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Abstract: Land use change has significant impacts on the regional and global environment; thus,
in-depth research on the associated ecological risks is necessary for promoting ecological restoration
and sustainable development. Xinjiang, China, is characterized by a fragile ecological environment,
and this study aimed to predict the land use change in the region in 2030 under different scenarios,
including natural development, ecological conservation, and urban development, by using the PLUS
model based on land use data from 2000, 2010, and 2020. Based on the landscape structure of regional
ecosystems, we developed a comprehensive ecological risk assessment framework by utilizing a
combination of landscape disturbance index, vulnerability index, and loss index. This framework
allowed us to evaluate the spatiotemporal patterns and variations of landscape ecological risks under
different scenarios in 2030. The study results indicate the following: (1) During the period from 2000
to 2020, the primary landscape type in Xinjiang was unused land. However, significant changes were
observed in the area of cultivated land, mainly due to the conversion of grassland and construction
land. The expansion of construction land during the urbanization process resulted in a decline in
ecological landscapes, such as grassland, thereby weakening the ecosystem’s stability. (2) Under
different simulation scenarios, the urban development scenario primarily led to the conversion of
unused land into construction land, which is beneficial for economic development. On the other
hand, the ecological conservation scenario resulted in a modest increase in construction land and
a transformation of unused land into forest and grassland, which aligns with the principles of
sustainable development. (3) Different scenarios in 2030 result in varying degrees of changes in each
landscape type in Xinjiang, with the spatial distribution characteristics of landscape ecological risks
remaining similar to those observed in 2020. Notably, under the urban development scenario, the area
of lowest and medium risk areas decreases significantly while the area of higher and highest risk areas
increases substantially. Conversely, under the ecological conservation scenario, the area of the lowest
risk areas experiences a more significant increase. (4) Overall, the spatial differences in the ecological
risk of Xinjiang’s landscape are significant, with HH and LL clustering types predominating and
presenting a polarization pattern. The distribution pattern is low in the north and high in the central
and southern parts of the study area.

Keywords: landscape ecological risk; land use change; PLUS model; scenario simulation; Xinjiang

1. Introduction

Land use/land cover change (LUCC) has a significant impact on regional ecological
environmental changes and even global environmental changes [1]. With the advancement
of technology and the accelerating process of urbanization, the contradiction between
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land supply and demand is becoming increasingly prominent. Irrational land use can
have negative impacts on the sustainable development of ecological, social, and economic
systems, leading to a range of problems such as low land resource utilization efficiency, soil
erosion, land degradation, and reduced biodiversity. This greatly increases the ecological
risks and threatens the stability of ecosystems [2–5]. With the aggravation of ecological
environmental problems, LUCC and ecological environment protection have become one of
the world’s hot issues. Land use change has a significant impact on the function, structure,
and quality of ecosystems [6]. Therefore, it is urgently necessary to conduct in-depth
research on the ecological risks caused by land use change, promote ecological restoration
and sustainable development, and provide strong scientific evidence for the study of the
harmonious relationship between human behavior and the ecological environment in the
future [7].

Risk assessment began in 1980. Initially, scholars conducted risk research on the toxic-
ity and human health effects of chemical pollutants. It subsequently expanded to include
the evaluation of the management of various chemical pollutants and the potential for
environmental pollution incidents. Ultimately, the scope of risk assessment broadened to
encompass the evaluation of ecological risks resulting from human activities. In 1992, the
Environmental Protection Agency (EPA) defined ecological risk assessment as the process
of evaluating the potential adverse ecological effects resulting from one or more external
factors [8]. This framework was subsequently expanded and modified to form the basic
guidelines for current risk assessment [9]. Since the 1990s, the increasing prominence of
ecological and environmental issues has shifted attention from human health assessment
to ecological risk assessment, with the risk receptors expanding from individuals to popu-
lations, communities, and entire ecosystems [2,10]. During the 1990s and early 21st century,
the ecological risk assessment system underwent a continuous process of improvement and
maturation. As a result, the field of ecological risk assessment gradually expanded, and it
became increasingly apparent that regional ecological risk assessment must be integrated
with considerations of the economy, society, and culture to fully realize its potential in
informing management decisions.

Land use change can have direct or indirect impacts on regional natural ecological
systems such as soil, atmosphere, and water environment, leading to various ecological
risks [11,12]. With the rapid development of “3S” (GPS, RS, GIS) technology, ecological risk
assessment based on land use change has been widely applied [13]. Currently, simulating
land use change scenarios and predicting the distribution of ecological risks under different
situations are beneficial for establishing an ecological risk warning system and accurately
and effectively controlling ecological risks. It has become one of the research hotspots
for ecological risks of land use change. For example, Zhou et al. used the Markov model
and landscape indicators to analyze and construct an ecological risk assessment model,
revealing the impact of land use change on ecological risk in the typical resource-based
city of Huaibei, China [14]. In order to make the simulation results more objective and
comprehensive, some scholars used the gray Markov model to construct the CLUE-S model
to simulate three spatial patterns of land types in the eastern Tibetan Plateau and explore
three different scenarios under ecological risk status [15]. Xu et al. proposed a Markov-
FLUS composite model for land use simulation to predict land use change under natural
growth and ecological conservation scenarios [16].

There are two main methods for assessing ecological risks. The first is the ecological
risk assessment system based on the “pressure-receptor-response” model and failure
mechanisms [17]. This ecological risk assessment system consists of risk source intensity,
receptor exposure, and risk effects, and the assessment method is the Relative Risk Model
(RRM). This assessment system focuses on pressure sources and habitats of concern in the
study area. For example, Guo et al. used RRM to evaluate regional land ecological risks in
Daye, a mining city in China [18]. Based on the different ecological risk characteristics of
sub-regions, corresponding focuses were proposed for the evaluation and management
process. However, this model is more suitable for large-scale regions that need to focus
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on multiple pressure sources, and is commonly used to assess ecological risks of specific
pressures or disturbances, with certain limitations. The second method of ecological risk
assessment is based on deviation from the optimal model, which considers the entire system
as a receptor. This method is commonly used to evaluate ecological risks in the entire
region based on land use changes. For example, Liang et al. proposed a new ecological
risk assessment framework for land use change based on the classic framework of disaster
risk assessment [19]. They simulated and predicted the possibilities of future land use
changes and the resulting hazards in ecologically fragile areas of the Qinghai–Tibet Plateau.
When conducting comparative analyses of different time series in the same study area, it
is difficult to obtain RRM evaluation data and completely unified evaluation standards.
Therefore, based on the support of landscape ecology theory, the landscape loss model
based on land use change can both quantitatively describe landscape structure [20,21]
and explain the evolution mechanism of landscape ecological risks from the perspective
of spatial pattern changes. This model has become an important tool for analyzing and
revealing the spatiotemporal characteristics of landscape ecological risks.

