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Abstract: Several earth science investigations depend heavily on knowing the surface energy budget
and determining surface temperature. The primary factor affecting the energy balance in the surface
physical processes of the planet is the land surface temperature (LST). Even in the case of small-scale
green areas like local parks, plants have a significant impact on the climate of cities. The goal of this
study was to estimate the construction-related impacts of the Karizland green town (green belt) on the
LST of its surroundings over time, for the years 2013 (before construction began), 2015, 2020 and 2022
(after construction was completed). LST values and hot spot analyses were employed for thermal
condition evaluation purposes on Landsat-8 satellite images, and normalized difference vegetation
index (NDVI) and fractional vegetation cover (FVC) indices were used for examining the vegetation
change. The results showed that after the establishment of the green town, the mean NDVI and FVC
grew by 275% and 950%, respectively, compared to the initial period, which resulted in the addition
of approximately 208.35 ha of green space to the study area. In this regard, the results showed that
after these changes, compared to the first period, the mean LST decreased by 8%. In addition, the area
of the class of hotspot analysis with less than 90% confidence increased by 9%. The results illustrated
that almost 20% of the data in the LST range was below 55 ◦C in 2013, near 57 ◦C in 2015, and around
51 ◦C in 2020 and 2022. The results also showed a negative relationship between the distance from
the established settlement and the values of NDVI and FVC in 2022 of 91% and 89% and in 2020 of
67% and 69%, respectively. Every year, LST has had a significant negative relationship with the NDVI
and FVC of that year and a positive relationship with the LST of the following years, such that the
correlation decreases in later years. In order to control LST and the temperature surrounding cities,
this research strongly advises managers to develop these green towns.

Keywords: land surface temperature; normalized difference vegetation index (NDVI); fractional
vegetation cover (FVC); hot spot analysis; green belt

1. Introduction

Climate change and rapidly increasing global urbanization are the two concerns that
urban planners face in the twenty-first century [1]. The planet’s surface is one of the key
elements in earth sciences. The planet’s surface net energy, which is controlled by energy input,
surface discharge, humidity, and atmospheric air movement, determines this physical property.
Understanding the surface energy budget and calculating surface temperature are crucial in
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many earth science studies, including those involving urban expansion [2,3], management
of water resources, natural disasters, and the climate. Land surface temperature (LST) is
the main determinant of the energy balance in the earth’s surface physical processes [4].
The study of LST, along with other factors such as evapotranspiration and soil salinity,
are also useful in cases such as the effects of global warming on food security [5] and
energy consumption [6].

The urban environment’s temperature is affected by a wide range of climatic, geo-
graphic, and human factors, and it mostly reflects local climate characteristics, which are
different from atmospheric temperature. The urban environment’s temperature changes
both indoors and outside since there are different land uses. Because of this, recent research
has centered more on identifying these changes in the urban environment [7,8]. Urban green
spaces are essential for maintaining the urban environment, controlling urban temperature,
and balancing climate change in addition to improving urban landscapes [9], environmental
soil properties [10], and spatial susceptibility patterns [11]. Plants cool the air around them
through shade, evaporation, and other methods to enhance the urban environment [12].

One of the factors affecting the microclimate in urban areas investigated is the utiliza-
tion of plants [13]. The influence of plants on the climate of city environments is enormous,
even in the case of small-scale green spaces like neighborhood parks [14,15]. The existence
of trees, grass, and other plant life causes green spaces to have cooler temperatures than
other neighboring metropolitan areas [16]. It is thought that this phenomenon prevents
the temperature of the air around from increasing. Often, the temperature in green areas
is lower than that of adjacent locations [17]. Cooler air is transported from green parts
to nearby areas. The amount of cooling experienced by the nearby areas changes with
an increase in the size of the green space and the percentage of that space that is covered
by trees [1].

Remote sensing techniques can provide a fast and efficient means of mapping land-
forms, which can be a crucial first step in managing the Earth’s surface [18]. Quantifiable
LST data may be gathered using remote sensing thermal sensors and used to monitor land
cover changes. Remote sensing is essential for estimating physical properties important to
thermal research. A number of multispectral and thermal sensors can be used for urban veg-
etation indices and LST [19] studies. The two most used remote sensing vegetation indices
are the normalized vegetation index (NDVI) and fractional vegetation index (FVI). There
are two methods utilized to retrieve correct FVC values: field measurement and remote
sensing retrieval. The traditional method for obtaining FVC is field measurement, which
combines sampling, visual estimation, and the use of optical measuring tools (e.g., pho-
tography). Three techniques may be used to get FVC from remote sensing: the empirical
model, the physical model, and machine learning techniques. FVC is estimated using an
empirical model using either a straightforward statistical model or a regression relationship.
The FVC is often computed from the NDVI once an empirical link between the two has
been established [20].

Previous studies such as Zare et al. (2021) highlight the potential of remote sensing
data and satellite image analysis in observing changes in earth and natural resources [21].
Amani-Beni et al. (2019) investigated the connection between urban greening trends and
the cooling impact in the Olympic Forest’s environs, a park in Beijing. The impervious
LST of forestland and waterbodies might be cooled by 6.51% and 12.82%, respectively,
according to the results. LST decreased by 0.4 ◦C for every 10% increase in green space,
while it rose by 0.15 ◦C for every kilometer of distance from the forest park. The green
space patterns’ aggregation index (AI) and biggest patch index (LPI) showed a substantial
negative connection with surface temperature [22]. Another study by Sun et al. (2017)
investigated the utilization of urban green space in a long belt-shaped park (around 9 km)
in Beijing to raise the surrounding city’s average temperature. The findings indicated that
the temperature drops to roughly 2 degrees Celsius up to 90 m from the researched green
area’s edge [23]. Research conducted by Zhao et al. (2022) related to the construction of
Kunlun Mountain national park in China, built in order to reduce the effects of climate
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change, has shown an increase in the capacity of the carbon sink, and has predicted that
this will improve similarly with the implementation of park management and control
measures [24,25]. In a study by Di Leo et al. (2016), the impact of urbanization and
green infrastructure on the temperature of the urban surface in Bobo-Dioulasso, Burkina
Faso, sub-Saharan Africa, was examined. Urbanization and LSTs were geographically
and temporally explored using the geospatial data and methods that are now available.
The study also examined how certain urban green infrastructure locations affected LSTs.
The findings revealed rising temperatures and rates of urbanization throughout time and
location. However, the LST in regions with green infrastructure was in fact lower than that
in nearby impermeable, urbanized areas [26,27].

