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Abstract: Soil fertility (SF) assessment is an important strategy for identifying agriculturally pro-
ductive lands, particularly in areas that are vulnerable to climate change. This research focuses on
detecting SF zones in Firozabad district, Uttar Pradesh, India, for agricultural purposes, so that they
can be prioritized for future management using the fuzzy technique in the Arc GIS model-builder. The
model computing technique was also deployed to determine the different fertility zones, considering
17 soil parameters. The derived fuzzy technique outperformed the traditional method of dividing
the sampling sites into clusters to correlate soil fertility classes with the studied soil samples. The
prioritization of the soil factors and a spatial analysis of the fertility areas were carried out using the
Analytic Hierarchy Process (AHP) and GIS tools, respectively. The AHP analysis outcome indicated
that hydraulic properties had the highest weighted value, followed by physical and chemical prop-
erties, regarding their influence on SF. The spatial distribution map of physico-chemical properties
also clearly depicts the standard classification. A fuzzy priority map was implemented based on all
the classes parameters to identify the five fertility classes of the soil, namely very high (0.05%); high
(16.59%); medium (60.94%); low (22.34%); and very low (0.07% of total area). This study will be of
significant value to planners and policymakers in the future planning and development of activities
and schemes that aim to solve similar problems across the country.

Keywords: fuzzy model; geographical information system (GIS); spatial interpolation; soil fertility
mapping
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1. Introduction

The widespread loss of soil fertility throughout the world threatens food security and
sustainable development. Globally, it is estimated that human activity and climate change
have seriously endangered the soil fertility of more than one billion acres of land [1,2]. To
ensure sustainable agricultural production, the regular monitoring and evaluation of soil
fertility and its parameters are crucial [3]. The creation of maps in order to establish a soil
resource inventory and analyze soil suitability is one of the major uses of GIS applications
in soil pedology studies. Globally, GIS and multivariate statistical analyses are employed
to examine both the factors that control soil fertility and its ability to enhance sustainable
agriculture [4,5]. An essential tool for soil resource management is the mapping of the soil
properties that reflect the system’s resilience to the long-term or short-term effects of climate
change, such as the fertility and quality of the soil [6]. In recent years, GIS has emerged as a
powerful tool for resource management research. It can address multidimensional resource
management challenges, such as soil fertility, through its accuracy, visualization, and model-
building capabilities [5,7]. A soil fertility map can help evaluate soil quality problems, assess
pollution vulnerability, locate nutrient-deficient areas, and facilitate targeted interventions
for the efficient management of available resources [8].

Such techniques have been effectively used for the management of agriculture. In order
to perform evidence-based decision-making with the aim of improving soil management,
possessing up-to-date knowledge of soil fertility is crucial in order to address this global
concern [9–12]. The long-term consequences of the changes in soil productivity, soil
health and quality are less understood. Regardless, surveying soil quality based solely on
individual properties could be challenging, especially when these properties are intricately
influenced by land use changes and management activities [13,14]. As a result, a competent
assessment of these changes that supports the notion of soil quality requires numerous
tools and techniques to support diverse environmental conditions [15]. Defining soil
quality by employing several parameters is a cumbersome task, and necessitates the
derivation of a unified soil quality index obtained from diverse soil attributes; this ought
to be a much better representative of soil quality than individual indices [16]. The high
value of soil quality indices shows that soil quality greatly assists crop production and is
the key to sustaining agroecosystem productivity [17,18]. Possessing knowledge of the
spatial distribution of fertility status parameters will make it possible to determine the soil
quality of an area, and ensure the proper management of areas directly, using appropriate
amendment strategies [19].