Currently, existing models for assessing ecological risk have some limitations, such as
accuracy defects and weak performance in simulating the patch evolution of multiple land
use types, especially for natural land use types. The PLUS model provides a support for
high precision study of land use patch evolution. The PLUS model is a new and improved
CA (Cellular Automata) model constructed on the basis of the FLUS model. It couples a
new land use expansion analysis strategy and a CA model based on multi-class random
patch seeds. On the one hand, it can better excavate the causal factors of various types
of land use changes. On the other hand, it can also better simulate the multi-class land
use patch-level changes. This study selects the Xinjiang Uyghur Autonomous Region of
China as the study area and uses the PLUS model to conduct multi-scenario simulations of
future land use changes in Xinjiang. Xinjiang has a diverse topography, landscape types,
and faces issues with natural ecology and available land resources due to the arid climate
and water scarcity. With increasing population and high-intensity oasis development,
the fragile ecological environment in Xinjiang has been severely disturbed and damaged
to varying degrees [22,23]. Under the influence of human activities, how will land use
and landscape ecological risks change in Xinjiang? Furthermore, what changes will occur
in landscape ecological risks under the influences of urban development and ecological
conservation measures? These are critical issues that require in-depth discussion. Therefore,
the objectives of this research paper are as follows: (1) Explore the spatial and temporal
patterns of land use evolution in Xinjiang from 2000 to 2020. (2) Use the PLUS model to
predict land use changes in Xinjiang in 2030 under natural development scenarios, urban
development scenarios, and ecological conservation scenarios. (3) Assess the ecological
risk of the landscape under different scenarios in 2030 and analyze its spatial and temporal
patterns and change characteristics. This research can provide reference for the theory and
method of ecological risk assessment, and provide scientific basis for land use planning
and decision-making in Xinjiang, which can help to achieve sustainable development of
the ecological environment in Xinjiang.

2. Study Area and Data Sources
2.1. Overview of Study Area

Xinjiang Uygur Autonomous Region, abbreviated as Xinjiang, is located between
longitude 73◦40′–96◦18′ E and latitude 34◦25′–48◦10′ N (Figure 1), in the hinterland of
Northwest China and the Eurasian continent [24]. It is the largest provincial-level admin-
istrative region in China in terms of land area [25], with a total land border of more than
5600 km, bordering eight countries, and a total area of approximately 1.6649 million km2.
The terrain is characterized by a combination of mountains and basins [26], including
the Altai Mountains, Tianshan Mountains, Kunlun Mountains, Junggar Basin, and Tarim
Basin, forming a topographical and ecological landscape pattern of “three mountains
and two basins” and “mountains–oasis–desert” [27]. Xinjiang is located in the arid re-
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gion of western China and has a typical temperate continental climate, with an average
annual temperature of 9.72 ◦C and average annual precipitation of 135.31 mm [28]. In
addition, abundant sunshine is a characteristic of Xinjiang’s climate, with a total annual
sunshine duration of 2550–3500 h and a large amount of solar radiation energy received on
the ground.
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2.2. Data Sources
2.2.1. Land Use Data

The land use remote sensing monitoring data of Xinjiang used in this study include
data from three periods: 2000, 2010, and 2020, with a spatial resolution of 30 m. The
data were sourced from the Resource and Environmental Science and Data Center of the
Chinese Academy of Sciences (http://www.resdc.cn (accessed on 10 January 2023)) [29].
This dataset is based on Landsat remote sensing images as the main source of information
and is constructed through manual visual interpretation. It has high accuracy, reaching
above 90% [30]. The dataset categorizes land use types into six distinct categories based
on land resources and their utilization attributes. These categories include cultivated land,
forest land, grassland, water area, construction land, and unused land. The unused land
category includes land that has not been utilized, including land that is difficult to use,
such as sandy land, Gobi, bare land, and bare rocky land.

http://www.resdc.cn
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2.2.2. Natural Geography Data

The physical geography data include digital elevation model (DEM), slope, aspect,
annual precipitation (PRE), annual average temperature (TEM), distance to rivers, and
boundary data of Chinese nature reserves. The slope and aspect data are extracted from the
DEM data. The data for annual precipitation, annual average temperature, and boundary
data of Chinese nature reserves are obtained from the Chinese Meteorological Element
Annual Spatial Interpolation Data Set provided by the Resource and Environmental Science
and Data Center of the Chinese Academy of Sciences (http://www.resdc.cn) [29].

2.2.3. Socio-Economic Data

The socio-economic data include distance to town government, distance to hotels,
distance to highways, distance to national highways, distance to provincial highways, dis-
tance to railways, distance to county roads, distance to primary roads, population density,
and Gross Domestic Product (GDP), all with a spatial resolution of 1 km. The population
density and GDP data are obtained from the Resource and Environmental Science and Data
Center of the Chinese Academy of Sciences (http://www.resdc.cn) [29]. The transporta-
tion network data are obtained from Open Street Map (https://www.openstreetmap.org
(accessed on 10 January 2023)) [31], and the raster data are obtained through Euclidean
distance analysis.