Since vegetation has a cooling effect on LST [28,29] and also the study of the earth’s
surface temperature is important due to its effect on global warming and human well-being,
the present research aims to quantify the effect of creating a green town called Karizland
(Karizboom) which includes tree and shrub cover (Figure 1) near the city of Yazd (which
is located in the hot and dry central region of Iran and faces a lack of green space per
capita [30]). The importance of this study is in highlighting the effect of creating such
settlements and encouraging the authorities to establish such settlements in other places in
order to manage per capita vegetation and LST.
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Figure 1. A photo of parts of the green space of Karizland [31].

2. Materials and Methods
2.1. Study Area

The studied area, Karizland town, is located in Yazd province, Iran, at 54◦16′ (E) and
31◦50′ (N), between the cities of Taft and Yazd (Figure 2). This resort town is also called
Karizboom town or Kowsar town and was created with the aim of increasing the green
space per capita in Yazd [30]. This region is located in the center of Iran with a hot and arid
climate and lacks enough green space per capita [30]. The annual (average) temperature of
this area is 20 ◦C. The hottest month of the year in this region is July with an average of
33 ◦C, followed by June and August with 31 ◦C [29].



Land 2023, 12, 885 4 of 19

Land 2023, 12, x FOR PEER REVIEW 4 of 19 
 

2. Materials and Methods 

2.1. Study Area 

The studied area, Karizland town, is located in Yazd province, Iran, at 54°16′ (E) and 

31°50′ (N), between the cities of Taft and Yazd (Figure 2). This resort town is also called 

Karizboom town or Kowsar town and was created with the aim of increasing the green 

space per capita in Yazd [30]. This region is located in the center of Iran with a hot and 

arid climate and lacks enough green space per capita [30]. The annual (average) tempera-

ture of this area is 20 °C. The hottest month of the year in this region is July with an average 

of 33 °C, followed by June and August with 31 °C [29]. 

 

Figure 2. The location of the studied area in Yazd province and Iran (a), its location in between Yazd 

city and Taft city (b), and its 2023 Google Earth image (c). 

As can be seen from the Google Earth images, the construction of this town began in 

the beginning of 2013 (Figure 3a). Its construction was in progress in 2015 (Figure 3b) and 

continued until 2020 (Figure 3c). Based on this, it can be seen that part of the greening 

goals of this town had been achieved in 2020 and in the last quarter of 2022 (Figure 3d). 

Figure 2. The location of the studied area in Yazd province and Iran (a), its location in between Yazd
city and Taft city (b), and its 2023 Google Earth image (c).

As can be seen from the Google Earth images, the construction of this town began in
the beginning of 2013 (Figure 3a). Its construction was in progress in 2015 (Figure 3b) and
continued until 2020 (Figure 3c). Based on this, it can be seen that part of the greening goals
of this town had been achieved in 2020 and in the last quarter of 2022 (Figure 3d).

2.2. Data Collection

We used the multispectral and thermal bands of Landsat-8 Level-2 images to obtain
the average values of summer vegetation cover and LST of the years 2013, 2015, 2020 and
2022 of the studied area. The reason for choosing the summer season was to establish
a balance between the maximum greenness of the vegetation and the maximum LST in
this area. These images were obtained from the United States Geological Survey (www.
earthexplorer.usgs.gov). The characteristics of the images used are presented in Table 1.

www.earthexplorer.usgs.gov
www.earthexplorer.usgs.gov
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show the stages of establishing the town.

2.3. Images Preprocessed Status and Preparation

Landsat-8 Level-2 images provide a rough approximation of the surface’s spectrum
reflectance as it would be observed from the ground if air absorption or scattering did
not exist. The Earth Resources Observation and Science (EROS) Center produces the
surface reflectance products. Level-2 data products are produced by correcting satellite
pictures for atmospheric effects using the EROS Scientific Processing Architecture (ESPA)
on-demand interface. The land surface reflectance code is used to produce Landsat-8 surface
reflectance data (LaSRC). LaSRC employs a special radiative transfer model, supplementary
climatic data from MODIS, and the coastal aerosol band to conduct aerosol inversion
experiments. Moreover, LaSRC hardcodes the view zenith angle to “0”, and computations
for the atmospheric correction employ both the solar zenith and view zenith angles [32].
For the purpose of initial correction, the scale factor coefficients presented in Table 2 were
applied to the images.
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Table 1. Characteristics of the images used in the present study.

Satellite Sensor Date
(Year & Months)

No of
Bands Used

Spatial
Resolution Cloud Cover (%)

Landsat-8

OLI

2013

06

4, 5 30

≤15

07
08
09

2015

06
07
08
09

TIRS

2020

06

10 100

07
08
09

2022

06
07
08
09

Table 2. Scaling Factor of Level-2 Landsat-8 images [33].

Data Type Scaling Factor

Surface Reflectance 0.0000275 + −0.2

Surface Temperature 0.00341802 + 149.0

2.4. Calculation of Normalized Difference Vegetation Index (NDVI)

The NDVI is the ratio between the red and near-infrared bands [34,35] and is very
commonly used to investigate the status of vegetation. To measure the NDVI, the leaf
area index (LAI) and production pattern [36,37], which is based on vegetation class, land
use/land cover changes, water stress, vegetation phenology, continental land cover map-
ping, and chlorophyll content [38–40] are usually used. According to [41], the NDVI signal
from tropical evergreen woods has a poor signal-to-noise ratio because it is saturated. This
is said to happen when an exponential or linear regression model is used to link the NDVI
to the LAI [42]. Nevertheless, because the area under study in this article is semi-arid, this
may not necessarily apply to its vegetation. In order to calculate this index, two red and
near infrared bands of Landsat-8 Level-2 were used. After obtaining these images, they
were multiplied by the corresponding calibration coefficients (Table 2) and then NDVI was
calculated using Equation (1):

NDVI =
Red− NIR
Red + NIR

, (1)

where Red is the 4th and the 5th band of Landsat-8.