Recent years have seen the application of fuzzy set theories extensively to solve
such environmental problems [20]. Natural phenomena can be rationally described and
evaluated using GIS. A few studies have used fuzzy logic to evaluate soil fertility using
geochemical parameters and GIS [21–23]. A review of these studies [24] led to the formu-
lation of the current study in a modified way, which assesses soil fertility regardless of
geomorphology, topography, and lithology. Previous studies have been conducted at the
farm scale in order to understand the spatial variability in soil properties and delineate
spatially homogenous nutrient-management zones [25]. However, spatiotemporal soil
fertility and quality changes have not been monitored, particularly when farm data have
been used [26,27]. The multicriteria method AHP [28] is used as a part of the research
methodology. It was created via the use of verbal responses and by employing the funda-
mental scale proposed by Saaty [28]. The study region is vulnerable to changing climate
scenarios and the spatial variability in the soil fertility status requires monitoring so that
proper management and remediation technologies can be employed to ensure a sustained
increase in crop production. As such, the present study addresses this by combining soil
quality, considered for fertility purposes, with a fuzzy model for effective decision-making
in soft computing techniques. Furthermore, this study explores the spatiotemporal varia-
tion of soil fertility for effective soil fertility management using the applied fuzzy model in
GIS-based techniques.
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2. Materials and Methods
2.1. Study Area

Firozabad (situated between 26◦53′ and 27◦30′ N latitude, and 78◦13′ E longitude)
is one of the most densely populated districts of western Uttar Pradesh, India, with the
majority of its population residing in rural areas (Figure 1). The Yamuna River marks
the district’s western and southern boundaries, and is shared with the Agra district. The
boundaries of Firozabad district touch Etah district in north and Mainpuri and Etawah
districts in the east. The climate in the region is subtropical steppe experiencing ~80 rainy
days with an average yearly precipitation of ~82 millimeters. The district’s topography
is generally flat, with soils similar to that of the alluvial soils (Inceptisols) of the Indo-
Gangetic plain (IGP) tract. With a northwest-to-south inclination, the area is primarily
flat and contains four sub-divisions with nine development blocks. The district bears
821 settlements, of which 19 are abandoned. The district is mostly under cultivation for
crops such as pearl millet, paddy, bajra, pigeon pea, sesame, black gram, and green gram in
the kharif season, whereas wheat, mustard, barley, potato, garlic, etc., are grown in the rabi
season. The soil texture varies from loam to silty clay loam, with the area being majorly
affected by ravines and wasteland.
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Approximately 74% of the reported total area (0.24 mha) of the district is under
cultivation, with the remaining 26% of land used for purposes other than agriculture
or remaining barren. The main cropping seasons in the district are Rabi, Kharif, and
Zaid, with a cropping intensity of 173%, which is considerably higher than the national
average. Both surface water resources and groundwater resources are used for irrigation,
but later are mostly relied upon for agricultural purposes. The area inherently suffers from
multi-nutrient deficiencies and a low organic carbon content, which is further aggravated
by the continuous cropping of cereals and legumes in all seasons, leading to very little
diversification. The region experiences extreme weather conditions, with an average annual
temperature of 30.7 ◦C (4.76% higher than the national average). This causes organic matter
to decompose faster than usual, particularly in peak summer months.

2.2. Soil Sampling and Analysis

A total of 108 soil samples were collected from a 0–15 cm depth (disturbed soil),
following random soil sampling in a zig-zag manner. This study was mainly concerned
with an assessment of the soil fertility, so only the surface soil depth (6 inch or 15 cm)
was considered. Sampling coordinates were taken with the help of a hand-held Garmin
GPS (etrex®10). The quartering technique was adopted to reduce the sample size of
the required mass. Samples were labelled and stored in plastic bags and taken to the
Soil Testing Laboratory, Govind Ballabh Pant University of Agriculture and Technology,
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Uttarakhand, India, for processing and analysis. The soil samples were processed with
a 2 mm sieve and stored in a polypropylene box. The pH of the soil–water suspension
(1:2: soil: water) [29] was determined with the help of a digital pH meter (Eutech PC
700, Thermo Fisher Scientific Inc. India). The supernatant was used for analyzing the
electrical conductivity (EC) using a conductivity meter (Systronics Conductivity-TDS Meter
308). The bulk density (BD) was recorded with the help of a core sampler (undisturbed
soil sample) and the particle density (PD) was analyzed using a pycnometer. A keen box
method was utilized to determine the water-holding capacity of the soil, while the porosity
was determined using the following formula:

%Porosity =

(
1− BD

PD

)
× 100

The potassium dichromate oxidizable organic carbon (OC) content of the soil was de-
termined following [30]. The available nitrogen (N) in the soil samples was estimated using
the alkaline KMnO4 method [31]. The soil samples were extracted with Olsen’s reagent [32]
and the phosphorus (P) content of the extract was determined using the ascorbic acid
blue color method [33]. The neutral normal ammonium acetate extractable potassium (K)
content [34] of the soil samples was measured using a flame photometer. Complexometric
titration was used for the calcium (Ca2+) and magnesium (Mg2+) analysis [35]. The tur-
bidimetric method was used for sulfur estimation [35] and the absorbance was measured
using a spectrophotometer (Labtronics, Model LT- 291). The diethylenetriaminepentaacetic
acid (DTPA)-extractable Fe, Mn, Cu, and Zn [36] were measured in the extract using atomic
absorption spectroscopy (AAS) (Agilent Technologies 200 series AA).