3. Research Methods

The landscape ecological risk assessment framework in Xinjiang consists of three main
steps (Figure 2): data collection and pre-processing, simulation of land use change scenarios,
and ecological risk assessment. The first step is to select the driving factors that affect land
use change. Driving factors are selected from two aspects: physical geography (including
7 factors such as DEM, slope, and aspect) and socio-economic (including 10 factors such as
population density and GDP). The second step is to simulate the land use change situation
in 2020 using the PLUS model based on the selected driving factors. The simulation results
are then compared with the actual situation in 2020 to test their accuracy. If the accuracy
meets the requirements, different development scenarios (natural development scenario,
urban development scenario, and ecological conservation scenario) are set, and the land use
change situation in Xinjiang in 2030 under different development scenarios is simulated.
The third step is to assess the landscape ecological risk in Xinjiang based on the land use
change at different stages, and explore its spatial and temporal characteristics. The spatial
autocorrelation of the ecological risk index is analyzed using Moran’s I index and local
spatial autocorrelation analysis methods.

3.1. Land Use Transfer Matrix

The land use transfer matrix is a significant method to investigate the dynamic changes
in land use during a specific time period. It represents the dynamic characteristics of the
transfer structure and direction between land use types in the study area at the beginning
and end of the study. The transfer matrix is a clear reflection of the sources, destinations,
transfer areas, and incoming areas of each land use type transformation, and can provide
important insights into the dynamic characteristics of land use change in a study area. It is
expressed as follows:

A =
(

Aij
)

n×n =

A11 · · · A1n
...

. . .
...

An1 · · · Ann

 (1)

Here, a represents the area of each land use type, n represents the number of land
use types, and i and j represent the land use types at the beginning and end of the study
period, respectively. Aij represents the area of land type i transferred to land type j in the
end of the study period. Based on the land use data from the two periods, the land use

http://www.resdc.cn
http://www.resdc.cn
https://www.openstreetmap.org
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transfer matrix can be calculated using spatial overlay analysis in ArcGIS software, and the
dynamic evolution process of different land use types can be analyzed.
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3.2. Simulation of Land Use Change
3.2.1. Construction Method of PLUS Model

The PLUS model is a cellular automaton (CA) model that operates on raster data
and is suitable for simulating land use and land cover change (LUCC) at a patch scale.
The software installation package and code can be downloaded for free from the website
(https://github.com/HPSCIL/Patch-generating_Land_Use_Simulation_Model (accessed
on 10 January 2023)). In this study, the PLUS model was used for land use scenario
simulation. The model overlays land use data from two different periods, extracts the
changed data, randomly selects sample points, uses the random forest algorithm to train
the data for each land use type, and obtains the conversion rules for the expansion patterns
of different land use types. Secondly, the model utilizes a multi-type random patch seed
mechanism based on threshold lowering to simulate the evolution of multiple land use
types. Lastly, the optimal land use structure under different scenarios is determined using
multi-objective optimization [32].

https://github.com/HPSCIL/Patch-generating_Land_Use_Simulation_Model
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3.2.2. Model Parameter Setting

(1) Cost Matrix and Setting of Expansion Constraints

The cost matrix represents the conversion rules between different land use types and
reflects the potential for conversion between them. When a certain land use type cannot be
converted to other land use types, the corresponding value in the matrix is 0; when it is
allowed to be converted, the corresponding value is 1. Whether different land use types
can be converted into each other cannot be directly determined, and the model cost matrix
parameters under different scenarios need to be set according to their constraints. In this
study, the ecological conservation areas in Xinjiang were set as restrictive areas to limit the
conversion of land use types within these areas.

(2) Contextual Factors

Contextual factors are weights assigned to each land use type, ranging from 0 to 1. A
larger weight indicates that the land use type is more difficult to convert into other land use
types, and has a stronger expansion capacity. Conversely, a smaller weight indicates that
it is easier to convert into other land use types. Through analyzing the actual situation of
land use in the study area and combining with the land use transfer matrix, the contextual
weights were obtained through debugging and validation in the PLUS software, with high
simulation accuracy (Table 1).

Table 1. Setting of Contextual Factor Weights.

Land Use
Type

Cultivated
Land Forest Grassland Water Construction

Land
Unused

Land

Domain
weights 0.275 0.046 0.339 0.067 0.069 0.202

(3) Accuracy Verification

The Kappa coefficient combines map accuracy and user accuracy to assess the con-
sistency between the predicted results and the monitoring results, and is widely used
to evaluate the overall accuracy of simulated images [33]. The calculation formula is
as follows:

Kappa =
Pa − Pb
1− Pb

(2)

In the formula, Pa represents the proportion of correctly simulated cells, Pb represents
the expected proportion of correctly simulated cells, and 1 represents the proportion of
cells that would be correctly classified by chance. The Kappa coefficient ranges from 0 to
1, with higher values indicating higher simulation accuracy. When the Kappa coefficient
is greater than 0.75, it indicates a high level of consistency between the simulated and
actual images, and a good simulation effect [34]. The accuracy of the simulation was tested
by comparing the simulated data for 2020 with the actual data for 2020, and the Kappa
coefficient was found to be 0.93, indicating a high level of simulation accuracy that meets
the overall requirements for subsequent landscape ecological research.

3.2.3. Scenarios for Land Use Simulation

Different regions have different development needs. Based on the characteristics of
land use change in Xinjiang and the guidance of urban development policies, this study
sets three scenarios: natural development, urban development, and ecological conservation,
to predict the land use change in Xinjiang by 2030.

Scenario One: Natural Development. This scenario is based on the land use change
pattern from 2000 to 2020, following the current urbanization development mode without
setting restrictions on the conversion among different land use types, and without govern-
ment or market interventions. This scenario serves as the foundation for other scenarios.
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Scenario Two: Urban Development. With the promotion of major project projects such
as the construction of the core area of the Silk Road Economic Belt, Xinjiang is facing an
important strategic opportunity period for high-quality economic development. Based on
this, with the background of town development and in order to meet the needs of urban
development, we set the scenario as follows: a 20% increase in the conversion probability
from cultivated land, forest land, grassland, and unused land to construction land, and a
30% decrease in the conversion probability from construction land to other land use types
except cultivated land.

Scenario Three: Ecological Conservation. The ecological protection scenario is to add
ecological security protection constraints to the natural development scenario, aiming to
protect the ecological environment and control the arbitrary transformation of the existing
natural ecological land. Xinjiang is the ecological barrier of western China. Based on
the protection of ecological environment, the expansion of construction land should be
restricted, and the area of cultivated land, forest land, grassland and water area should be
increased, while the unused land should be reasonably developed. We set the scenario as
follows: the conversion probability from cultivated land and forest land to construction
land is reduced by 30%, and the conversion probability from grassland and water area to
construction land is reduced by 20%. The conversion probability from construction land
to forest land is increased by 10%. The conversion probability from unused land to forest
land, grassland, and water area is increased by 10%. The natural protected areas in the
region are used as a constraint to limit their arbitrary conversion.

