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Abstract: It is widely acknowledged that the quality of greenway landscape resources enhances the
visual appeal of people. While most studies have evaluated visual perception and preference, few
have considered the relationship between the distribution of greenways in relation to the proximity
of water bodies such as lakes and rivers. Such an investigation requires an in-depth analysis of
how to plan and design greenways in order to better enhance people’s willingness to access and
utilize them. In this research we propose specific color brightness and contour visual attraction
elements to further discuss the quality of greenway landscape resources in the rapidly urbanizing
Lake Taihu region of China. Specifically, we utilize a common method in fractal theory analysis called
counting box dimension to calculate and analyze the sample images. The method generates data on
fractal dimension (FD) values of two elements; the optimal fractal dimension threshold range; the
characteristics exhibited by the maximum and minimum fractal dimension values in the greenway
landscape; and the relationship between the two visual attraction elements allowing us to derive
distribution of the greenway and water bodies. The results reveal that greenway segments with high
values of the visual attraction element of color brightness fractal dimension (FD) are significantly
closer to the lake than those subject to high values of the visual attraction element. Some segments are
even close to the lake surface, which is because the glare from the direct sunlight and the reflection
from the lake surface superimposed on each other, so that the greenway near the lake surface is
also affected by the brightness and shows the result of high color brightness values. However, the
greenway segments with high values of contour element FD are clearly more influenced by plants
and other landscape elements. This is due to the rich self-similarity of the plants themselves. Most
of the greenway segments dominated by contour elements are distant from the lake surface. Both
color brightness and contour elements are important indicators of the quality of the visual resources
of the Lake Taihu Greenway landscape. This reveals that the determination of the sub-dimensional
values of color brightness (1.7608, 1.9337) and contour (1.7230, 1.9006) visual attraction elements and
the optimal threshold range (1.7608, 1.9006) can provide theoretical implications for the landscape
planning and design of lake-ring type greenways and practical implications for assessing the quality
of visual resources in greenway landscapes.

Keywords: color brightness; contour; visual attraction; fractal dimension (FD); boxplot; Lake Taihu

1. Introduction

An important type of linear landscape space, the greenway plays an important role in
connecting various nodes between regions [1]. Designed with green planting configurations,
they often link regional scenic spots, human heritage sites, ecological reserves, towns
and villages, wetland parks, urban parks, and healing resorts [2], and carry a variety of
functions such as ecological restoration [3], transportation [4], cultural heritage [5], heritage
protection [6], fitness landscape [7], and tourism [8]. They are of great importance in
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promoting a regional perspective on the construction of eco-towns. As a result, the planning
and actual construction of greenways is currently receiving unprecedented attention in
many areas and some countries have undertaken the construction of greenway systems.
Since the 1980s, China’s greenways have ranged from localized neighborhood greenways,
urban greenways, suburban greenways, and regional greenways to the planning and
construction of national greenway networks, with several thousand greenway projects
planned and constructed. Greenway construction is gradually becoming an international
movement providing an effective means of improving the quality of life of regional habitat
through the application of environmental restoration and conservation efforts [9].

It is worth noting that the visual resources of the Lake Taihu Greenway (LTG) land-
scape are under consistent threat of impact by rapid urbanization [10,11] and human
activity [12]. These visual resources are made up of different landscape elements, in order
to achieve the purpose of restoring the landscape visual resources of the LTG. This study
began with a basic cataloguing of all visual elements in the greenway. Through an extensive
literature review process, we were unable to identify little emphasis on research into the
visual attractiveness of greenway analysis. The basic elements of landscape visual design
are points, lines, planes, solid volumes, and open volumes. The classification of these
elements is often conducted at a macro-level and does not specifically evaluate the elements
of visual attractiveness in the landscape [13]. In addition, the elements of visual attraction
in landscape have a clear classification and focus on the human eye being attracted to the
elements of the landscape. The visual appeal elements of the landscape are spatial scale
and distance, solids, boundaries, colors, lines, shapes, ephemeral natural phenomena, vege-
tation, textures, bodies of water, dynamic scenes, and sunlight [14] (Table 1). Landscape
visual design elements are classified from a design perspective, while landscape visual
attraction elements are classified from a human perception perspective.

Table 1. Comparison of the two element types.