2.5. Calculation of Fractional Vegetation Cover (FVC)

FVC is a crucial biophysical metric for studies on land surface processes, climate
change, and numerical weather prediction [43,44]. It is also a crucial parameter for mea-
suring surface vegetation cover [45]. Moreover, FVC is widely used in forestry, resource
management, land use, hydrology, disaster risk assessment, and drought monitoring [20].
The FVC of the pixel is technically defined by Equation (2) as the proportional area of
vegetation [20,46].

f =
NDVI − NDVIs

NDVIv + NDVIs
, (2)
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where the subscripts NDVIs and NDVIs denote NDVI values over fully vegetated area
and bare soil, respectively.

2.6. Calculation of Land Surface Temperature (LST)

In the present study, LST was calculated from surface temperature measures using
emissivity correction [34,47–53].

LST =

 τ

1 + w
(

τ
p

)
ln(e)

 , (3)

where τ is the at-sensor brightness temperature, w is the wavelength of emitted radiance
(10.8 µm Landsat-8 TIRS 10th band), p = h × c/s

(
1.438× 10−2m·K

)
, with h being the

Plank’s constant (6.626× 10−34J·s), s is the Boltzmann Constant (1.38× 10−23J/K), c is the
velocity of light (2.988× 108m/s), and e is the land surface emissivity.

The land surface emissivity e was calculated using [34,47–50,52,53]:

e = n Pv + m, (4)

where n = 0.004 and m = 0.986, and Pv denotes the vegetation proportion, also referred to as
the fractional vegetation cover. The vegetation proportion (Pv) was calculated as [34,47–53]:

Pv =

[
NDVI − NDVImin

NDVImax − NDVImin

]2
, (5)

where NDVImin and NDVImax are the minimal and maximal values of the NDVI.

2.7. Hot Spot Analysis

For each feature, the Getis-Ord Gi-star (G-i-*) statistic was calculated via hot spot
analysis. Each characteristic was examined in the context of its nearby features in this
analysis. Even a feature with a high value may not be a statistically significant hot spot. A
feature must have a high value and be surrounded by additional features that have high
values in order to be a statistically significant hot spot. A statistically significant z-score is
produced when the local sum for a feature and its neighbors deviates significantly from
the predicted local sum and deviates by an amount that is too great to be the product of
random chance [54].

The process of conducting the research is shown in the flow chart (Figure 4).
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3. Results

The present study was conducted in order to quantify the construction effects of
the green town (green belt) of the Karizland environs of the Yazd metropolis on its pe-
ripheral area’s LST. For this purpose, in order to monitor the vegetation changes in the
area, the NDVI (Figure 5) and FVC (Figure 6) map of the study area was extracted using
satellite images.
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The statistics of vegetation changes in the region clearly indicate an increasing trend of
vegetation (Table 3). Thus, in the green zone, the NDVI minimum and maximum reached
0.12 and 0.61 in 2022 from 0.05 and 0.08 in 2013, respectively. A decrease of 0.01 is observed
in the NDVI minimum and maximum in 2015. In addition, in the same period, the FVC
minimum and maximum increased from 0.02 and 0.06 to 0.07 and 0.58, respectively. The
NDVI and FVC means also increased from 0.12 and 0.04 to 0.45 and 0.42, respectively,
with continuous growth in the three periods after 2013, i.e., 2015, 2020 and 2022. However,
despite the differences, the RANGE values of 2020 compared to 2022 and 2013 compared to
2015 were very close to each other.
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Table 3. Statistics (masked by the built green town subsurface) of the normalized difference vegetation
index (NDVI) and fractional vegetation cover (FVC) changes according to the studied years.

NDVI FVC

Year MIN MAX RANGE MEAN MIN MAX RANGE MEAN

2022 0.12 0.61 0.49 0.45 0.07 0.58 0.51 0.42

2020 0.06 0.54 0.48 0.36 0.03 0.36 0.32 0.27

2015 0.04 0.07 0.03 0.14 0.03 0.09 0.06 0.05

2013 0.05 0.08 0.03 0.12 0.02 0.06 0.04 0.04

The vegetation changes map in the area also clearly shows the location and extent of
vegetation created by the construction of Karizland green town (Figure 7). Based on these
change map statistics, it is estimated that by 2022, in the new green town extent, a green
belt 81,540 m long with an area equal to 208.35 ha has been created.
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In order to investigate the LST changes before, during and after the construction of
the Sabz settlement, the LST maps of the region for the studied years were extracted from
the data of satellite images (Figure 8).
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The statistics of the LST changes in the region in the four years under study show a
decrease in the LST minimum and maximum of 6.9% and LST mean of 8.3% between the
first and last years of the study, 2013 and 2022 (Table 4). The only visible contrast is in the
thermal data of 2015, in which, when compared to 2013, the LST minimum increased by
6.6% and the maximum by 2.2%. The LST mean also increased that year, but slightly by
1.7% (less than 1 ◦C). Figure 9 makes it clear that the distribution of data based on percentile
in the first 5% to 20% shows a lot of abnormality and change. Accordingly, in 2013, almost
20% of the data in the LST range is less than 55 ◦C, for 2015 it is close to 57 ◦C, and for 2020
and 2022 it is around 51 ◦C. The trend of these changes over time has mostly been related
to the first 20 percentiles of LST values, while in the rest of the percentiles, the values of the
two years 2013 and 2015 and the values of the two years 2020 and 2022 have been closer to
each other and further away from the other group (Figure 9).

Table 4. Statistics (masked by the built green town subsurface) of land surface temperature (LST)
changes according to the studied years.

Year MIN MAX RANGE MEAN

2022 48.52 52.83 4.32 51.21

2020 50.19 53.44 3.26 51.83

2015 55.54 58.02 2.48 56.77

2013 52.12 56.77 4.66 55.83
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Figure 9. The trend of land surface temperature (LST) value changes in 10 percentiles according to
the studied years.

It also emerges visually from the matrix plot of LST over the time that the warmer
pixels gradually decreased from 2013 to 2022 (Figure 10). This decrease started from 2015
and continued almost until 2020, so that the ratio of warmer pixels to cooler pixels reaches
50% between 2015 and 2020.
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Figure 10. Matrix plot of land surface Temperature (LST) changes in the studied area (15,730 pixels)
during the years 2013, 2015, 2020 and 2022 (masked by the built green town extent).