3.3. Landscape Ecological Risk Assessment
3.3.1. Division of Ecological Risk Assessment Units

In order to spatialize the ecological risk index, considering the scope of the study
area, this study divided the study area into 5 km × 5 km ecological risk assessment units,
totaling 68,784 units. The ecological risk index of each landscape type in each risk unit
was calculated, and this was used as the ecological risk level of the center point of the risk
unit [35].

3.3.2. Landscape Ecological Risk Index

To quantify the ecological risk in the study area, this research selected the landscape
disturbance index, fragility index, and loss index to construct a comprehensive ecological
risk index. The size of ecological risk depends on the strength of external disturbances on
regional ecosystems and the resistance of internal factors. Different landscape types play
distinct roles in maintaining biodiversity and facilitating natural evolution of the landscape
structure, and exhibit varying degrees of resistance to external disturbances [2]. This study
used the landscape structure as a starting point to analyze the size and changes in ecological
risk in the watershed by calculating the ecological risk index for each landscape type in the
ecological risk assessment units.

(1) Landscape Disturbance Index

The landscape disturbance index is used to reflect the degree of external disturbance
to the ecosystem represented by different landscapes, with higher levels of regional distur-
bance indicating greater ecological risk. Based on landscape pattern analysis, the landscape
disturbance index E is constructed by adding various indices to reflect the degree of distur-
bance to the ecosystem represented by different landscapes [36], and its calculation formula
is as follows:

Ei = aCi + bNi + cDi (3)

The coefficients a, b, and c represent the weights of C, N, and D, respectively, and
a + b + c = 1. According to relevant literature, we assigned the values of 0.5, 0.3, and 0.2
to a, b, and c, respectively. C represents the landscape fragmentation index, which reflects
changes in landscape structure, function, and ecological processes [37]. N represents the
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landscape isolation index [2], and D represents the landscape dominance index [36]. The
calculation formulas are as follows:

Ci =
ni
Ai

(4)

Ni =
A

2Ai

√
ni
A

(5)

Di =
Qi + Mi

4
+

Li
2

(6)

The formula shows that ni is the number of patches of landscape type i, Ai is the total
area of landscape type i, A is the total landscape area. Qi is the number of sample units in
which patch i appears divided by the total number of sample units, Mi is the number of
patch i divided by the total number of patches, and Li is the area of patch i divided by the
total area of sample units. The Fragstats software can be used to calculate the patch area
and number of each land use type for the corresponding year.

(2) Landscape Fragility Index

The landscape fragility index reflects the vulnerability of the internal structure of
different landscape types, and can reflect the resistance of different landscape types to
external disturbances. The smaller the ability of the landscape type to resist external
disturbances, the greater the fragility and the higher the ecological risk [38]. In view of
the actual situation of the study area, the fragility of landscape types in the study area
is divided into six levels, from high to low: unused land, water bodies, cultivated land,
grassland, forest land, and construction land. After normalization, the fragility index F of
each landscape type is obtained.

(3) Landscape Loss Degree Index

The landscape loss index R is used to reflect the degree of loss of the natural attributes
of the ecosystem represented by different landscape types when subjected to natural and
human disturbances [38]. It is calculated by adding different indices and is represented
as follows:

Ri = Ei × Fi (7)

(4) Landscape Ecological Risk Index

The landscape ecological risk index (ERI) reflects the overall ecological risk level of
each risk unit [2], and its calculation formula is as follows:

ERIi =
N

∑
i=1

Aki
Ak

Ri (8)

The ecological risk index of each risk unit is represented by ERIi, Aki represents the
area of the ith landscape type in the kth risk unit, Ak represents the area of the kth risk unit,
and Ri represents the landscape loss index of the ith landscape type.

3.4. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is a method used to represent the spatial distribution
of a variable (ERI in our study) as a function of the spatial correlation between neighboring
reference units. In our study, we used the GeoDa software to conduct global and local
spatial autocorrelation analysis on the spatial distribution of landscape ecological risk
in Xinjiang, which can reveal the clustering, dispersion, and randomness of landscape
ecological risk in space [39]. The global spatial autocorrelation is represented by the Moran
scatter plot and is calculated using the following formula [40]:

I =
∑n

i=1 ∑n
j=1 wij(xi − x)

(
xj − x

)
S2 ∑n

i=1 ∑n
j=1 wij

(9)
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S2 =
1
n ∑n

i=1(xi − x)2 (10)

x =
1
n ∑n

i=1 xi (11)

where I is the global spatial autocorrelation Moran’s index, n is the total number of grid
cells, xi (xj) represents the measure value of grid cell i (j), (xi − x) represents the deviation of
the measure value on the ith grid cell from the mean value, wij represents the standardized
spatial weight matrix, and S2 represents the variance.

The local spatial autocorrelation (LISA) is used to calculate the degree of correlation
between each spatial unit and its neighboring units for a certain attribute, which can
detect spatial hotspots caused by spatial correlations and identify spatial differences [41].
The LISA distribution map is used to visualize the local spatial autocorrelation, and the
calculation is shown in the following formula [42]:

Ii =
n(xi − x)∑n

j 6=i wij(xi − x)

∑n
i=1(xi − x)2 (12)

Ii represents the local Moran’s index, and the other variables have the same meaning
as in Formula (9). LISA identifies spatial clusters of landscape ecological security. In
the LISA distribution map, H indicates that the data attribute value is higher than the
mean, and L indicates that the data attribute value is lower than the mean. According
to the clustering results, four cluster patterns can be divided: H-H clustering represents
high-value areas surrounded by high-value neighbors, L-H clustering represents low-
value areas surrounded by high-value neighbors, L-L clustering represents low-value
areas surrounded by low-value neighbors, and H-L clustering represents high-value areas
surrounded by low-value neighbors [43]. H-H clustering and L-L clustering indicate that
the differences between the area and its surrounding areas are small, that is, high- or
low-value-concentrated distribution areas, while LH clustering and HL clustering indicate
that there are differences in variable values between the area and its surrounding areas [44].