Type Elements

landscape visual elements point, line, plane, solid volume, and open volume

landscape visual attraction elements
spatial scale and distance, solid, boundary, color, line,
shape, transitory natural phenomenon, vegetation,

texture, waterbody, dynamic scene, sunlight

Previous research has found that color brightness and contour elements are elements
of visual attraction in landscapes [15]. The visual attraction test was carried out with
reference to experiments in the discipline of psychology. It is very clear that locations with
high color brightness are more likely to be picked up by the human eye (Figure 1). Rich and
varied contour lines are more visually appealing than less varied contour lines, significantly
different from other graphics (Figure 2) [16]. However, when these two elements are
commonly tested separately, the intensity of visual attraction in the landscape may not
be significant.
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Fractal theory suggests that irregular landscape patterns reveal the attractiveness of
layered color brightness and contour attraction elements in nature because of the statis-
tical self-similarity [17,18] and complexity [19,20] of fractal elements. Mandelbrot was
a renowned mathematician and economist, and the founder of fractal theory. He gave
the following definition of self-similarity. When each portion of a shape is geometrically
similar to the whole, both the shape and the cascade (the generating mechanism for the
details of the shape) that generate it are called self-similar [17,21]. Research over the past
decades has shown that the complexity of fractals refers to the variation of the details of
the fractal pattern with scale. Complexity can describe problems with a very large number
of variables, where each variable has its own unstable behavior or may be completely
unknown. The analysis of complexity reveals structural features of fractal meter boxes
and produces systematic changes as parameters are varied [22,23]. The algorithm of box
counting fractals in fractal number theory can attenuate the influence of subjective factors
in the evaluation process, so that the variability of the visual attraction elements of the
landscape of the LTG can be objectively reflected. Based on the principles of fractal number
theory and the above experimental results, the contour lines have typical irregular shapes
and self-similarity. Color brightness can be expressed because of the strength of brightness
by means of the black and white binary image analysis of fractional dimensional number
theory. Therefore, we hypothesize that these two elements have a significant impact on the
visual attractiveness of the Taihu Greenway landscape and be able to assert within what
threshold range these two elements can achieve the highest visual attractiveness values.

Specifically, due to the width of Lake Taihu, the human eye cannot see the shoreline
on the opposite side of the lake but can see the sky in the distance connecting to the lake
along the horizon. The greenway immediately adjacent to the lake is subject to the glare of
sunlight reflecting from the lake, producing a stronger light, which is related to the color
brightness. Further from the lake the greenway links different landscape elements based on
spatial scale and relative position [24], highlighting elements such as vegetation types, road
boundaries, physical buildings, landscape structures, dynamic scenery, texture, etc. These
elements have a richer contour than the water surface and are all factors in determining the
high or low visual attraction value of the landscape [25,26].

For these reasons the LTG was selected as the research site. Building upon our
hypothesis that color brightness and visual contours can be measured to reveal visual
attractiveness in a landscape, we engage the following research questions: (1) Does the
landscape color brightness of the greenway significantly increase immediately adjacent
to the lake? (2) Does the landscape contour of the greenway become richer away from
the lake? (3) Are the two landscape visual attraction elements important indicators of
the quality of the visual resources of the LTG? (4) Do the two landscape visual attraction
elements influence the distribution of the greenway in relation to the lake?

2. Data and Methods
2.1. Study Area

The study area for the case study is Lake Taihu (Figure 3) situated in the Yangtze
River Delta (30◦55′40′′~31◦32′58′′ N and 119◦52′32′′~120◦36′10′′ E). Lake Taihu is one of the
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largest freshwater lakes in China with typical characteristics of a shallow and subtropical
lake in the region. Its watershed draws from an area of 36,895 km2 including 3192 km2 of
open water [27]. It is in one of the most rapidly urbanizing and economically productive
regions of Yangtze River Delta and is an important resource for tourism and healthy
recreation while also supporting a rich diversity of ecological conditions [28]. In recent
years, the continued expansion of urban development in the Yangtze River Delta has had a
negative impact on supporting the ecological stability of Lake Taihu. These activities have
also affected the visual attractiveness of landscape resources along the Yangtze River Delta,
and issues such as damage to visual resources need to be urgently addressed. The LTG is
therefore the most appropriate location to study the type of greenway around the lake.
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2.2. Experimental Data Investigated