2.3. Geostatistical Modelling

The soil fertility index (SFI) data derived from field measurements were utilized to
construct spatial distribution maps using geostatistical techniques. Before the geostatistical
study, the Kolmogorov–Smirnov (K–S) test for normality test was conducted. To support
the assumption of a normal distribution, the data were transformed using square root trans-
formation for the SFI. Multicollinearity and autocorrelation among the chosen variables
were examined before the regression analysis. The SPSS software was used to conduct the
statistical analysis.

Inverse Distance Weighing (IDW) and kriging (also known as Gaussian regression)
were the two interpolation techniques used to forecast the geographical distribution of
the SFI. Using Equation (1), the experimental semivariograms were created to identify the
spatial dependence of the attributes.

γ(h) = 1/2N(h) +
n

∑
i=1

(Z(xi) + Z(xi + h))2 (1)

where γ(h) is the semivariance for the interval class h, N(h) denotes the number of pairs
in the lag interval, Z(xi) is the measured sample value at point i, and Z(xi + h) stands for
the measured sample value at position (i + h). Simple (SK) and ordinary (OK) types were
employed in order to choose the best data interpolation tool for spatial variability mapping.
Using Equations (2)–(5), the most popular models of spherical, exponential, linear, and
Gaussian functions were applied, respectively.

The spherical model:

γ(h) =

C0 + C
[

3h
2a −

1
2

(
h
a

)3
]

0 ≤ h ≤ a

C0 + C h > a
(2)
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The exponential model:

γ(h) = C0 + C
[

1− exp
(
−h
a

)]
(3)

The linear model:

γ(h) = C0

[
h
(

C
A0

)]
(4)

The Gaussian model:

γ(h) = C0 + C
[

1− exp
(

h2

A02

)]
(5)

where C0 is the nugget variance, C represents the structural variance, C0 + C is the sill
variance, a is the range in spatial correlation and h denotes the lag distance. The A0
parameter of the linear model is the distance interval for the lag class and the effective
range of the Gaussian model is A = 30.5A0. According to Teegavarapu and co-workers [37],
IDW uses an additive combination of values at sampled points that are weighted by an
inverse function of the distance from the place of interest to the sampled points; this is in
order to forecast the values of an attribute at unsampled sites. The IDW method assumes
that nearby points exert greater influence on a point’s unknown value than distant points.
Equation (6) was used to make predictions.

Z =
n

∑
i=1

(Zi/dm
i )/

n

∑
i=1

(1/dm
i ) (6)

where Zi is the measured sample value at point i, Z is the estimated value, di is the distance
between Z and Zi, and m is the weighting power, which indicates the ratio at which weights
decrease as di increases. The study examined the IDW predictions using the standard 1,
2, and 3 weighting powers. Cross-validations can be used to assess the reliability of the
interpolation techniques and the model’s accuracy [38,39]. In the current investigation, the
best interpolation model was determined using Root Mean Square Error (RMSE). The best
accurate prediction is the one with the lowest RMSE. Estimates were produced by applying
the formula shown in Equation (7).

RMSE =

√
1
n

n

∑
i=1

(zi − z)2 (7)

where z is the predicted value, zi is the observed value at sampling point i (i = 1, 2 . . . , n),
and n stands for the number of sample points.

2.4. Computation of Soil Fertility Index

The soil fertility index (SFI) was computed using 17 indicators for each soil sample
point as part of a parametric technique to evaluate soil fertility (Table S1). When char-
acterizing the soil fertility, these characteristics in Table S1 are the typical inputs used
for assessment. Each growth indicator for plants is rated from 10 (least favorable) to 100
(most favorable).