4. Results
4.1. Spatial and Temporal Evolution of Land Use

Based on the land use status of Xinjiang in 2000, 2010, and 2020 (Figure 3), the area
of each land use type in Xinjiang was calculated using ArcGIS software and presented
in Table 2. In general, the land use types in Xinjiang include cultivated land, forest land,
grassland, water area, construction land, and unused land. Over the past 20 years of the
study period, the proportion of unused land in the total land area was the largest, making it
the most significant land use type in Xinjiang. This is due to Xinjiang’s unique geographical
location, surrounded by high mountains and with basins and desert areas, which are far
away from the ocean and have low precipitation, resulting in a high proportion of unused
land in Xinjiang.

Table 2. Land use situation in Xinjiang in 2000, 2010, and 2020.

Land Use Types
2000 2010 2020

Area/km2 Percentage/% Area/km2 Percentage/% Area/km2 Percentage/%

Cultivated land 61,992.84 3.66% 84,126.24 4.97% 93,946.60 5.55%
Forest land 39,443.44 2.33% 29,251.12 1.73% 28,484.08 1.68%
Grassland 496,356.80 29.30% 505,696.76 29.85% 502,376.20 29.65%
Water area 54,767.44 3.23% 35,273.72 2.08% 36,464.56 2.15%

Construction land 4536.60 0.27% 8298.80 0.49% 9353.80 0.55%
Unused land 1,037,012.92 61.21% 1,031,601.56 60.89% 1,023,622.96 60.42%
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In 2020, the land use types in the study area ranked in descending order by proportion
of area are as follows: unused land, grassland, cultivated land, water area, forest land, and
construction land (Table 2). We calculated the land use area transfer matrix in Xinjiang from
2000 to 2020 (Table 3), which indicates that cultivated land, grassland, and construction
land have increased in area during the study period, while forest land, water area, and
unused land have decreased overall. Cultivated land and construction land have shown a
continuous increase, with an increase of 31,953.76 km2 and 4817.20 km2, respectively. This
increase was facilitated by the implementation of national land policies that encouraged
sustainable development practices. The increase in construction land is mainly due to the
conversion of cultivated land, grassland, and unused land, caused by the expansion of
urban land with economic and social development. Forest land and unused land have
shown a continuous decrease, decreasing by 10,959.36 km2 and 13,389.96 km2, respectively,
with forest land mainly being converted to grassland. Grassland is the second-largest land
use type in Xinjiang, with an overall increase of 6019.40 km2, showing an increasing trend
at first and then decreasing. Water areas have shown a decreasing trend first and then
increasing, with an overall decrease of 18,302.88 km2, which may be related to climate
change causing changes in ice, glaciers, and the equilibrium line.

Table 3. Land use area transition matrix in Xinjiang from 2000 to 2020.

2000
Land Use Types

2020

Cultivated
Land Forest Land Grassland Water Area Construction

Land Unused Land

Cultivated land 52,791.40 1322.08 3991.12 372.88 2816.00 697.96
Forest land 3375.28 14,459.48 18,314.28 498.32 190.68 2602.44
Grassland 24,507.24 10,542.72 340,964.40 4579.84 1605.52 114,142.16
Water area 690.16 340.36 8937.64 23,860.44 108.84 20,819.48

Construction land 1531.76 97.32 255.88 20.24 2388.88 242.52
Unused land 11,049.44 1720.44 129,853.96 7121.48 2243.88 885,002.00

Note: The unit of measurement for the data in the table is km2.
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From the perspective of spatial distribution of land use (Figure 3), the areas with
the most frequent changes in land use in Xinjiang are mainly concentrated in the “three
mountains” and oasis regions. Based on the spatial distribution of land use change in
Xinjiang, there is a frequent conversion between grassland and unused land, with unused
land being converted to grassland mainly in mountainous areas and grassland being
converted to unused land mainly in oasis regions. Under the influence of global climate
change, glaciers in the three major mountain ranges of Xinjiang have retreated to varying
degrees. The melting of glaciers has improved the climatic conditions in mountainous
areas, making it easy for unused land in mountainous areas to be converted into grassland,
especially in areas previously covered by glacier snow. Since 2000, the climate in Xinjiang
has undergone a significant shift from a “warm and humid” to a “warm and dry” condition,
resulting in an increased susceptibility of the already unstable grasslands in oasis regions
to conversion into unused land. The area of land converted to construction land is the
smallest, with only 2147.72 km2 (0.13%). Water bodies are mainly converted to grassland
and unused land, mainly in the Tian Shan and Kunlun Mountains regions.

4.2. Simulation of Land Use Changes under Different Scenarios

The PLUS model was utilized to predict the 2020 land use based on the 2010 land use
and relevant driving factors. Subsequently, the predicted data were validated using actual
data, resulting in a high accuracy of 0.93 kappa coefficient and a good simulation effect
of the PLUS model. Following this, the 2030 land use was predicted and simulated using
the 2020 land use data and related influencing factors under different scenarios, including
natural development, urban development, and ecological conservation. The simulation
results are presented in Figure 4.
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4.2.1. Natural Development Scenario

Under the natural development scenario, it is predicted that by 2030, the area of
cultivated land, water areas, and construction land in Xinjiang will be 103,348.72 km2,
37,576.76 km2, and 3265.55 km2, respectively. From 2020 to 2030, there will be a positive
change of 9402.12 km2, 1112.20 km2, and 882.84 km2, respectively.

The areas of forest land, grassland, and unused land will be 27,801.00 km2,
499,268.76 km2, and 1,016,016.32 km2, respectively, showing a decreasing trend, with
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a reduction of 683.08 km2, 3107.44 km2, and 7606.64 km2, respectively. The main types of
land transformation under this scenario are cultivated land, grassland, water areas, and
unused land. As this scenario is not constrained by other policy factors, its conversion
rate is expected to remain roughly consistent with that of the 2010−2020 period, with
an increase of 10.01% and 9.44% in the areas of cultivated land and construction land,
respectively, and a decrease of 2.40% in the area of forest land. The expansion of cultivated
land and construction land is significant, while forest land decreases slightly.