The LST difference map between 2013 and 2022 shows a clear temperature decrease in
the location of the built green town and its surroundings (Figure 11). Based on this and the
extent of the studied green town in 2022, 1348.2 ha of land surface had cooled, 60.66 ha had
not changed and 6.84 ha of land was warmer compared to 2013.
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Figure 11. The difference in land surface temperature (LST) values between 2022 and 2013 in two
representations of continuous values (a) and discrete classes (b).

In order to investigate the status of changes in hot–cold spots, a hot spot and cold
spot map was prepared for the region for the four years under study (Figure 12). The
distribution investigation results of hot and cold spots in the new green town extent area
show that cold spots with 99%, 95%, and 90% confidence have reached 0.99%, 0.17%, and
0.39% of the area in 2022, respectively, with a slight decrease from 1.96%, 0.48%, and 0.57%
of the area in 2013. On the other hand, hot spots with 90% confidence have decreased from
7.10% of the area in 2013 to only 0.04% of the area in 2022 (Figure 13). Sharp changes have
occurred in non-significant values, which covered 88.76% of the area in 2013 and 96.84%
in 2022. In addition, in almost all classes except for cold spots, with 99% confidence, an
increase in hot spots and a decrease in cold spots from 2013 to 2015 can be observed. As
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such, the largest area with hot spots with 90% confidence after 2013 was 2.5%, and the
largest area with hot spots with 95% confidence was 0.39%, both belonging to 2015.

Land 2023, 12, x FOR PEER REVIEW 13 of 19 
 

in 2022. In addition, in almost all classes except for cold spots, with 99% confidence, an 

increase in hot spots and a decrease in cold spots from 2013 to 2015 can be observed. As 

such, the largest area with hot spots with 90% confidence after 2013 was 2.5%, and the 

largest area with hot spots with 95% confidence was 0.39%, both belonging to 2015. 

 

Figure 12. Hot spot (HS) and cold spot (CS) maps of the studied area for 2013, 2015, 2020 and 2022. 

 

Figure 13. Normalized (0–100) distribution pattern of hot spot (HS) and cold spot (CS) values in the 

study area according to the studied years along with the trend line of changes in 2013 and 2022. 

0 2 4 6 8 10

CS 99

CS 95

CS 90

HS 90

HS 95

Distribution (0-100)

C
o

n
fi

d
en

ce
 (

%
)

2013 2015 2020

2022 Linear (2022) Linear (2013)

Figure 12. Hot spot (HS) and cold spot (CS) maps of the studied area for 2013, 2015, 2020 and 2022.

Land 2023, 12, x FOR PEER REVIEW 13 of 19 
 

in 2022. In addition, in almost all classes except for cold spots, with 99% confidence, an 

increase in hot spots and a decrease in cold spots from 2013 to 2015 can be observed. As 

such, the largest area with hot spots with 90% confidence after 2013 was 2.5%, and the 

largest area with hot spots with 95% confidence was 0.39%, both belonging to 2015. 

 

Figure 12. Hot spot (HS) and cold spot (CS) maps of the studied area for 2013, 2015, 2020 and 2022. 

 

Figure 13. Normalized (0–100) distribution pattern of hot spot (HS) and cold spot (CS) values in the 

study area according to the studied years along with the trend line of changes in 2013 and 2022. 

0 2 4 6 8 10

CS 99

CS 95

CS 90

HS 90

HS 95

Distribution (0-100)

C
o

n
fi

d
en

ce
 (

%
)

2013 2015 2020

2022 Linear (2022) Linear (2013)
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the study area according to the studied years along with the trend line of changes in 2013 and 2022.
Because the non-significant spots were in the majority in each year, they were 100 and were masked
for chart better visibility.
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The results obtained in the correlations between the investigated parameters in the
present study (Table 5) indicate that the distance from the new green town subsurface had
a negative relationship of −69% with the difference between the 2022 and 2013 NDVIs.
In addition, its correlation with the LSTs of 2022 and 2020 was considerable, at 61% and
50%, respectively. The correlation between distance and NDVI and FVC was negative and
high in both the mentioned years, and in 2022 this negative correlation was significantly
higher. The results show a negative correlation between the difference between the 2022
and 2013 NDVIs and the LSTs of 2022 and 2020, stronger for that with 2022, and a positive
correlation with the NDVI in 2022. The difference in NDVIs also has a close-to-significant
low correlation with the 2020 NDVI, at 48%. The correlations of the LST values of different
years interestingly show a negative and high correlation with the NDVI and FVC of that
year and a positive relationship with the LST values of previous years (the biggest one is
the correlation between the LST in 2022 and the LST in 2020, at 90%) with a decreasing
trend in following years. This trend can be seen in 2015 regarding the 2013 NDVI and FVC
too. It is noteworthy that the LST values in 2022 and 2020 had high and almost identical
negative correlations with the NDVIs and FVCs of the same years, with −87% and −84%,
respectively. The lowest correlation of this type is in relation to 2013, with −58% and −56%,
respectively. Examining the relationship between the NDVIs and FVCs for each year also
shows that these values have positive and very high correlations, more than 97%, and also
have positive and high correlations with the NDVIs and FVCs of each previous year. The
relationship in 2020 between the NDVI and FVC values of 2013 is also significant, positive,
and high.

Table 5. The results of correlation calculations between distance from the study area, difference in
normalized difference vegetation index (NDVI Diff.) between 2013 and 2022, land surface temperature
(LST), NDVI, and fractional vegetation cover (FVC) for 2022, 2020, 2015 and 2013 (highlights significance:
red: ≥60% and significant, yellow: ≤−60% and significant, and grey: ±50% and almost significant).

Distance NDVI
Diff.

LST
2022

NDVI
2022

FVC
2022

LST
2020

NDVI
2020

FVC
2020

LST
2015

NDVI
2015

FVC
2015

LST
2013

NDVI
2013

NDVI
Diff.