Equation (8) is used to determine the SFI based on each factor rating:

SFI = Rmax×
(√

A
100
× B

100
× . . . . . .× Q

100

)
(8)

where Rmax is the maximum ratio of (A + B + . . . . . . . . . .+ Q)/17, and A, B . . . , Q is the
rating value of each diagnostic feature.
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2.5. Validation of SFI

A methodological flowchart that illustrates an overview of the SFI computation,
validation and mapping is presented in Figure 2. The various factors that affect soil
fertility are numerous. Several factors, including the soil pH, EC, available N, P, and K,
exchangeable Ca and Mg, and DTPA-extractable micronutrients (Fe, Mn, Zn, Cu), are
generally considered when evaluating soil fertility.
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To compare the soil fertility levels in one region with those in another, Ref. [40] devel-
oped the nutrient index, which assigns one value per nutrient. Three-tier (Equation (9))
and six-tier (Equation (10)) systems were proposed by the researchers, as follows:

Nutrient index =
(NL× 1 + NM× 2 + NH × 3)

NT
(9)

Nutrient index =
(NVL× 0.5 + NL× 1 + NM× 1.5 + NMH × 2 + NH × 2.5 + NVH × 3)

NT
(10)

where NT is the total number of examined samples, while NVL, NL, NM, NMH, NH, and
NVH are the number of samples under very low, low, medium, moderately high, high and
very high categories, respectively. The spatial variability in the various indicators employed
in order to determine the SFI was captured in this instance because soil fertility varies over
both time and location. The minimum soil fertility indicator (MSFI) values were converted
into scored likelihood values to group similar MSFI values into classes. Figure 2 provides a
summary of the processes that were undertaken in the development of the SFI. The layers of
soil parameters were integrated to obtain soil fertility units for the area. The reclassification
of the raster data of each physico-chemical factor was categorized into five classes. The
reclassification illustrates the fertility map of each factor for land. A combination of these
factor layers was incorporated into ArcMap 10.5 using the Weighted Overlay function in
the Model Builder. For the weighted overlay, the level of influence (%) of each parameter
was obtained using the AHP method. AHP determines the priority of each factor and takes
into account the relevance of any factor to determine soil fertility. It employs a pair-wise
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comparison of the eigenvalue method used by AHP to assess the relative priority of each
factor (Table S2). The AHP technique can convert empirical data to mathematical models.
Additionally, the “consistency ratio” is computed and the values decide the effect loading
on the ratings. This method of pairwise comparisons is systematic and comprehensive,
and the the pairwise comparison test is often repeated if the consistency ratio values are
exceptionally high. After the comparisons, the relative weights between each criterion were
evaluated and the probability of each alternative was calculated (Table S3). This probability
determines the likelihood that the alternative can achieve soil fertility. The higher the
probability, the more likely the alternative is to satisfy the final soil fertility assessment.
The priorities (or weight) of the lowest-level alternatives relative to the top objective are
presented in Table S3. The weighted value obtained from AHP (% of influence) was used
in the Model Builder. Finally, the overall fertility map using the factors was produced to
help in locating areas of fertile soil in the region. The prioritization of the factors using
AHP is displayed in Tables 1 and 2; these results were used for weighted overlay in the
GIS analysis.

Table 1. Normalized score to prioritize the factors.

Hydraulic
Properties

Physical
Properties

Chemical
Properties

Pollution
Properties

Slope/Land
Cover/Rainfall

Row
Total

% of
Ratio
Scale

Average Sum Weighted
Rating

Lambda
(λmax)

Hydraulic
properties 0.4 0.4 0.3 0.4 0.4 2.1 0.4 0.4 2.1 2.1 5.2

Physical
properties 0.2 0.2 0.3 0.2 0.2 1.1 0.2 0.2 1.1 1.2 5.2

Chemical
properties 0.1 0.1 0.1 0.0 0.2 0.4 0.1 0.1 0.4 0.4 5.1

Pollution
properties 0.2 0.2 0.3 0.2 0.2 1.2 0.2 0.2 1.2 1.3 5.3

Slope/Land
cover/Rainfall 0.1 0.1 0.0 0.1 0.1 0.2 0.0 0.0 0.2 0.2 5.1

Column total 1.0 1.0 1.0 1.0 1.0 5.0 1.0 1.0 5.2
(Average)

Table 2. Prioritization of factors based on weighting.