4.2.2. Urban Development Scenario

Compared to 2020, in the urban development scenario, the area of construction land
in 2030 has increased to 11,537.32 km2, while the area of unused land has decreased by
8446.28 km2 to 1,015,176.68 km2. Compared to the natural development scenario, the urban
development scenario is characterized by the conversion of unused land to construction
land, with a significant increase in the area of construction land at an annual growth rate of
23.34%. The decrease in the area of forest land and grassland is roughly the same, with a
decrease of 692.44 km2 and 3315.92 km2, respectively. Although the urban development
scenario leads to economic growth, it does not sufficiently protect ecologically sensitive
areas such as forests and grasslands, which are essential for maintaining ecological balance
and biodiversity. Thus, it is not in line with the principles of sustainable development.

4.2.3. Ecological Conservation Scenario

Under the ecological conservation scenario, the area of cultivated land and forest in
Xinjiang in 2030 will be 1940.96 and 3294.04 km2 respectively, and both will have different
degrees of increase from 2020 to 2030. The area of grassland will increase significantly to
504,464.48 km2, while the area of unused land will decrease significantly by 8954.16 km2.
The area of water and construction land will increase to 37,777.68 km2 and 9671.56 km2

respectively, and to some extent, construction land will meet the needs of economic and
social development. The ecological conservation scenario mainly shows the conversion of
unused land to forest and grassland. The increase in forest and grassland area is 2.07% and
11.56%, respectively. The scenario falls between the natural development scenario and the
urban development scenario in terms of land use change and is consistent with the concept
of sustainable development, promoting the co-development of ecological conservation and
socio-economic development.

4.3. Spatial and Temporal Variation of Ecological Risk in the Landscape

We used the PLUS model to simulate the land use change in Xinjiang in 2030 un-
der three different scenarios: natural development, urban development, and ecological
conservation. In order to further explore the landscape ecological risks under different
scenarios, we used a landscape ecological risk assessment model to calculate the landscape
pattern index values of the land use types in 2030 under the three simulation scenarios.
To analyze the spatio-temporal characteristics of landscape ecological risk in Xinjiang in
2030, we utilized the Kriging interpolation method in ArcGIS software to obtain the spatial
distribution of landscape ecological risk under different scenarios. According to the range
of ERI in each ecological risk small zone within the region, we used the natural break
method provided by ArcGIS to divide the landscape ecological risk into five levels: lowest,
lower, medium, higher, and highest. The ecological risk levels map of Xinjiang under
different scenarios was obtained (Figure 5).

The spatial distribution of ERI in Xinjiang is quite apparent, showing a spatial pattern
that matches the terrain of Xinjiang’s “three mountains and two basins”. The areas with the
lowest and lower ecological risk are mainly distributed in the “three mountains” and the Ili
region, where vegetation is lush and regional water resources and biodiversity are relatively
abundant. The areas with medium and high ecological risk are primarily concentrated
in the oasis regions of Xinjiang, where vegetation is sparse and human activities have a
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significant impact. The highest risk areas are located in the basins, which are primarily
desert areas with low vegetation coverage and a fragile ecological environment.
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From a spatial pattern evolution perspective, the distribution of ERI grades did not
change significantly, but there were some changes in the area of each risk zone. To provide
insights into these changes, we calculated the areas of different ERI levels in 2020 and
under different scenarios in 2030 (Table 4). Under the natural development scenario, the
area of the highest risk zones increased by 83.48 km2. The area of the lower and medium
risk zones decreased, with reductions of 1.92% and 5.68%, respectively, decreasing from
325,335.56 km2 and 471,445.08 km2 in 2020 to 288,838.28 km2 and 363,708.92 km2 in 2030.
Compared with the other two scenarios, the urban development scenario has a larger
reduction in the area of the lowest and medium risk zones and a larger increase in the area
of the higher and highest risk zones. This is due to the increased probability of transfer of
ecological land such as cropland and forest land into construction land under this scenario,
where construction land is used as a restricted conversion zone. This leads to further
encroachment of construction land into surrounding ecological land such as cropland,
forest land, and unused land. Under the ecological conservation scenario, compared with
the other scenarios, the area of the lowest risk zones increased by 10,815.40 km2; the area of
the lower risk zones decreased by 33,962.40 km2. From the perspective of land use type
conversion in the lowest risk areas, there is a notable shift from unused land to forest and
grassland, resulting in a comparatively larger area of the lowest risk areas as compared
to the natural development and urban development scenarios. Examining the land use
type conversion in the lowest risk areas, there is a discernible conversion from unused
land to forest and grassland, resulting in a relatively larger area of the lowest risk areas as
compared to the natural development and urban development scenarios.

4.4. Spatial Autocorrelation Analysis of Landscape Ecological Risk

To clarify the spatial distribution characteristics of landscape ecological risk in Xinjiang
in 2020 and 2030, this study characterized the distribution using Moran’s I and LISA cluster
maps. The results showed that in 2020, the Moran’s I value was 0.853, indicating a high
degree of spatial clustering and strong positive correlation in the spatial distribution of
landscape ecological risk in Xinjiang (Figure 6a). Under the three simulated scenarios of
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natural development, urban development, and ecological conservation, the Moran’s I value
in 2030 was 0.861, 0.860, and 0.864, respectively, indicating a stable overall global Moran’s I
value. This suggests that the distribution pattern of landscape ecological risk in Xinjiang
has maintained a high degree of clustering.

Table 4. Comparison of the area of each class of landscape ecological risk in Xinjiang in 2020 and
2030 under different scenarios.