−0.69 1

LST
2022 0.61 −0.64 1

NDVI
2022 −0.91 0.58 −0.87 1

FVC
2022 −0.89 0.38 −0.84 0.97 1

LST
2020 0.50 −0.56 0.90 −0.42 −0.40 1

NDVI
2020 −0.67 0.48 −0.41 0.90 0.89 −0.87 1

FVC
2020 −0.69 0.37 −0.40 0.85 0.88 −0.84 0.97 1

LST
2015 0.38 −0.08 0.74 −0.40 −0.42 0.78 −0.49 −0.52 1

NDVI
2015 −0.06 0.01 −0.32 0.51 0.54 −0.33 0.68 0.73 −0.68 1

FVC
2015 −0.06 0.00 −0.30 0.47 0.53 −0.30 0.64 0.72 −0.64 0.98 1

LST
2013 −0.56 0.13 0.50 −0.19 −0.24 0.58 −0.32 −0.37 0.73 −0.56 −0.56 1

NDVI
2013 −0.06 −0.01 −0.33 0.51 0.55 −0.34 0.68 0.73 −0.67 0.98 0.97 −0.58 1

FVC
2013 −0.07 −0.01 −0.30 0.46 0.52 −0.30 0.63 0.71 −0.64 0.96 0.99 −0.56 0.97

Significance level: 90%.
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4. Discussion

The goal of the current study was to measure the construction-related impacts of the
Karizland’s green town (green belt) on the LST of its city surroundings. Based on this, using
satellite images, the changes in the calculated parameters of LST, hot spots, vegetation
(using NDVI and FVC) and also the connections between them were investigated. For 2013,
it was seen that the average values of NDVI and FVC were very low and close to zero
with 0.12 and 0.04 respectively. In this year, the RANGEs of these two indicators were 0.03
and 0.04, respectively, which seems acceptable considering the lack of vegetation and the
absence of the green town in this area. The lack of vegetation in 2013 caused that year to be
the second hottest year studied, with a small difference from 2015, with an average LST
of 55.83 ◦C, as well as a high distribution of hot spots with 90% confidence, of almost 8
out of 100. In 2013, the relationship between the distance from where the green settlement
would later be built and LSTs, with a rate of −56%, was close to significant (therefore
unreliable) but “negative”, which probably indicates the distance of this extent from the
urban environment. The hotness of this area was compared to its surroundings. The same
type of relationship was seen between the LST and the NDVI and FVC values, with −58%
and −56%, respectively, and despite the very low values of NDVI and FVC, the correlation
was “negative”. For 2015, it was seen that the values of NDVI and FVC reached 0.14 and
0.05, respectively, with a very slight increase. According to the NDVI values, these values
do not prove the presence of vegetation in the area [55,56], but at the same time, the values
may be due to the activity carried out in the direction of the construction of the green town.
However, the average LST increased to 56.77 ◦C (a 1.68% increase compared to 2013) and
the distribution of hotspots in the extent reached 10 (out of 100) with 90% confidence and
even more than 0.5 with 95% confidence. This increase in temperature seems reasonable
considering the start of the construction of the green town according to Figure 3b, because
an increase in soil excavation, road construction and other construction measures on soil
causes an increase in roughness, an increase in soil emissivity, and as a result, increased
LST [57] in this area. For 2015, there was no significant relationship between the LST values
and the distance from the under-construction green town or the NDVI difference between
2022 and 2013, but the correlation of LST values with the 2015 NDVI and FVC values
was significantly negative with −68% and −64%, respectively. However, in any case, as
discussed in the above lines, due to the lack of vegetation, no effect on LST was visible. The
LST values for 2015 had a positive correlation of 73% with the LST values of 2013, and this
probably indicates that the pattern of LST values that year was somewhat similar to 2013,
which seems reasonable considering the absence of vegetation. This can be proven due
to the very high correlation of NDVI and FVC values across both 2015 and 2013. This is
because, according to the negative relationship between the LST and vegetation [29,58–62],
when there is no vegetation in the area, the LST will not change. For 2020, however, the
results were that the average NDVI increased by 157% and the FVC increased by 440%
compared to 2015. The RANGE changes of the NDVI values also increased from 0.03 to
0.48 (a 1500% increase), which can firstly indicate an increase in vegetation and secondly
its diversity in this region in 2020. In the meantime, the 9% decrease in the average LST
(reaching 51.83 ◦C), the increase in cold spots with 99% confidence to 2 (out of 100) and
the decrease in hot spots with 90% confidence to below 0.5 in 2020 show the vegetation
presence effects more clearly in this year. In 2020, finally, the correlation between the values
of the distance from the green town subsurface and LST has become positive, but close
to significant (unreliable). However, the correlations of distance with NDVI and FVC are
negative and significant with −67% and −69%, respectively, and this is likely a proof of
the presence of vegetation created by the construction of the green town. In this year, the
correlation between LST and NDVI and FVC has become sharper and in a higher/negative
direction with −87% and −84%, respectively, and of course, it has a positive correlation
of 78% with the LST of 2015. In addition, the LST of 2020 shows a positive but close-to-
significant correlation with the LST of 2013, which also helps to prove the same pattern of
LST changes in all periods. In 2022, the changes were such that the average values of NDVI
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and FVC continued to rise and increased by 25% and 56%, respectively. This proves the
growing trend of vegetation in this area. The RANGE NDVI values had a slight increase of
0.01 (2%), confirming that the maximum and minimum NDVI did not change much after
2020. However, the maximum NDVI increased by 13% compared to 2020, which could
indicate an increase in greenness by 2022. In this regard, the average LST also decreased
by 1% to 51.21 ◦C, and the distribution of cold spots with 99% confidence was 0.5 (out of
100), and cold spots with 90% confidence increased to 0.4. In 2022, the increase of spots
with less than 90% confidence is noticeable, such that 98.4% of the area was in this class of
values. With this difference, based on the obtained results, the areas of significant classes
(hot spots and cold spots together) in the studied area in 2013, 2015, 2020 and 2022 were
10.10%, 10.22%, 3.02% and 1.60% of the total area, respectively. As a result, the areas of
non-significant classes (i.e., with less than 90% confidence) were 89.90%, 89.78%, 96.98%
and 98.40% respectively. Thus, according to the mean values of LST in these four years,
it can be said that in this study and this region, the area of significant spot classes has a
positive relationship with the mean LST and the area of the non-significant spot classes has
a negative relationship with the mean LST.