Sl. No. Criteria/Factors Weight

1 Temperature 0.41
2 Rainfall 0.24
3 Altitude 0.22
4 Land cover type 0.08
5 Slope 0.05

Total 1.00

To determine the soil fertility units for the region, layers of soil parameter data were
amalgamated. Each physico-chemical factor’s raster data were reclassified and divided into
five classes. The map of each factor for land fertility was displayed after the reclassification.
These factor layers were combined and added to ArcMap 10.5 using the Model Builder’s
Weighted Overlay feature. The level of effect (%) of each parameter for weighted overlay
was determined using the AHP approach. The Model Builder used the weighted value
(% of impact) that was obtained using AHP. Finally, a general map of fertility in the area
was realized by applying the parameters. The diagram presented in Figure 2 depicts the
general approach to conducting the assessment analysis using ArcGIS.

3. Results and Discussion
3.1. Physico-Chemical Properties of Soil

The descriptive statistics of the physical and chemical properties are presented in Table 3.
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Table 3. Descriptive statistics of the physico-chemical soil properties and soil fertility index.

Parameters Min Max Mean Median SD CV Skewness Kurtosis

pH 6.2 9.1 7.61 7.5 0.55 7.26 0.5 0.22
EC (dS m−1) 0.08 1.23 0.41 0.35 0.26 61.7 1 0.39
BD (g cc−1) 1.14 1.46 1.34 1.34 0.05 3.81 −0.41 1.37
PD (g cc−1) 2.34 2.76 2.6 2.63 0.1 3.93 −0.96 −0.04
Porosity (%) 40.7 54.0 48.5 49.2 2.74 5.64 −1.1 0.9

WHC (%) 32.5 53.0 40.5 40.3 4.34 10.7 0.69 0.38
SOC (%) 0.1 1.97 0.71 0.65 0.33 46.5 1.49 2.98

N (kg ha−1) 150.2 490.3 263.0 267.7 59.3 22.6 0.63 1.52
P (kg ha−1) 10.1 37.1 24.3 24.7 7.1 29.3 −0.21 −1.01
K (kg ha−1) 121.7 504 285.0 284.3 80.1 28.1 0.27 −0.32

Ca (cmol(p+) kg−1) 0.8 40.2 13.0 12.4 7.88 60.5 0.77 1.12
Mg (cmol(p+) kg−1) 1.2 91.1 30.8 25.9 24.5 79.6 1.01 0.13

S (mg kg−1) 0.97 22.2 5.56 4.8 3.62 65.2 1.81 5.12
Fe (mg kg−1) 1.2 20.9 4.74 3.22 3.77 79.6 2.14 4.24
Mn (mg kg−1) 0.14 12.3 2.66 0.55 3.84 144.3 1.31 0.05
Cu (mg kg−1) 0.6 4.88 2.86 3.72 1.42 49.5 −0.36 −1.64
Zn (mg kg−1) 0.21 3.0 0.63 0.31 0.62 99.4 1.87 2.91

The results of this study show variation, which is attributed to the dynamic interactions
between the natural environmental elements, such as the degree of soil development, and
methods of land use and management. The study area was within the agro-climatic zone
of the south-western semi-arid region and had a soil pH in the range of 6.2–9.1, which is
mainly categorized as slightly acidic to strongly alkaline [41]. The Firozabad district is
part of the Indo-Gangetic plain, whose soils are mostly alluvial in nature. The soils were
non-saline (<2 dS m−1) with electrical conductivity (EC) values ranging between 0.08 and
1.23 dS m−1. Such variation in the EC values, which lay within <2 dS m−1, indicated that
most of the plants, except for a few legumes (such as cowpea and bean), vegetable crops,
including potato, onion, okra, eggplant, etc., and some field crops, could be easily grown in
these soils without much of an adverse effect on the yield due to the existing EC values of
soil [42]. The salt tolerance of crops could be judged by the salinity threshold (ECt) and
the % reduction in yield with every unit increase in EC above the threshold limit. The
above-mentioned plants have ECt values of <2 dS m−1, thus placing restrictions on the
growth of these crops [43].

