation of the study area, the vulnerability of landscape types in the study area
was divided into six levels, from high to low, as follows: for unused land, water, grassland,
cropland, forestland, and built-up land the values from high to low were 6, 5, 4, 3, 2, 1.
These values were normalized to obtain the Fi values of the landscape vulnerability index
for each land use type: 0.28, 0.24, 0.19, 0.14, 0.10, and 0.05, respectively.
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(3) Landscape ecological risk index (ERIk)

The landscape disturbance index and landscape vulnerability index were used to
calculate the landscape risk index, and the formula is as follows:

ERIk = ∑n
i=1

Ai
A
(Ei ∗ Fi) (5)

Semi-variogram fitting and Kriging interpolation method were used to process the data
for 2010, 2020, and 2030 to obtain a spatial distribution map of landscape ecological risk.

3. Results
3.1. Land Use Spatiotemporal Change

As can be seen from Figure 4, there was no significant change in land use pattern
for the entire QTP in 2010 or 2020, as well as in the natural development and ecological
conservation scenarios of 2030. Cropland mainly existed in the northeastern margin of the
QTP, One River, and Two Rivers Streams areas, forestland mainly existed in the southeast
of the QTP, and grassland existed throughout the QTP. Water mainly existed in the western
and northern part of the QTP. Unused land mainly existed in the western and southern
part of the QTP. However, the land use transition matrix (Table 5) showed that, from 2010
to 2020, the largest areas of unused land and grassland converted to water were 3581 km2

and 1827 km2, respectively, while the largest areas of cropland, grassland, and unused land
converted into built-up land were 223 km2, 349 km2, and 242 km2, respectively. Analysis
from another perspective; a total of 5628 km2 of other land were converted to water. The
areas were 939 km2 and 848 km2 of other land which were converted to built-up land and
unused land, respectively. The main characteristics of land use type transfer from 2010 to
2020 were grassland and unused land converted to water, cropland, grassland, and unused
land converted to built-up land.

Land 2023, 12, x FOR PEER REVIEW 8 of 14 
 

6, 5, 4, 3, 2, 1. These values were normalized to obtain the 𝐹  values of the landscape vul-
nerability index for each land use type: 0.28, 0.24, 0.19, 0.14, 0.10, and 0.05, respectively. 
(3) Landscape ecological risk index (𝐸𝑅𝐼 ) 

The landscape disturbance index and landscape vulnerability index were used to cal-
culate the landscape risk index, and the formula is as follows: 𝐸𝑅𝐼 = ∑ (𝐸 ∗ 𝐹 )  (5)

Semi-variogram fitting and Kriging interpolation method were used to process the 
data for 2010, 2020, and 2030 to obtain a spatial distribution map of landscape ecological 
risk. 

3. Results 
3.1. Land Use Spatiotemporal Change 

As can be seen from Figure 4, there was no significant change in land use pattern for 
the entire QTP in 2010 or 2020, as well as in the natural development and ecological con-
servation scenarios of 2030. Cropland mainly existed in the northeastern margin of the 
QTP, One River, and Two Rivers Streams areas, forestland mainly existed in the southeast 
of the QTP, and grassland existed throughout the QTP. Water mainly existed in the west-
ern and northern part of the QTP. Unused land mainly existed in the western and south-
ern part of the QTP. However, the land use transition matrix (Table 5) showed that, from 
2010 to 2020, the largest areas of unused land and grassland converted to water were 3581 
km2 and 1827 km2, respectively, while the largest areas of cropland, grassland, and unused 
land converted into built-up land were 223 km2, 349 km2, and 242 km2, respectively. Anal-
ysis from another perspective; a total of 5628 km2 of other land were converted to water. 
The areas were 939 km2 and 848 km2 of other land which were converted to built-up land 
and unused land, respectively. The main characteristics of land use type transfer from 
2010 to 2020 were grassland and unused land converted to water, cropland, grassland, 
and unused land converted to built-up land. 

 
Figure 4. Spatial pattern of each land use type in the QTP from 2010 to 2030. Figure 4. Spatial pattern of each land use type in the QTP from 2010 to 2030.



Land 2023, 12, 923 9 of 14

Table 5. Land use transition matrix from 2010 to 2020.