The LTG connects the cities of Changzhou, Wuxi, Suzhou, and Huzhou in the Jiangsu
and Zhejiang Provinces. For the purposes of this study, we installed two-step outdoor
assistant software on our mobile phones to record the location of the greenway under study
and the 118.52 km of greenway suitable for use in fractal theory research. Informed by
previous research utilizing fractal theory to study the British shoreline [29] we assessed the
section of LTG with the greatest variation in lake adjacency and ecological richness. We
began our data collection work from the city of Wuxi, closest to the shoreline of the lake,
and set this point as A. We then travelled north along the greenway immediately adjacent
to the lake. We collected data in points with open landscape spaces, heavy visitor use, large
public buildings, scenic spots, wetlands, and urban parks. Each test point was labelled
A–O in the order the data were collected (Figure 4). These locations were selected as test
points because they are close to the lake and can effectively support the study of color
brightness attraction elements [30]. Greenways sections that are further away from the lake,
or even through the city, were not included in this study. In addition, these 15 test sites
were selected because they all have the characteristics of open space and contain rich visual
attraction elements of the landscape, which can effectively support the study of contour
attraction elements [31]. According to the division of China’s urban administrative regions,
the A–E section of our study is located within Changzhou City, Jiangsu Province, and the
F–O sections are in Changzhou City (Figure 5).
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Data collection took place in the morning (8:00 a.m.–12:00 a.m.) and afternoon
(1:00 p.m.–7:00 p.m.) of 11–13 November 2020, when the weather in the LTG area was
sunny and of a suitable temperature. The autumn vegetation was rich in color [32] and is a
peak time for people to be outdoors [33]. Ten experts and professors in the fields of urban
and rural green infrastructure planning, environmental psychology, visual perception, and
other related research were invited to evaluate and select the photographs obtained on site.
The final 124 photographs were then discussed by the panel and selected for testing. Both
the expert panel and the research group’s criteria for the test photographs included good
photographic quality and significant differences between each test section. The team took a
total of 2078 photos, 9 photos each of the 15 test sites in the A–O test section, near the lake
and away from the lake, for a total of 135 photos of the greenway. Nine photographs were
excluded from the test, and 124 photographs were selected for testing.
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2.3. Methods
2.3.1. The Theory of Fractional Dimensionality and Its Methods

Fractal dimension (FD) analysis is a commonly used indexing method for visually
assessing feature design, fractal art, fractal information, and shape classification in many
research fields from mathematics to the design disciplines. The concept of fractal dimen-
sions has been explored in mathematics since the 1600s but it was not until the latter half of
the 20th century when mathematician Benoit Mandelbrot first coined the term when he
discovered a high correlation of self-similarity between geographical curve length and its
detail across spatial scales [29]. The self-similar structure of FDs is suitable for analyzing
the irregular patterns in nature [34] that are distinct from Euclidean geometry [21]. The
typical irregularity of landscape patterns can be analyzed by FD theory and described by
law of proportion to assess visual attraction [35].

Several distinct methods can be used to assess the FD; however, the most common
are box-counting, the variance approach, and spectral assessment [36,37]. For visual
assessment, box-counting is the simplest method to apply through which visual data are
analyzed for self-similarity across spatial scales from a large area into component parts
of greater and greater detail [38]. This method has been tested by researchers across a
range of disciplines to analyze, for example, city skylines [39], coastlines [40], and visual
arts [41], yet the quantitative analysis of visual attraction for landscape elements has yet
to be considered. For this research, we use the box-counting method to determine the
objectivity and regularity implied in the foundations of visual attraction related to contour
and color brightness (Figure 6).
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Fractal Dimension

Fractal is a new geometric language that may be used to describe objective objects in
nature and human culture [42]. It is a new field of modern mathematics that compensates for
the limitation of classic Euclidean geometry to quantitatively describe complex, relational
forms. As a result, fractal theory was developed to express the irregular, yet self-similar
geometric structures. Some patterns in nature follow defined geometric laws, while others
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do not. Many reveal patterns of self-similarity in the relationships between a part and the
whole in terms of shape, structure, information, function, time, and energy.

For Euclidean fractals (D), the diminishing linear size in each spatial orientation to
1/r results in N = rD times of original size in its measurement (length, area, or volume).
The equation can be advanced by adding the logarithm of both sides of the equation as
log(N) = Dlog(r), from which a result of Fractal D can be identified. Thus, Equation (1)
is derived:

D = log(N)/log(r) (1)

When applied to the objective world, D can be a fraction, and does not have to be an
integer. The value range of D is from 1 to 2.

Box-Counting Fractal Dimension

The Boxing-counting method involves covering the fractal object under investigation
with a two-dimensional grid of diminishing size. A box-counting dimension formula is
used to calculate the fractal dimension of the research item by computing the number of
two-dimensional grids filled by the fractal object. The box-counting dimension is used
by most researchers in the study of landscape visual complexity to compute the fractal
dimension, and the numerical precision of the computation is governed by the image
size [43].