The bulk density (BD) and particle density (PD) varied between 1.14–1.46 g cc−1 and
2.34–2.76 g cc−1, respectively, with an average value of 1.34 and 2.6 g cc−1, respectively. The
average Walkley–Black soil organic content was 0.71% (0.1–1.97%). By and large, the soil
samples were low in organic carbon, which could be attributed to the high temperature in
the region leading to the faster oxidation of organic matter [44,45]. Most of the area (56.5%
of the soil samples) was found to be low in available N content, and the rest had medium
levels of available N (43.5% samples). The average N content in the soil was 263.0 kg ha−1

(150.2 to 490.3 kg ha−1). This is quite natural considering the minimal organic matter
content in the soil. Organic matter is deemed to be the most critical indicator of soil fertility
and they are considered to have a direct relationship [46]. The concentration of OC in the
study area was low, thus affecting the various nutrient cycling processes and causing low
N availability in the soil. As high as 62% of the soil samples were sufficient in available
P, while 35.2% of the samples had medium levels of available P. On average, the study
area was sufficient in available P, exhibiting values higher than 22 kg P ha−1. In total,
50% of the soil samples were sufficient in available K content, while the rest had medium
concentrations of available K content. The study region is a part of the IGP tract and the
soils share their origin with alluvium sediments. Alluvial soils present in the IGP tract have
a large amount of mica/illite clay minerals in clay and silt fractions, thus providing a very
large reserve of K to the soil [47,48]. As far as the DTPA-extractable micronutrients content
in soil is concerned, all the soils were found to be sufficient in Cu (2.86 mg kg−1 (average);
0.6–4.88 mg kg−1 (range)), while approximately 75% of the samples were deficient in
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Fe (4.74 mg kg−1; 1.20–20.9 mg kg−1), Mn (2.66 mg kg−1; 0.14–12.3 mg kg−1), and Zn
(0.63 mg kg−1; 0.21–3.00 mg kg−1) content.

The CV is the most important measure for defining the variability in soil parame-
ters [49]. A CV value of ≤20% is categorized under the low variability class, a value of
21% < CV ≤ 50% is categorized as moderate variability, a value of 51% < CV ≤ 100% is
categorized as high variability, and CV > 100% indicates very high variability [50]. The CV
values presented in Table 3 reveal a low variability in the distribution of pH and all the
physical properties of soil, such as BD, PD, porosity %, and WHC. The distribution of SOC
and available N, P, K, and DTPA-extracted Cu is moderately variable, while the distribution
of EC, Ca, Mg, S, Fe, Zn, and Cu is more highly variable in the study area. Unusually, very
high variability was observed in the distribution of DTPA-extracted Mn in the study area.

The above results confirm that the interference of humans through agricultural activi-
ties and the very heavy usage of fertilization leads to greater variability in the distribution
of various chemicals in the soil or in soil fertility parameters, including SOC. The high
variation in plants’ essential nutrients in the area could be attributed to land usage and
the build-up of biomass from litterfall and root biomass [51]. However, the minimal vari-
ability in the soil’s physical properties reveals the strong role played by soil texture in
diminishing the effect of continuous cultivation on these properties. Most of the essential
plant nutrients, except P and Cu, were positively skewed which indicated that fertilization,
crop residue decomposition and nutrient cycling processes have a strong effect on nutrient
concentrations. This was further substantiated by the fact that these nutrients (except P
and Cu) had greater mean values than their respective median values (Table 3).

3.2. The Semivariograms of Soil Fertility Indicators

The parameters of semivariograms were calculated and the best-fitted model among
the Gaussian, linear, spherical, and exponential models was selected based on RMSE
values (Table 4).

Table 4. RMSE values of cross-validations according to interpolation models.

Criteria
Inverse Distance Weighing-IDW

IDW-1 IDW-2 IDW-3 IDW-4

SFI 0.5397 0.5397 0.5453 0.5546
Ordinary Kriging Simple Kriging

Gaussian Exponential Spherical Linear Gaussian Exponential Spherical Linear
SFI 0.5291 0.5454 0.5523 0.5552 0.5323 0.5201 0.5333 0.5260