Risk Level
2020 Natural Develoment

Scenario
Urban Development

Scenario
Ecological Conservtion

Scenario

Area/km2 Percentage/% Area/km2 Percentage/% Area/km2 Percentage/% Area/km2 Percentage/%

Lowest 422,814.00 22.29% 424,426.52 22.37% 396,763.00 20.91% 435,241.92 22.94%
Lower 325,335.56 17.15% 288,838.28 15.22% 255,615.72 13.47% 254,875.88 13.44%

Medium 471,445.08 24.85% 363,708.92 19.17% 248,043.60 13.07% 290,617.16 15.32%
Higher 664,606.04 35.03% 807,143.48 42.54% 968,915.36 51.07% 895,807.68 47.22%
Highest 13,016.80 0.69% 13,100.28 0.69% 27,879.80 1.47% 20,433.48 1.08%
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Figure 6. Moran Scatter Map of Landscape Ecological Risk in Xinjiang in 2020 and 2030 under
Different Simulation Scenarios. (a) The scatter plot of Moran’s I for landscape ecological risk in
Xinjiang in 2020. (b–d) are the Moran scatter plots for landscape ecological risk in Xinjiang under
the simulated scenarios of natural development, urban development, and ecological conservation in
2030, respectively.

The Moran’s I index can be used to study the overall distribution and spatial clustering
of a region, but it cannot reflect the spatial correlation within the region. Therefore, the Local
Indicators of Spatial Association (LISA) clustering analysis was used to study the correlation
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of ecological risk and whether it exhibited a certain spatial clustering (Figure 7). Four
significant autocorrelation relationships were identified: high-high (HH), low-low (LL),
low-high (LH), and high-low (HL). At a 95% confidence level, the HH areas were mainly
distributed in the central-southern, central-eastern, and northeastern parts of Xinjiang,
and were relatively concentrated. The unused land and other fragile land use types were
mostly distributed in this area, leading to high values of ecological risk in this region. In
contrast, the LL areas were mainly concentrated in the central-northern and northern parts
of Xinjiang, with scattered distribution in the western regions, where the land use types
were mostly cultivated land, forest land, and grassland. Overall, the spatial differences in
ecological risk in Xinjiang were significant, with HH and LL clustering types predominating,
presenting a polarized distribution pattern with high values in the central and southern
parts and low values in the northern part of the study area.
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(b–d) are the LISA clustering maps of landscape ecological risk in Xinjiang in 2030 under simulated
natural development, urban development and ecological conservation scenarios, respectively.

5. Discussion
5.1. Spatial Characteristics and Functional Patterns of Land Resources

Land use change is a crucial factor in understanding the relationship between human
activities and the ecological environment in the evolution of resources and the environment.
The characteristics of land resources and feasible ecological management strategies in this
study are as follows: firstly, the land use structure in Xinjiang presents a mosaic distribution
pattern of unused land, grassland, cultivated land, water area, forest land, and construction
land, among which the unused land accounts for more than 60% and constitutes the
main body of the land use pattern in Xinjiang. Therefore, the rational transformation and
utilization of unused land play a crucial role in promoting the high-quality development of
Xinjiang. In the past two decades, there has been a decrease in the amount of unused land
due to the development of the economy [16]. The main types of land conversions have been
from unused land to cultivated land and construction land. In the future, as urbanization
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continues, it will be essential to develop and utilize unused land in a rational manner.
This will involve the intensive and efficient use of land with high fragmentation, and the
appropriate transformation of such land into forest and grassland to achieve comprehensive
benefits of land use.

Additionally, it is worth noting that the unused land is primarily concentrated in
mountainous areas, and in recent years, a small portion of this unused land has been
converted into grassland due to the impact of global climate change. The conversion of
unused land to grassland and the persistence of grassland are affected by the “warm and
dry” climate in Xinjiang. This climate trend has made the already unstable oasis grassland
more vulnerable to conversion into unused land [42]. The proportion of grassland area
in Xinjiang is about 30%, which constitutes the main part of the vegetation ecosystem in
Xinjiang. Therefore, protecting grassland is an important aspect of maintaining a healthy
ecosystem in Xinjiang. The spatial allocation of grassland resources can be considered from
two aspects. Firstly, grassland resources are crucial ecological resources with substantial
potential for ecological value. They play a significant role in providing essential ecological
services, such as soil conservation, wind and sand fixation, water conservation, carbon
sequestration, and oxygen release. Secondly, grassland resources serve as a vital strategic
reserve for optimizing the production structure of agriculture and animal husbandry, and
promoting the industrialization and scale of grassland agriculture. This can facilitate the
optimization and intensification of grassland resource production functions, which is an
effective strategy to drive the transformation and development of agriculture.

5.2. Landscape Ecological Risk Identification and Optimal Allocation Strategy

Zoning and controlling landscape ecological risks based on natural geographic con-
ditions is a critical issue to ensure sustainable development in Xinjiang. With its unique
terrain, topography, and climate, Xinjiang has a high proportion of unused land, which
leads to significant uncertainty in landscape ecological risks. In the simulated scenarios of
future landscape ecological risk changes in the next 10 years (2020−2030), both the natural
development scenario and the urban development scenario show an increase in the area
of high-risk zones, mainly due to urban expansion encroaching on cultivated land and
forest land, as well as the degradation of cultivated land and forest land. This emphasizes
the significance of implementing measures to restrict the expansion of construction land
and mitigate the encroachment on arable and forest land as a key strategy to prevent
and control landscape ecological risks [45]. Therefore, the territorial spatial planning of
Xinjiang should emphasize spatial control of urban, agricultural, and ecological spaces.
This includes standardizing the delineation of urban development boundaries, permanent
basic cultivated land, and ecological conservation red lines, while reserving planning space.
Additionally, reasonable land use conversion and overall protection and restoration of
fragmented arable and forest land in the urban fringe area are necessary to reduce the area
of high-risk and moderately high-risk zones [46]. To address the fluctuation in the area
of high-risk zones, regional land consolidation should be strengthened to increase forest
and grassland coverage, reduce landscape fragmentation, and enhance the stability of the
ecological system. As cultivated land and grassland are mainly distributed in agricultural
areas, it is important to promote land consolidation for agricultural use, improve the inten-
siveness of cultivated land and grassland, coordinate the relationship between cultivated
land, grassland, and ecological landscape, and promote high-quality regional agricultural
development, aiming to transform medium-risk zones into the lowest or lower ecological
risk zones [47,48]. For the lowest-risk and lower zones dominated by high/medium forest
and grassland coverage, it is necessary to continue to strengthen the ecological advantages
of forest and grassland, create a combination of ecological value points, lines, and surfaces
of forest and grassland, prevent the decrease in the area of low-risk zones, and guide the
positive evolution of the forest and grassland ecological system, which are crucial strategies
to avoid the increase of landscape ecological risks in Xinjiang.
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5.3. Policy Insights