Box-counting for FD is also termed as box fractal dimension or Minkowski fractal [44].
It is a quantitative method for measuring distance (X, d), particularly in Hausdorff space, as
the fractal dimension of ε in Euclidean space. The method for calculating fractal dimensions
is to overlay the fractal on an equally spaced grid, and to count the number of grids covered
by a given fractal. With gradual refinement of the grids, the variability in the number of
grids covered by a given fractal is recorded to calculate box-counting fractal dimension.

Dbox = lim
ε→0

logN(ε)

log(1/ε)
(2)

In Equation (2) [45], Dbox refers to box-counting fractal dimension; N(ε) is the number
of small graph; 1/ε is the length of segments of each small graph.

Boxplot Analysis

To assure the correctness of the test values, we used the box plot’s intuitive expression
approach to minimize outliers examined by the box-counting dimension while retaining
the legitimate value range. A box plot is a statistical graph that displays information about
the collection of data’s dispersion. It is created using regularly used statistics and can give
important information about the data’s location and dispersion; named from its box-like
shape. It is mostly used to represent the features of the original data distribution, but it
may also be used to compare the distribution characteristics of several data sets. It can
show the highest, lowest, median, and upper and lower quartiles of a collection of data.
The Boxplot was a popular univariate data display originated by John W. Tukey [46] who
described it as a “schematic plot”, and the box-and-whiskers plot [47,48]. The rectangle box
has two lines which are extending from opposite edges of the box. The ends of the lines
represent the upper limit edge and lower limit edge. The third quartile and first quartile
are distributed on both sides of the median which is a line parallel to the two limit edges.
The boxplot displays two quartiles, with potential outliers and the median [49] (Figure 7).

2.3.2. Analysis

Fractal theory was selected to analyze the visual attraction elements of the landscape
color brightness and contours of the Taihu Greenway, due to the characteristics of the
fractal theory described above. The A-1 image from the test map was first chosen as an
example (Figure 8). In the binary diagram generated by a Fraclab 2.2 operation, trees,
shrubs, and footpaths can be quantified by a grid of different cell side length scales r, each
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with a number of small squares N. Equating each square side length r to form a new square
side length scale is called one iteration. When the side lengths of the square grid keep
on iterating r = 1, r = 1/2, r = 1/4, r = 1/8, ......, the number of squares N increases and
extends in an endless iteration, and the more accurately the side lengths of the irregular
contours can be calculated. The graph after each iteration reveals a high degree of self-
similarity to the shape of the graph before the iteration. The properties of the box-counting
dimensionality method of fractal theory are therefore well-suited to the analysis of irregular
contour elements in the landscape.
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The A-1 diagram output has only two colors, black and white, but to match the visual
physiological mechanisms that people use for image recognition. We have switched the
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two colors of black and white in the diagram, changing the lines that appear black on the
diagram to a white presentation, and changing the lines that appear white on the diagram
to white. In this way, we believe that we can use the box-counting dimensionality method
for the representation of both black and white colors using color lightness intensity. We
also chose Boxplot to analyze the values of the two elements because Boxplot can eliminate
invalid data that appear in the analyzed data and ensure the concentration and accuracy of
the threshold range of the sub-dimensions.

3. Results
3.1. Overview

The 124 test samples were initially imported into MATLAB R2015a software for image
processing, and two binary maps of each image were obtained for each sample. Second,
the binary maps of these images were imported into Fraclab 2.2 software for calculation
to obtain the fractional dimensional values of color brightness and contour elements
respectively. Lastly, outliers were removed by plotting box plots to obtain the optimum
threshold range between the two elements. This objective reflects the extent to which
people’s eyes are focused on the strength of the color brightness and contour elements in
the Taihu Greenway (Figure 9).
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3.2. Image Processing Process and Dimensional Calculation

To quantify the indicators of visual attraction elements of color brightness and contour
in LTG, the original image was processed into a visual digital image, and data analysis
and numerical calculation were performed. The research team performed data analysis
on 124 sample images of 15 test points on a computer with Intel(R) CoreTM i7-8750H and
8.00 GB of RAM and obtained the color brightness and contour binary images and their
fractal dimension indicators.