5. Conclusions

The present study was conducted with the aim of quantifying the effects of the
construction of Karizland (Karizboom) green town on the surrounding LST for 2013 (as
a year without the town), 2015 (the year that the town was being built), and 2020 and
2022 (years in which the town had been competed and with different levels of vegetation).
For this purpose, using Landsat-8 satellite images, LST values and hot spot analysis were
used for thermal studies, as well as NDVI and FVC indices for vegetation change studies.
The obtained results indicate an increase of 81,540 m and 208.35 ha of vegetation after the
establishment of the green settlement and as a result a decrease of 9.8% in LST in the period
from the start to the end of the study period. Accordingly, based on the findings of this
study, which were meticulously derived using maps and statistics of the cooling process
of the town’s extent during the studied period, this study firmly encourages managers to
create these green towns in order to control LST and the temperature around cities. The
current study focused in particular on a hot and arid region in the center of Iran, thus from
this perspective, the development of settlements in these areas may be significantly more
important. Future studies may quantify the cooling effects of this settlement by focusing
on the location of other settlements in nearby areas or in other hot and dry areas, in order
to provide scientific evidence to policy makers on how to reduce temperature and improve
climatic conditions. In addition, maybe the use of other vegetation indicators (like the
enhanced vegetation index (EVI)) in this area to evaluate the results of this study and
more detailed investigations focusing on the vegetation approach will provide room for
further studies.
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7. Şimşek, Ç.K.; Ödül, H. A method proposal for monitoring the microclimatic change in an urban area. Sustain. Cities Soc. 2019,
46, 101407. [CrossRef]

8. Liu, L.; Li, Z.; Fu, X.; Liu, X.; Li, Z.; Zheng, W. Impact of power on uneven development: Evaluating built-up area changes in
Chengdu based on NPP-VIIRS images (2015–2019). Land 2022, 11, 489. [CrossRef]

9. Meng, H.; Jing, L.; Xin, H. The influence of underlying surface on land surface temperature—A case study of urban green space
in Harbin. Energy Procedia 2019, 157, 746–751.

10. He, F.; Mohamadzadeh, N.; Sadeghnejad, M.; Ingram, B.; Ostovari, Y. Fractal Features of Soil Particles as an Index of Land
Degradation under Different Land-Use Patterns and Slope-Aspects. Land 2023, 12, 615. [CrossRef]

11. Temme, A.; Sadeghnejad, M.; Sodhi, H.S.; Samia, J. Search for Path-Dependency Mechanisms Using Physically-Based Soil-
Landscape Modelling of Landslides. In Proceedings of the Copernicus Meetings, Vienna, Austria, 24–28 April 2023.

12. Gorse, C.; Parker, J.; Thomas, F.; Fletcher, M.; Ferrier, G.; Ryan, N. The Planning and Design of Buildings: Urban Heat Islands—
Mitigation. In Industry 4.0 and Engineering for a Sustainable Future; Springer: Berlin/Heidelberg, Germany, 2019; pp. 211–225.

13. Yahia, M.W.; Johansson, E.; Thorsson, S.; Lindberg, F.; Rasmussen, M.I. Effect of urban design on microclimate and thermal
comfort outdoors in warm-humid Dar es Salaam, Tanzania. Int. J. Biometeorol. 2018, 62, 373–385. [CrossRef]

14. Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities
‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [CrossRef]

15. Shang, Y.; Lian, Y.; Chen, H.; Qian, F. The impacts of energy resource and tourism on green growth: Evidence from Asian
economies. Resour. Policy 2023, 81, 103359. [CrossRef]

16. Yang, J.; Sun, J.; Ge, Q.; Li, X. Assessing the impacts of urbanization-associated green space on urban land surface temperature:
A case study of Dalian, China. Urban For. Urban Green. 2017, 22, 1–10. [CrossRef]

17. Zölch, T.; Maderspacher, J.; Wamsler, C.; Pauleit, S. Using green infrastructure for urban climate-proofing: An evaluation of heat
mitigation measures at the micro-scale. Urban For. Urban Green. 2016, 20, 305–316. [CrossRef]

18. Kazemi Garajeh, M.; Li, Z.; Hasanlu, S.; Zare Naghadehi, S.; Hossein Haghi, V. Developing an integrated approach based on
geographic object-based image analysis and convolutional neural network for volcanic and glacial landforms mapping. Sci. Rep.
2022, 12, 21396. [CrossRef]

19. Rothery, D.; Francis, P.; Wood, C. Volcano monitoring using short wavelength infrared data from satellites. J. Geophys. Res. Solid
Earth 1988, 93, 7993–8008. [CrossRef]

20. Liang, S.; Wang, J. Advanced Remote Sensing: Terrestrial Information Extraction and Applications; Academic Press: Cambridge, MA,
USA, 2020; Volume 2.

21. Zare Naghadehi, S.; Asadi, M.; Maleki, M.; Tavakkoli-Sabour, S.-M.; Van Genderen, J.L.; Saleh, S.-S. Prediction of Urban Area
Expansion with Implementation of MLC, SAM and SVMs’ Classifiers Incorporating Artificial Neural Network Using Landsat
Data. ISPRS Int. J. Geo-Inf. 2021, 10, 513. [CrossRef]

22. Amani-Beni, M.; Zhang, B.; Xie, G.-D.; Shi, Y. Impacts of urban green landscape patterns on land surface temperature: Evidence
from the adjacent area of Olympic Forest Park of Beijing, China. Sustainability 2019, 11, 513. [CrossRef]

23. Sun, S.; Xu, X.; Lao, Z.; Liu, W.; Li, Z.; García, E.H.; He, L.; Zhu, J. Evaluating the impact of urban green space and landscape
design parameters on thermal comfort in hot summer by numerical simulation. Build. Environ. 2017, 123, 277–288. [CrossRef]

24. Zhao, L.; Du, M.; Du, W.; Guo, J.; Liao, Z.; Kang, X.; Liu, Q. Evaluation of the Carbon Sink Capacity of the Proposed Kunlun
Mountain National Park. Int. J. Environ. Res. Public Health 2022, 19, 9887. [CrossRef] [PubMed]

25. Bai, X.; Zhang, S.; Li, C.; Xiong, L.; Song, F.; Du, C.; Li, M.; Luo, Q.; Xue, Y.; Wang, S. A carbon neutrality capacity index for
evaluating carbon sink contributions. Environ. Sci. Ecotechnol. 2023, 15, 100237. [CrossRef]