2010
2020

Cropland Forestland Grassland Water Built-Up Land Unused Land

Cropland 22,209 0 3 52 223 1
Forestland 4 315,677 32 76 101 3
Grassland 88 28 1,231,264 1827 349 97

Water 1 49 59 126,681 24 718
Built-up land 5 0 11 92 1612 29
Unused land 25 7 140 3581 242 812,841

From 2010 to 2020, the areas of cropland, forestland, grassland, and unused land on
the QTP decreased by 156 km2, 132 km2, 2144 km2, and 3147 km2, respectively, while
the areas of water and built-up land increased by 4777 km2 and 802 km2, respectively, in
Table 6. In 2020, the areas of different land use types on QTP were grassland, unused land,
forestland, water, cropland, and built-up land in descending order. In 2020, built-up land
accounted for less than 0.1% of the total area, but compared with that in 2010, the built-up
land area had increased by nearly 46%, indicating that human activities on the QTP were
getting stronger. These likely led to an increase in ecological risk on the QTP.

Table 6. Area and proportion of each land use type.

Land Use
Type

2010 2020
2030

Natural Development
Scenario

2030
Ecological Conservation

Scenario

Area
/km2

Proportion
/% Area/km2 Proportion/% Area

/km2 Proportion/% Area
/km2

Proportion
/%

Cropland 22,488 0.89 22,332 0.89 22,180 0.88 22,172 0.88
Forestland 315,893 12.54 315,761 12.54 315,631 12.53 315,761 12.54
Grassland 1,233,653 48.99 1,231,509 48.91 1,229,376 48.82 1,231,669 48.91

Water 127,532 5.06 132,309 5.25 134,724 5.35 136,000 5.40
Built-up land 1749 0.07 2551 0.10 3288 0.13 2570 0.10
Unused land 816,836 32.44 813,689 32.31 812,952 32.28 809,979 32.17

The trends in land use change for the future natural development scenario and the
ecological conservation scenario differ from one another. In the natural development
scenario, the land use change trend for 2020 to 2030 is nearly the same as that for 2010 to
2020. The areas of cropland, forestland, grassland, and unused land decrease, while the
area of other land increases. In the ecological conservation scenario, the areas of grassland,
water, and built-up land gradually increase, while the area of forestland does not change.
Cropland and unused land decrease. This indicates that, in the ecological conservation
scenario, forestland and grassland, as the main ecological land, are effectively protected.
Compared with the natural development scenario, the areas of forestland and grassland
increase by 130 km2 and 2293 km2, respectively, and the area of built-up land decreases by
718 km2.

3.2. Landscape Ecological Risk Spatiotemporal Change

Land use type and its change affected landscape ecological risk in the QTP. The
natural break point method was adopted to divide the landscape ecological risk value
of the QTP into five levels: lower ecological risk (ERI ≤ 0.014), low ecological risk
(0.014 < ERI ≤ 0.024), medium ecological risk (0.024 < ERI ≤ 0.031), high ecological risk
(0.031 < ERI ≤ 0.038), and higher ecological risk (0.038 < ERI).

The higher ecological risk areas of the QTP were mainly distributed in its northern
part and that the land use type was mainly unused land in Figure 5. Lower, low, and
medium ecological risk areas were mainly distributed in the southern part of the QTP, and
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the land use types were mainly forestland and grassland. High risk areas were mainly
distributed in higher risk areas.
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Figure 5. Spatial pattern of each landscape ecological risk level from 2010 to 2030.

From 2010 to 2020, the areas of low, medium, and high ecological risk on the QTP had
an increasing trend, increasing by 505 km2, 12,358 km2, and 9270 km2, respectively; while
the areas of lower and higher risk had a decreasing trend, decreasing by 4043 km2 and
18,089 km2, respectively, in Table 7. This indicated that the overall ecological risk of the
QTP increased during from 2010 to 2020, but the ecological risk in some higher-risk areas
was alleviated. In 2020, the landscape ecological risks on the QTP were mainly medium,
high, and higher ecological risks, accounting for 27.85%, 32.57%, and 19.02% of the total
area, respectively; 14.37% of the low-risk area and 6.19% of the lower risk area. In the
simulation results for 2030 under the two scenarios, the landscape ecological risk area of
the QTP at all levels is still dominated by the area proportion of medium, high, and higher
ecological risk area. The area proportion of low ecological risk area, and the area proportion
of lower ecological risk area is the smallest. Under the natural development scenario, the
five types of ecological risk area account for 27.78%, 32.51%, 19.15%, 14.40%, and 6.15%,
respectively, while under the ecological conservation scenario, the five types of ecological
risk area account for 27.53%, 32.77%, 18.89%, 14.50%, and 6.31%, respectively.
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Table 7. The area and proportion of each landscape ecological risk level.