3.2.1. Image Processing Process

A total of 124 image samples were imported into MATLAB R2015a, and the color
lightness and contour codes were input for calculation. Each sample image displayed two
binary images, which are the color lightness binary image and the contour binary image
(Figure 10).
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Matlab code for color brightness image processing
1. A = imread(‘A-1.jpg’)
2. B = rgb2gray(A)
3. C = im2bw(B,0.5)
4. D = double(C);
5. Figure
Subplot(1,2,1);imshow(A)
Subplot(1,2,2);imshow(D)
6. End
Matlab code for contour image processing
1. A = imread(‘A-1.jpg’)
2. B = rgb2gray(A)
3. C = im2double(B)
4. [K,thresh] = edge(C,‘canny’)
5. D = double(K)
6. Figure
Subplot(1,2,1);imshow(A)
Subplot(1,2,2);imshow(D)
7. End

3.2.2. Box-Counting Fractal Dimension Calculation

Box-counting the fractal dimensions revealed a correlation between the ranges of color
brightness and contour across the fractal dimension. The color brightness and contour
binary image data were imported into Fraclab 2.2 software. The color fractal dimension
indicators range (1.7360–1.9279) (Figure 11) and contour fractal dimension indicators range
(1.6461–1.9027) (Figure 12) were obtained by calculation.

From the scatter plot, we can clearly identify the color luminance and contour fractal
dimensions of the 15 test points mostly distributed within a specific range, with only a few
samples showing a large dispersion from this range. Therefore, we can use the boxplot to
exclude outliers and obtain a threshold range of color luminance fractal dimension and
contour fractal dimension suitable for the LTG in the experimental area.

We then summarized the color brightness fractal dimension range and contour fractal
dimension range of 124 image samples in its test points A–O (Table 2). We found that
the number of greenway segments located in Wuxi City was significantly higher than
the number of greenway segments in Changzhou City. This is because test points A–B
segments and J–O segments are located within the administrative area of Wuxi City and
the length of the shoreline along the lake is longer than test points B–I segments, which are
located within the administrative area of Changzhou City.
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Table 2. The fractal dimension interval testing results of 124 samples.

Test Points Latitude and Longitude
Coordinates City Sample Size Color Brightness Fractal

Dimension Interval
Contour Fractal

Dimension Interval

A (31◦14′24” N, 119◦53′38” E) Wuxi 8 (1.7537, 1.8942) (1.7839, 1.8608)
B (31◦28′45” N, 120◦02′47” E) Changzhou 8 (1.8264, 1.8972) (1.7420, 1.8716)
C (31◦28′29” N, 120◦03′41” E) Changzhou 8 (1.7911, 1.8721) (1.7664, 1.8184)
D (31◦28′06” N, 120◦03′45” E) Changzhou 5 (1.8254, 1.8649) (1.7669, 1.8216)
E (31◦27′37” N, 120◦04′20” E) Changzhou 5 (1.7675, 1.9279) (1.6461, 1.8272)
F (31◦25′45” N, 120◦04′11” E) Wuxi 17 (1.8111, 1.8997) (1.6909, 1.9027)
G (31◦23′03” N, 120◦04′27” E) Wuxi 6 (1.7479, 1.8849) (1.7904, 1.8529)
H (31◦24′07” N, 120◦05′10” E) Wuxi 8 (1.7584, 1.8867) (1.7713, 1.8712)
I (31◦25′18” N, 120◦05′54” E) Wuxi 3 (1.8359, 1.8788) (1.7816, 1.7943)
J (31◦29′57” N, 120◦07′28” E) Wuxi 9 (1.7923, 1.9246) (1.7855, 1.8518)
K (31◦31′49”N, 120◦09′30” E) Wuxi 3 (1.8532, 1.8837) (1.7243, 1.8044)
L (31◦32′35”N, 120◦10′27” E) Wuxi 9 (1.7499, 1.8577) (1.8039, 1.8712)
M (31◦32′09”N, 120◦11′13” E) Wuxi 12 (1.8313, 1.8730) (1.7517, 1.8799)
N (31◦32′54”N, 120◦13′41” E) Wuxi 12 (1.7360, 1.8722) (1.7931, 1.8618)
O (31◦31′15”N, 120◦15′57” E) Wuxi 11 (1.7854, 1.8667) (1.7804, 1.8546)

3.3. Boxplot Analysis Threshold

Using the boxplot analysis method to eliminate outliers helped to determine the
optimal threshold range. We identified six color luminance indicators (Figure 12) and
five contour indicators (Figure 13) as outliers. Because the six color brightness indicators
(1.7360 (N-3), 1.7479 (G-5), 1.7499 (L-9), 1.7537 (A-4), 1.7567 (L-4), 1.7584 (H-5)) were
distributed outside the thresholds (Lower Quartile: Q1 − 1.5 × IQR, Upper Quartile), it
can be concluded that the optimal threshold range for visual attraction of color brightness
is (1.7608, 1.9337). The five contour indicators (1.6461 (E-1), 1.6909 (F-6), 1.7110 (F-7),
1.7161 (F-9), 1.9027 (F-13)) are distributed outside the threshold values (Lower Quartile:
Q1 − 1.5 × IQR, Upper Quartile: Q3 + 1.5 × IQR). Therefore, these five values are also
outliers. The contour visual attraction adheres to the optimal threshold range of (1.7230,
1.9006). The results show that the six outliers color brightness elements test images are
evenly distributed across the different test passages. In contrast, four of the five outliers
contour element test images were in paragraph F and the other outlier was located in
paragraph E. This is in line with the fact that the color brightness boxplot Q1–Q3 range
(Figure 13) is wider than the contour element boxplot Q1–Q3 range (Figure 14). The wider
the boxplot Q1–Q3 blue range, the more dispersed the values in this range. the narrower
the boxplot Q1–Q3 blue range, the more concentrated the values in this range (Table 3).
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Table 3. The boxplot results of fractal dimension indicators.