The chemical properties of the soil had a nugget-to-sill (C0/(C + C0)) ratio of less than
25%, which indicates their high spatial association [46]. The range in the parameters was
the distance in which the samples could affect each other. Such a distance indicates the
correlation among the samples and the minimum distance that is essential for sampling.
The results indicated that IDW was the most suitable method for the prediction of soil
properties with minimum RMSE values. The cross-validation method (using Root Mean
Square Error (RMSE)) indicated that the interpolation methods were able to predict the
spatial variability in the measured parameters; however, simple kriging (SK) was the best
one for predicting soil spatial variability for the more efficient management of agricultural
lands utilizing different practices (Table 4). Although the topography is generally flat, with
elevation ranging from less than 1000 feet above sea level to as high as 2000 feet, generally,
the area is marked by rolling hills. The chemical properties of the soil were significantly
affected by different land use types, such as cultivated and bare soils. Salinity was the
highest in the lowlands and the lowest in the upper areas. The highest and the smallest
values of N and SOC resulted from uncultivated land.
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3.3. Spatial Distribution of Soil Fertility Indicators and SFI

In the present research, the spatial variability in the soil parameters with different
types of land use and at different altitudes was determined. There was high variation
among the measured parameters, and the sources of variation, including the land use
type and altitude, significantly affected the statistical and geostatistical variability in the
observed and predicted variables. It is crucial to comprehend the spatial variability using
the convenient geostatistical semivariogram model to map and define the diverse area
ranges and to employ the best management tactics [52]. The SFI estimate in the study area
was compared by using the IDW and kriging interpolation techniques. Before performing
the geostatistical interpolation, semivariogram models in four directions were made to
detect the anisotropy. The anisotropy in the semivariograms did not considerably vary
from one to another. A comparison of the SFI interpolation methods is shown in Table 4.
Tests were run on the four variograms of OK (spherical, exponential, Gaussian, and linear),
SK (spherical, exponential, Gaussian, and linear), and IDW to determine the best results.
Despite having identical power, IDW-1 and IDW-2 demonstrated higher RMSE values. The
lowest RMSE values were provided by the OK and SK methods. The data of the RMSE
values presented in Table 4 reveal that the exponential variogram of SK performed as the
best-fit model for SFI.

Innumerable factors can affect the chemical properties of a region’s soil over space
and time. Human-created factors, such as crop management practices, the selection of
crops/cropping sequences, nutrient management practices, etc., take a significant toll on
natural factors [53,54]. The present state of soil fertility is mostly governed by the extent
of regulated/unregulated farm operations. It has been observed that the areas that are
significantly affected by human activities (farming) have poor spatial dependence on the
chemical properties of soil [12]. However, in our study, the different chemical properties of
soil indicated very high levels of spatial dependence, as deduced from the sill-to-nugget
ratio of <25%. The spatial variability maps of different physical and chemical properties of
the Firozabad district are presented in Figure 3.

An examination of the maps reveals that the physical properties, such as DB, PD,
WHC, and % porosity, have very little spatial variation throughout the region. The average
elevation of the study region is around 150 m above mean sea level (MSL), which can
be categorized under plain land. Topography affects various physical properties of the
soil, such as soil texture, structure, soil bulk density, thermal properties, etc. [55]. The
region displays very minimal variation in elevation, which indicates the negligible effect
of topography on the physical properties of soil. Ofori and co-workers [56] reported that
the distribution of coarser soil particles, such as sand, was mostly detected in the upper
slopes, while the finer particles were higher in proportion towards the downhill region.
The processes occurring in surface soils, such as the erosion rate, depth-wise distribution of
water, and microbial activity, were found to be critically affected by topography [12]. Con-
sequently, it is essential to interpret the influence of topography on the physical properties
of soil in a region to understand the spatial variability of these properties. In our study, the
low spatial variability of the assessed soil physical parameters could be attributed to the
minimal difference between the maximum and minimum elevation, as well as the planar
surface of the region.