26. Di Leo, N.; Escobedo, F.J.; Dubbeling, M. The role of urban green infrastructure in mitigating land surface temperature in
Bobo-Dioulasso, Burkina Faso. Environ. Dev. Sustain. 2016, 18, 373–392. [CrossRef]

27. Li, X.; Zhang, X.; Jia, T. Humanization of nature: Testing the influences of urban park characteristics and psychological factors on
collegers’ perceived restoration. Urban For. Urban Green. 2023, 79, 127806. [CrossRef]

28. Jiang, J.; Tian, G. Analysis of the impact of land use/land cover change on land surface temperature with remote sensing. Procedia
Environ. Sci. 2010, 2, 571–575. [CrossRef]

https://doi.org/10.3390/land11020253
https://doi.org/10.1016/j.landusepol.2022.106379
https://doi.org/10.1038/s41598-023-28244-5
https://www.ncbi.nlm.nih.gov/pubmed/36658205
https://doi.org/10.1016/j.jclepro.2022.130804
https://doi.org/10.1016/j.scs.2018.12.035
https://doi.org/10.3390/land11040489
https://doi.org/10.3390/land12030615
https://doi.org/10.1007/s00484-017-1380-7
https://doi.org/10.1016/j.landurbplan.2014.01.017
https://doi.org/10.1016/j.resourpol.2023.103359
https://doi.org/10.1016/j.ufug.2017.01.002
https://doi.org/10.1016/j.ufug.2016.09.011
https://doi.org/10.1038/s41598-022-26026-z
https://doi.org/10.1029/JB093iB07p07993
https://doi.org/10.3390/ijgi10080513
https://doi.org/10.3390/su11020513
https://doi.org/10.1016/j.buildenv.2017.07.010
https://doi.org/10.3390/ijerph19169887
https://www.ncbi.nlm.nih.gov/pubmed/36011521
https://doi.org/10.1016/j.ese.2023.100237
https://doi.org/10.1007/s10668-015-9653-y
https://doi.org/10.1016/j.ufug.2022.127806
https://doi.org/10.1016/j.proenv.2010.10.062


Land 2023, 12, 885 18 of 19

29. Mansourmoghaddam, M.; Rousta, I.; Zamani, M.; Mokhtari, M.H.; Karimi Firozjaei, M.; Alavipanah, S.K. Study and prediction of land
surface temperature changes of Yazd city: Assessing the proximity and changes of land cover. J. RS GIS Nat. Resour. 2021, 12, 1–27.

30. Ettelaat. “Karizland” Becomes the Green Gem of Yazd Province. Available online: https://www.ettelaat.com/mobile/archives/
130034?device=phone (accessed on 26 February 2023). (In Persian).

31. Kowsar Institute. The Return of Freshness, Freshness and Greenery to KARIZBOOM after Water Stress. Available online:
https://portal.kowsaryazd.com/anounce/ (accessed on 27 February 2023).

32. USGS. USGS EROS Archive—Landsat Archives—Landsat 8 OLI/TIRS Level-2 Data Products—Surface Reflectance. Available on-
line: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-landsat-8-olitirs-level-2-data-products
(accessed on 27 February 2023).

33. USGS. Landsat Collection 2 Level-2 Science Products. Available online: https://www.usgs.gov/landsat-missions/landsat-
collection-2-level-2-science-products (accessed on 27 February 2023).

34. Avdan, U.; Jovanovska, G. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data.
J. Sens. 2016, 2016, 1480307. [CrossRef]

35. Li, X.; Zhou, Y.; Asrar, G.R.; Imhoff, M.; Li, X. The surface urban heat island response to urban expansion: A panel analysis for the
conterminous United States. Sci. Total Environ. 2017, 605, 426–435. [CrossRef]

36. Dutta, D.; Kundu, A.; Patel, N.; Saha, S.; Siddiqui, A. Assessment of agricultural drought in Rajasthan (India) using remote
sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). Egypt. J. Remote Sens. Space Sci.
2015, 18, 53–63. [CrossRef]

37. Tarpley, J.; Schneider, S.; Money, R. Global vegetation indices from the NOAA-7 meteorological satellite. J. Clim. Appl. Meteorol.
1984, 23, 491–494. [CrossRef]

38. Moulin, S.; Kergoat, L.; Viovy, N.; Dedieu, G. Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite
measurements. J. Clim. 1997, 10, 1154–1170. [CrossRef]

39. Running, S.W.; Loveland, T.R.; Pierce, L.L.; Nemani, R.R.; Hunt, E.R., Jr. A remote sensing based vegetation classification logic for
global land cover analysis. Remote Sens. Environ. 1995, 51, 39–48. [CrossRef]

40. Townshend, J.R.; Justice, C. Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int.
J. Remote Sens. 1986, 7, 1435–1445. [CrossRef]

41. Schlerf, M.; Atzberger, C.; Hill, J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote
Sens. Environ. 2005, 95, 177–194. [CrossRef]

42. Yengoh, G.T.; Dent, D.; Olsson, L.; Tengberg, A.E.; Tucker, C.J., III. Use of the Normalized Difference Vegetation Index (NDVI) to
Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical Considerations; Springer: Berlin/Heidelberg,
Germany, 2015.

43. Wei, Q.; Qingke, Z.; Xuexia, Z. Review of vegetation covering and its measuring and calculating method. J. Northwest Sci-Tech
Univ. Agric. For. 2006, 34, 163–170.