The Boxplot Calculation
The Boxplot Results

Threshold Range Outliers Sample Number of Outliers

Color brightness boxplot
Q1 1.8257

(1.7608, 1.9337)

1.7360
1.7479
1.7499
1.7537
1.7567
1.7584

N-3
G-5
L-9
A-4
L-4
H-5

Q2 1.8443
Q3 1.8689

IQR 0.0432
Contour boxplot

Q1 1.7896

(1.7230, 1.9006)

1.6461
1.6909
1.7110
1.7161
1.9027

E-1
F-6
F-7
F-9
F-13

Q2 1.8076
Q3 1.8340

IQR 0.0444

4. Discussion
4.1. Visual Attraction Elements of Color Brightness and Contour

Color brightness and contour are two important visual attraction variables in the
LTG. Previous research reveals forest landscape space resolution, spectrum resolution,
scale effect of landscape pattern, complex geomorphological information capacity, and
the prediction of habitat patchiness with gently curved perimeter can all be analyzed by
fractal theory [50]. From the test results, it can be seen that the color brightness and contour
visual attraction elements in the Taihu Greenway can be analyzed using the fractal theory
of fractal number method, and the boxplot analysis method in this theory can effectively
eliminate invalid values.

Elements with higher color brightness are affected by the light intensity in landscape
space. Even on sunny days, shaded areas, backlit surfaces, and landscape elements with
varying degrees of surface texture can have a significant impact on color brightness. The
greenway along the lake, which is paved with wooden planks, is also characterized by
a high degree of color brightness due to the combination of reflection from the lake and
direct sunlight (Figure 15).
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Figure 15. Binary image analysis of color brightness elements.

The contour-rich landscape elements generally consist of vegetation and solid land-
scape features, and the fluidity of the vegetation contours adds a sense of movement to
the greenway landscape space. It is easy to see from the black and white binary diagram
that the trees not only have the outer contours of the entire tree form, but also the unusu-
ally rich inner contours of the branches and leaves; while the contours of the landscape
walls, landscape pavilions, and road grooves are relatively more complete and concise.
The abundance of contour lines is a contouring feature of the richness of each landscape
element in the landscape space, highlighting the richness and fluidity of the contoured
visual attraction elements [51] (Figure 16).
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Figure 16. Binary image analysis of contour elements.

The minimum and maximum fractal dimension values of color brightness and contour
elements in visual attraction express the intensity of attraction to human eyes by various
visual elements in landscape space. The comparison between three black-white binary
images selected from testing samples with maximum fractal dimension values and three
images with minimum values more easily reveals the difference among fractal dimension
values in visual attraction.

We selected three test images with the smallest and three with the largest fractional
dimensional values for comparison. It was found that the minimum fractional dimensional
number image consisted mainly of plants and pavilions with rich contours, and the min-
imum fractional dimensional value image consisted mainly of the lake, the sky, and the
area in direct sunlight. This suggests that the smaller the value, the more significant the
contour-attracting elements contained in the landscape, within a range of thresholds that



Land 2023, 12, 883 15 of 21

create a strong attraction for people (Figure 17). The larger the value, the more significant
the element of color brightness contained in the landscape (Figure 18).
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A comparison of these two thresholds of visual attractiveness found that there was
an overlap. Combined with the test images, we determined that the Taihu Greenway
has both the strongest color brightness and contour richness within the (1.7608–1.9006)
element threshold range. The visual appeal to people reaches the maximum interval range
(Figure 19).
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4.2. Interpreting Observed Elements of Visual Attraction in Relation to the Distribution of
Greenways and Water Bodies