As an important ecological barrier in western China, Xinjiang’s natural ecological en-
vironment is an essential carrier for the socio-economic system [49]. On one hand, Xinjiang
has a significant fluctuation in terrain, diverse landforms, and landscape types. However,
its overall landscape pattern is relatively fragmented, with low stability and resilience,
making its ecological environment vulnerable. On the other hand, under the influence of
human activities and natural disturbances, Xinjiang’s ecological environment continues to
deteriorate. Therefore, based on the evaluation of landscape ecological risks under differ-
ent scenarios in the current and future conditions, it is suggested to pay attention to the
impact of different land use patterns and functions on the changes of ecological risk zones
during the rapid economic transformation and development in Xinjiang. The following
suggestions are proposed for the prevention of ecological risks and the management of the
ecological environment in Xinjiang: when planning the spatial layout of land resources, it is
essential to pay attention to the rationality of the land use structure and spatial pattern. This
can be achieved by strictly controlling the city’s development boundaries and protecting
permanent basic cultivated land and ecological conservation red lines. Furthermore, it
is necessary to scientifically arrange the urban space, agricultural space, and ecological
space, and to expand urban land use in an orderly manner according to the requirements
of intensification and green development. Additionally, it is important to strengthen the
overall protection and restoration of the fragmented cultivated land and forest land caused
by urban expansion. [50]. Secondly, while maintaining the current good natural environ-
ment, it is necessary to focus on the development and utilization of unused land and carry
out reasonable transformation of unused land, such as the transformation of unused land
into forest land or grassland, creating a multi-functional landscape system consisting of
ecological background, open space system, and human landscapes. Finally, in order to
ensure a healthy and stable ecological security pattern in Xinjiang, it is recommended to
plan and develop construction land in a reasonable scale and intensity, cultivate water
areas, and build ecological corridors. It is also important to moderately increase the scale
of ecological greening land in urban areas, which is a scientific way to ensure the healthy
and stable ecological security pattern in Xinjiang.

5.4. Research Prospects

The driving factors of land use landscape pattern change in Xinjiang are complex. In
the simulation of multiple land use scenarios, the selection of driving factors greatly affects
the accuracy of the model. Due to the availability of data and the difficulty of quantifying
many factors, the 17 natural and socio-economic driving factors chosen in this study are
not comprehensive and may also affect the simulation accuracy. However, in this study, the
predicted land use in 2020 was checked against the real data for accuracy, and the Kappa
coefficient obtained was 0.93. This indicates that the simulation accuracy is high and can
meet the requirements of landscape ecological risk analysis. In the follow-up study, the
simulation accuracy will be further improved if more data can be obtained.

In the process of landscape ecological risk assessment, this study divided the study
area into 68,784 grid cells using a grid system. However, the scale effect in geographical
research is inevitable, and this study did not explore whether there are differences in the
landscape ecological risk results under different segmentation scales. Selecting a reasonable
evaluation unit is of great significance for optimizing evaluation results. Therefore, in the
future, different scales or methods can be further explored to divide the landscape. In
addition, landscape ecological risk assessment involves multiple parameters, and different
simulation results may occur due to different model parameter settings. Based on previous
research results, the model parameters in this study were determined. However, finding
the best model parameters suitable for different research purposes and research fields is
crucial for future research. The evaluation model used in this study was not compared
with other models, so it is not absolute. Therefore, selecting appropriate landscape pattern
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indices is also an important consideration for improving the applicability of the evaluation
model in future research.

6. Conclusions

This study is based on the land use data of Xinjiang in 2000, 2010, and 2020, and
selected various influencing factors such as natural geography and social economy. The
PLUS model was used to predict the land use changes under the scenarios of natural
development, urban development, and ecological conservation in 2030. Based on the
simulation of the land use scenario in 2030, we evaluated the spatiotemporal patterns and
change characteristics of landscape ecological risk under different scenarios in 2030.

The results show the following: (1) From 2000 to 2020, the main landscape type in
Xinjiang was unused land, while the areas of cultivated land, grassland, and construction
land showed an increasing trend, and the areas of forest land, water bodies, and unused
land showed a decreasing trend. Among them, the most significant change was in the
cultivated land area, which mainly shifted to grassland and construction land. The expan-
sion of construction land landscape was dominant in the urbanization process, leading
to a reduction in ecological landscapes such as grassland, which weakened the stability
of the ecosystem. (2) Among the three scenarios, the urban development scenario mainly
showed a conversion of unused land to construction land, which is beneficial for economic
development, but the ecological land, such as forest and grassland, could not be fully
protected, which is inconsistent with the concept of sustainable development. The eco-
logical conservation scenario mainly showed a small increase in construction land and a
conversion of unused land to forest and grassland, which is consistent with the concept
of sustainable development, promoting the co-development of ecological conservation
and socio-economic development. (3) Under different scenarios, the landscape types in
Xinjiang showed varying degrees of changes in 2030, and the spatial distribution character-
istics of landscape ecological risk were similar to those in 2020. Notably, under the urban
development scenario, the area of lowest and medium risk areas decreases significantly
while the area of higher and highest risk areas increases substantially. Conversely, under
the ecological conservation scenario, the area of the lowest risk areas experiences a more
significant increase. (4) The spatial aggregation of landscape ecological risk values in
Xinjiang was obvious. The spatial differences in landscape ecological risk in Xinjiang were
significant, with HH and LL being the main clustering types, showing polarization and
exhibiting a distribution pattern of low in the north and high in the middle and south of
the study area. The spatial distribution pattern of ecological risk is closely related to the
spatial distribution pattern of human activities in Xinjiang. Therefore, it is necessary to
focus on the dynamic changes in landscape type structure and ecological risk caused by the
expansion of urban land use. This study provides a reference for the theory and method of
ecological risk evaluation and provides scientific basis for Xinjiang’s land use planning and
decision making, which is helpful for achieving sustainable development of the ecological
environment in Xinjiang.
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