44. Yin, J.; Zhan, X.; Zheng, Y.; Hain, C.R.; Ek, M.; Wen, J.; Fang, L.; Liu, J. Improving Noah land surface model performance using
near real time surface albedo and green vegetation fraction. Agric. For. Meteorol. 2016, 218, 171–183. [CrossRef]

45. Zeng, X.; Dickinson, R.E.; Walker, A.; Shaikh, M.; DeFries, R.S.; Qi, J. Derivation and evaluation of global 1-km fractional
vegetation cover data for land modeling. J. Appl. Meteorol. 2000, 39, 826–839. [CrossRef]

46. Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather
prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [CrossRef]

47. Ranagalage, M.; Estoque, R.C.; Handayani, H.H.; Zhang, X.; Morimoto, T.; Tadono, T.; Murayama, Y. Relation between urban
volume and land surface temperature: A comparative study of planned and traditional cities in Japan. Sustainability 2018,
10, 2366. [CrossRef]

48. Bokaie, M.; Zarkesh, M.K.; Arasteh, P.D.; Hosseini, A. Assessment of urban heat island based on the relationship between land
surface temperature and land use/land cover in Tehran. Sustain. Cities Soc. 2016, 23, 94–104. [CrossRef]

49. Dos Santos, A.R.; de Oliveira, F.S.; da Silva, A.G.; Gleriani, J.M.; Gonçalves, W.; Moreira, G.L.; Silva, F.G.; Branco, E.R.F.; Moura,
M.M.; da Silva, R.G. Spatial and temporal distribution of urban heat islands. Sci. Total Environ. 2017, 605, 946–956. [CrossRef]

50. Estoque, R.C.; Pontius, R.G., Jr.; Murayama, Y.; Hou, H.; Thapa, R.B.; Lasco, R.D.; Villar, M.A. Simultaneous comparison and
assessment of eight remotely sensed maps of Philippine forests. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 123–134. [CrossRef]

51. Sultana, S.; Satyanarayana, A. Urban heat island intensity during winter over metropolitan cities of India using remote-sensing
techniques: Impact of urbanization. Int. J. Remote Sens. 2018, 39, 6692–6730. [CrossRef]

52. Ziaul, S.; Pal, S. Image based surface temperature extraction and trend detection in an urban area of West Bengal, India. J. Environ.
Geogr. 2016, 9, 13–25. [CrossRef]

53. Rousta, I.; Sarif, M.O.; Gupta, R.D.; Olafsson, H.; Ranagalage, M.; Murayama, Y.; Zhang, H.; Mushore, T.D. Spatiotemporal
analysis of land use/land cover and its effects on surface urban heat island using Landsat data: A case study of Metropolitan City
Tehran (1988–2018). Sustainability 2018, 10, 4433. [CrossRef]

54. Esri. How Hot Spot Analysis (Getis-Ord Gi*) Works. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-
reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm#:~:text=The%20Hot%20Spot%20Analysis%
20tool,the%20context%20of%20neighboring%20features (accessed on 4 March 2022).

https://www.ettelaat.com/mobile/archives/130034?device=phone
https://www.ettelaat.com/mobile/archives/130034?device=phone
https://portal.kowsaryazd.com/anounce/
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-landsat-8-olitirs-level-2-data-products
https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products
https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products
https://doi.org/10.1155/2016/1480307
https://doi.org/10.1016/j.scitotenv.2017.06.229
https://doi.org/10.1016/j.ejrs.2015.03.006
https://doi.org/10.1175/1520-0450(1984)023&lt;0491:GVIFTN&gt;2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010&lt;1154:GSAOVP&gt;2.0.CO;2
https://doi.org/10.1016/0034-4257(94)00063-S
https://doi.org/10.1080/01431168608948946
https://doi.org/10.1016/j.rse.2004.12.016
https://doi.org/10.1016/j.agrformet.2015.12.001
https://doi.org/10.1175/1520-0450(2000)039&lt;0826:DAEOGK&gt;2.0.CO;2
https://doi.org/10.1080/014311698215333
https://doi.org/10.3390/su10072366
https://doi.org/10.1016/j.scs.2016.03.009
https://doi.org/10.1016/j.scitotenv.2017.05.275
https://doi.org/10.1016/j.jag.2017.10.008
https://doi.org/10.1080/01431161.2018.1466072
https://doi.org/10.1515/jengeo-2016-0008
https://doi.org/10.3390/su10124433
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm#:~:text=The%20Hot%20Spot%20Analysis%20tool,the%20context%20of%20neighboring%20features
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm#:~:text=The%20Hot%20Spot%20Analysis%20tool,the%20context%20of%20neighboring%20features
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm#:~:text=The%20Hot%20Spot%20Analysis%20tool,the%20context%20of%20neighboring%20features


Land 2023, 12, 885 19 of 19

55. Akbar, T.A.; Hassan, Q.K.; Ishaq, S.; Batool, M.; Butt, H.J.; Jabbar, H. Investigative spatial distribution and modelling of existing
and future urban land changes and its impact on urbanization and economy. Remote Sens. 2019, 11, 105. [CrossRef]

56. Mansourmoghaddam, M.; Rousta, I.; Ghafarian Malamiri, H. Evaluation of the classification accuracy of NDVI index in the
preparation of land cover map. Desert 2022, 27, 329–341.

57. Shati, A.; Blakey, S.; Beck, S. The effect of surface roughness and emissivity on radiator output. Energy Build. 2011, 43, 400–406. [CrossRef]
58. Gorgani, S.A.; Panahi, M.; Rezaie, F. The Relationship between NDVI and LST in the urban area of Mashhad, Iran. In Proceedings

of the International Conference on Civil Engineering Architecture & Urban Sustainable Development, Tabriz, Iran, 27–28
November 2013; p. 51.

59. Malik, M.S.; Shukla, J.P.; Mishra, S. Relationship of LST, NDBI and NDVI Using Landsat-8 Data in Kandaihimmat Watershed,
Hoshangabad, India; NISCAIR-CSIR: Hoshangabad, India, 2019.

60. Sun, D.; Kafatos, M. Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America.
Geophys. Res. Lett. 2007, 34, L24406. [CrossRef]

61. Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and land
surface temperature for drought assessment: Merits and limitations. J. Clim. 2010, 23, 618–633. [CrossRef]

62. Fatemi, M.; Narangifard, M. Monitoring LULC changes and its impact on the LST and NDVI in District 1 of Shiraz City. Arab. J.
Geosci. 2019, 12, 127. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs11020105
https://doi.org/10.1016/j.enbuild.2010.10.002
https://doi.org/10.1029/2007GL031485
https://doi.org/10.1175/2009JCLI2900.1
https://doi.org/10.1007/s12517-019-4259-6

	Introduction 
	Materials and Methods 
	Study Area 
	Data Collection 
	Images Preprocessed Status and Preparation 
	Calculation of Normalized Difference Vegetation Index (NDVI) 
	Calculation of Fractional Vegetation Cover (FVC) 
	Calculation of Land Surface Temperature (LST) 
	Hot Spot Analysis 

	Results 
	Discussion 
	Conclusions 
	References