After the understanding of the common visual attraction capability by color brightness
and contour elements of visual attraction, landscape visual feature variance is identified
between samples with large absolute values of fractal dimensions and the value differences
of two elements and samples with small absolute value (for better expression and under-
standing, the difference value is uniformly set as absolute value) (Figure 20). Three samples
(A-2, O-8, O-4) with minimum absolute difference were selected for further investigation.
We observed that samples with minimum absolute difference were generally located in
areas with greatest distance between the green way and the lake surface or contained
small portion of lake body and sky in the visual threshold (Figure 16). The reason for this
observation is that, in the greenway area a significant distance from the lake, the contour
forms of other landscape elements such as verdant vegetation, architectures, buildings, and
miscellaneous solid scenic features, are abundant, so the associated fractal dimension value
is higher. Moreover, the color brightness fractal dimension value of landscape space with
direct sunlight is also high. Hence, the minimum absolute difference of fractal dimension of
two elements suggests that the higher the color brightness element of visual attraction, and
the more abundant the contour element of visual attraction, the more visually attractive the
Lake Taihu landscape space to human eyes.

The comparison is also conducted among three samples (K-1, F-10, B-8) with maximum
absolute difference (Table 4). It explains that the sample with maximum absolute difference
is either a closer distance from greenway to lake surface or it contains a large portion of lake
and sky in the visual threshold. The reason of this observation is that, in landscape space
of Lake Taihu, the lake is the principal and dominant landscape element, and, especially
when the color of the lake water’ blends with the color of the sky. The reflection of lake
surface enhances color brightness, making it most potent visual attraction as well as the
highest value of fractal dimension of color brightness (Figure 17). Since the greenway is
adjacent to the broad and reflective surface of Lake Taihu, the visual connection to the sky
contributes to high color brightness, resulting in a high fractal dimension value (Figure 16).
Because the farther part of lake surface blends with the sky along the horizon, the crossing
contour of sky and lake surface is simple, and hence the fractal dimension value is low.
Thus, the reason why absolute difference of color brightness and contour elements of visual
attraction is large is the relatively large proportion of sky and water body in human vision
and the relatively smaller proportion of other scenic features. This research also confirms
that water adjacent greenways have a higher degree of aesthetic appeal and more favorable
psychological signals than non-water adjacent greenway spaces.
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Table 4. The difference between fractal dimension metrics.

Sample Number
Fractal Dimension Metrics

Color Brightness Fractal Dimension Contour Fractal Dimension Absolute Value of Difference

Three samples with the smallest difference
A-2 1.8137 1.8146 0.0009
O-8 1.8531 1.8546 0.0015
O-4 1.8271 1.8289 0.0018

Three samples with the largest difference
K-1 1.8837 1.7243 0.1594
F-10 1.8903 1.7459 0.1444
B-8 1.8735 1.7420 0.1315

To these ends, along the LTG, the segments furthest from the latke contain abundant
scenic features, and these features possess highlighted color brightness and easily identified
contour lines in clear days, so better visual attraction can be perceived by users. In planning
and design, the scenic features with abundant contours and miscellaneous combinations can
create lakeside greenway landscape space model with sparseness and dense, concentration
and dispersion, openness, and hiddenness.

When the greenway is close to the lake, the surface of the water and sky become
the subjects of visual attraction due to the diminishment of other scenic features, which
makes people perceive broad and wide landscape visual space. This suggests that the
lake should be the primary focus of planning, and the construction investment of other
landscape elements should be reduced. Within reasonable ecological capacity, tourists
should be encouraged to take advantage of waterfront space as frequently as possible,
and the interface connecting people to the lake should be enlarged as much as possible
to enhance water preferable landscape space along lakeside greenway. In this way, the
demands of different visitors can be satisfied, the best status of landscape visual perception
can be achieved, and the probability of return visits can be increased.
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4.3. Theoretical and Practical Implications for Regional Planning and Design
4.3.1. Theoretical Implications for Regional Planning

The selection of color brightness and contour visual are appealing elements to discuss
the quality of the Lake Tai greenway resources, and can provide a stronger appeal to visitors.
These findings have important theoretical implications for the planning and design of the
area. It has been extensively documented that visual design elements help to improve the
rationality and science of the greenway distribution [52] during route selection planning
and planning and design [53]. The attractiveness of greenways can be improved if the
relationship between color brightness and contour visual attraction elements and greenway
distribution is focused on in the early stages of greenway construction.