Risk Level

2010 2020
2030

Natural Development
Scenario

2030
Ecological Conservation

Scenario

Area
/km2

Proportion
/% Area/km2 Proportion/% Area

/km2 Proportion/% Area
/km2

Proportion
/%

Lower 159,902 6.35 155,859 6.19 155,010 6.15 159,054 6.31
Low 361,547 14.35 362,052 14.37 362,831 14.40 365,315 14.50

Medium 689,052 27.36 701,410 27.85 699,742 27.78 693,409 27.53
High 811,201 32.21 820,471 32.57 818,901 32.51 825,302 32.77

Higher 497,090 19.74 479,001 19.02 482,309 19.15 475,712 18.89

Compared with the natural development scenario, under the ecological conserva-
tion scenario, the areas of lower and low ecological risk areas increase by 4044 km2 and
2484 km2, respectively, and the areas of medium and higher ecological risk areas decrease
by 6333 km2 and 6597 km2 in 2030, respectively. Therefore, the implementation of ecological
conservation does indeed reduce the ecological risk of the QTP.

4. Discussion
4.1. Land Use Simulation and Its Results

Regarding the selection of driving factors for land use simulation, different from
Zhou et al. [55], this study not only selected some conventional factors, but also innova-
tively added the driving factor of frozen soil to participate in the calculation of the model
according to the actual situation of the QTP. The reason for this was that there is a large
amount of frozen soil distribution on the QTP. Existing studies show that the degradation
of frozen soil increases the active layer, which increases soil water infiltration, reduces
surface soil water, and leads to vegetation degradation, thus causing a change in land use
type [56,57].

According to the simulation results, in both the ecological conservation scenario and
the natural development scenario, in 2030, the area of cropland will decrease and the area
of water will increase, which is consistent with the research results of Zhou et al. [55]. The
decrease in cropland area is due to the implementation of ecological fallowing policies [58],
while the increase in water area is due to the melting of glaciers and frozen soil on the QTP.
This melting is caused by global warming, increasing surface runoff, and water from lakes
and rivers [59]. The differences between this study and that of Zhou et al. are as follows:
The Kappa coefficient of this study is higher than that of Zhou et al. Moreover, this study
showed the future land use pattern for each land use type, while the study of Zhou et al.
did not.

4.2. Landscape Ecological Risk Results

Overall, the results of our study were highly consistent with the results of Wang et al. [60]
and Wang et al. [61] regarding the current landscape ecological risk of the QTP; however,
differences existed between our study and these two studies with respect to the western
QTP. Our landscape ecological risk of the western QTP is higher than that of the two
studies because of our higher vulnerability value for grassland. Grassland is an important
part of the QTP ecosystem, and grassland degradation has become a major threat to the
QTP’s ecological security [62]. Therefore, this study assigns a higher vulnerability value
to grassland.

4.3. Policy Implications

In the context of policy formation, we propose that in the high landscape ecological
risk areas of the northwestern QTP human activities, especially overgrazing, should be
strictly controlled; nature reserves and national parks should be established to reduce
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the landscape ecological risk. Moreover, protecting frozen soil, in the construction of
infrastructure and in mining, should be a priority.

4.4. Advantages, Limitations and Future Work

Landscape ecological risk assessment of the QTP in this study combined geographical
processes and ecological processes. Using this combination and a PLUS model effectively
revealed the past, present, and future ecological risk changes of the QTP. The potential
application of the research results lies in the construction of ecological reserves.

Of course, our study had some limitations. The QTP is a large region and has a
complex internal ecosystem, which is composed of a number of physical geographical areas
with their own characteristics. However, the results obtained in this study are a whole
result, and the landscape ecological risk of each physical geographical area has not been
evaluated. Therefore, in the future, the landscape ecological risk analysis of the QTP will be
comprehensively analyzed by combining the different natural and social-economic factors
of each physical geographical area.

5. Conclusions

In this study, the PLUS model and landscape ecological risk index were used to analyze
the past, present, and future land use patterns and landscape-ecological risk changes on
the QTP. The results are as follows:

1. Under the natural development scenario, the land use pattern and change trend of
the QTP during 2020–2030 were basically the same as that during 2010–2020. The area
of cropland, forestland, grassland, and unused land was gradually smaller, while the
area of other land use types was constantly increasing. The areas of forest land did not
change, the area of cropland and unused land decreased, and the area of forestland
and grassland increased by 130 km2 and 2293 km2, respectively, compared with the
natural scenario.

2. Under the natural development scenario, the overall ecological risk for the QTP in-
creased from 2010 to 2030.This indicates that the proportion of low ecological risk area
decreased, while the proportions of medium and high ecological risk area increased.
In the ecological conservation scenario, compared with the natural development
scenario, the area of lower, low, and high ecological risk increased by 4044 km2,
2484 km2, and 6401 km2 respectively, while the area of medium and high ecological
risk decreased by 6333 km2 and 6597 km2 respectively.
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