Specifically, the proximity of these two elements of visual attraction to the lake can
have an impact on people’s vision, particularly in terms of affinity and visual preference
for the water body [25]. There is evidence that the closer a greenway is to a body of
water, the more it will be favored [54]. In contrast, the contours of the lake are much
simpler than those of other landscape elements. Greenways at a distance from the lake
are comprised of many other landscape elements and will therefore have a richer contour
element. In the absence of a body of water, people will shift their visual attraction to other
landscape elements and experience the different shapes of landscape elements as bringing
a completely different visual preference to the body of water [55]. The visual attraction
thresholds for both elements can further address the direct relationship between people
and the greenway around the lake, increasing the time and frequency of people using the
greenway, as well as optimizing the visual resource allocation of the greenway landscape.

4.3.2. Practical Significance towards Resource Quality Enhancement

The use of a two-factor optimal threshold index can be used to assess the practical
significance of the frequency of the visual resource quality of the landscape of the greenway
around the lake in relation to the interests of the users. It can provide planners of the
greenway with a design basis. Importantly, this optimal threshold index can be used to de-
termine the design of unbuilt greenway plans. Although there are areas along the greenway
where the visual resources of the landscape are good, the greenway also links areas with a
high density of users. Therefore, greenway designers should consider enhancing the visual
quality of the various landscape resource points along the Taihu Greenway, especially when
these two elements are present, and the proximity of the greenway to water bodies needs
to be taken into account.

Consistent with the previous research [56], people have a natural affinity for water,
especially along shorelines where they can get close enough to interact with the water
where large crowds gather. This can be done by increasing the length of the greenway
immediately adjacent to the water during planning and design, while increasing the
richness of the shoreline variation design. For example, adding design elements such
as different vegetation, stones, and interesting safety railings to the design of natural
and artificial barge lines. In the greenway away from the lake, the design of visually
appealing physical elements of the landscape with different contours is well-established.
The complexity and richness of the silhouette attraction elements can be significantly
enhanced by the very rich contours of the plant trunks and branches [57]. Therefore,
designers need to focus on the design of planting configurations, where high-quality
landscape visual resources are available to expand the connectivity of the greenway with
the surrounding landscape space and increase the willingness and frequency of users
to visit.

4.4. Limitations

Although we measured the fractional dimensional values of the color brightness and
contour elements as important indicators of the visual attractiveness of the Taihu Greenway,
there are several limitations to our study. First, the fractional dimensional values for these
two visual attraction elements were measured along the Lake Taihu shoreline where the
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curvature is the highest, the shoreline form is the richest and the distance from the lake
is the closest. However, there are many other greenways in the Lake Taihu area that are
far from the lake, and most of these are straight and linear, with very little curvature.
Second, as one of the important indicators for calculating the visual attractiveness of
greenways around the lake, this study only analyzes the distribution of greenways by
two visual attractiveness factors, namely color brightness and contour, and the lack of
human preference for waterfront greenways is ignored in this paper. Third, although we
suggest that the two visual attraction factors of color brightness and contour are important
indicators of the quality of visual resources in the LTG landscape, potentially pointing
out that this has an impact on people’s visual attraction, what specific effects and what
behaviors are triggered will need to be further considered in the next study.

5. Conclusions

This study is part of a 10-year continuous evaluation of visual attraction for landscapes.
For the purposes of our study, we selected a greenway segment in the rapidly urbaniz-

ing region of Lake Taihu as a case study with the intention of assisting designers to better
understand the characteristics of color brightness and contour visual attraction elements
of the greenway landscape and the impacts this may have on the planning and design of
the greenway.

We conclude that: (1) Fractional dimensional number theory can be used as an effective
method to analyze the characteristics of color brightness and contour visual attraction
elements in the LTG. In particular, the optimal threshold range of visual attraction for
the color brightness element is (1.7608, 1.9337) and the optimal threshold range of visual
attraction for the contour element is (1.7230, 1.9006). This reveals that the larger the two
visual attraction elements are, the more effective, but they need to be within a reasonable
range, which corroborates previous research (Yan et al., 2017).

(2) Color brightness and contour visual attraction elements are important indicators of
the quality of the LTG landscape resources. Due to the wide lake surface of Lake Taihu,
the bright light from direct sunlight on the lake surface and the strong reflections from
the lake surface being illuminated by sunlight are superimposed on each other. The color
brightness values of the greenway immediately adjacent to the lake are greatly enhanced.
The greenway away from the lake is affected by the large amount of vegetation and other
landscape structure features, with a significant increase in the value of the contour visual
attraction element.

(3) Color brightness and contour visual appeal elements can influence the distribution
of greenways in relation to the distance from the lake. Greenway sections with higher color
brightness indices are basically located closer to the lake or even close to it. Greenway
sections with a higher contour index are distributed further away from the surface of Lake
Taihu. People standing in greenways with a high contour index cannot view the lake and
are less intimate with the lake.
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