Soil pH is considered to have a strong effect on plant nutrient availability, therefore,
unarguably, it has been named the master variable that governs the soil’s chemical and
biochemical functions [57]. The soils of the study region suggest the transition from slightly
acidic to strongly alkaline pH conditions, indicating the crucial role played by some external
factors that have overcome the buffering mechanism of soil and have elevated the pH to
levels sufficiently critical to affect plant growth. The higher pH in cultivated lands is due
to fertilization and cultivation, which can affect carbon cycling. Significant differences
were evident among different land use types and their effects on the properties of the soil.
There are differences between the rangeland and the uncultivated land, which could be
due to insufficient drainage. A spatiotemporal variability study of soil fertility indicators
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was carried out by Chen et al. [46] over a decade. Their study found that after continuous
cropping in Jianli County, China, the soil pH increased to a more alkaline range due to
the continuous application of fertilizer salts and alkaline irrigation water. The CV of soil
pH values was quite low (Table 3) in the soil samples from the study region. Such results
corroborate the findings of other published research, which has shown CV values of <10%
in the case of soil pH [46,58,59].
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It is quite interesting to note such low spatial variability in the soil pH at the district
level, which confirms the strong buffering mechanisms in action in the study area by
various cationic and anionic compounds present in the soil. The spatial variability map of
EC presented in Figure 3 shows that the regions with higher pH levels correspondingly
revealed higher EC values of 0.6–1 dS m−1 and 1–1.23 dS m−1. The high EC values could
be attributed to the application of fertilizer salts, and organic manures to the soil during
crop production over the years [60].

Different land use types in the study area have significantly affected the various
chemical properties, such as SOC content and essential plant macro and micronutrient
availability, to a greater extent. Almost the entire mainland can be classified as agricultural
lands with sparse settlements, uncultivated lands, forest areas, and plantation fields extend-
ing towards the southern parts. The region’s cropping intensity well exceeds the national
average. Among the nine blocks in the entire district, Madanpur and Shikohabad have
considerably higher cropping intensities, of 205% and 198%, respectively. This explains the
higher availability of essential macronutrients, including N, P and K, for these blocks in the
southern parts of the district, as illustrated in Figure 4.

The N availability in the region is found to vary within the medium range of 280–560 kg ha−1.
A comparison of the descriptive statistics results presented in Table 4 indicates that N varies
from 150.2–490.3 kg ha−1, thus generating moderate variability in the region. This was
quite natural considering a somewhat similar cropping intensity throughout the region,
thus indicating similar residue additions over the year. The majority of the area grows
wheat, which is followed by vegetable crops. Revealed here is that more or less similar
fertilizer application rates are being followed in the study area, thus giving less scope for
NPK variability in the region. The uniform agronomic practices followed throughout the
region reduce the variability in essential plant nutrients in the soil and play a major role
in homogenizing the data sets [61]. Although, indeed, the selection of the source and the
mode of applying fertilizer products varies among farmers in the region, the fact remains
that farmers without exception apply NPK to the soil, and this cannot be overlooked. In the
case of micronutrients, the spatial variability in their distribution was quite high (Table 3;
Figure 4). This could be attributed to the non-uniform adoption of balanced fertilizer
application practices by farmers and, based on the socio-economic circumstances of farmers
in the region, the selective application of nutrient elements to soil.

The distribution map of the SFI is broken down into five levels in the study area, as
depicted in Figure 5 below.
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Because human-induced disturbances and the characteristics of natural ecosystems
have an impact on soil quality, soils have heterogeneous features (e.g., fertilization and
irrigation) [62]. As a result, the interplay between natural and agricultural management
elements has led to the spatial SFI pattern of the farmed land. Very high (F1) and high (F2)
fertility was present in around 16% of the study region (Table 5), primarily in the south and
eastern parts of the Firozabad district (Figure 5).
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Table 5. List of the classes of the soil fertility index and their distribution.

Class Definition SFI Index Value Area (ha) Area (%)

F1 Very highly fertile >8.953 136.58 0.05
F2 Highly fertile 7.695–8.953 41,274.54 16.59
F3 Moderately fertile 6.208–7.695 151,616.08 60.94
N1 Low fertile 4.455–6.208 55,581.93 22.34
N2 Very low fertile <4.455 168.76 0.07

Total 248,777.89 100.0

A major part of the north-central and western regions of the district showed moderate
fertility (~61%). These areas are suitable for agricultural activities, especially when animal
or green manure is additionally applied in order to trigger aggregation, develop the soil
structure and increase the activity of microorganisms in the soil [62,63]. About 22.4% of
the study area that was classified as having low and very low fertility was located in the
northern part, due to a strong alkali reaction (pH value > 8.0), a low OC content, and
low plant nutrient availability. These locations are suitable for farming, particularly when
advice is followed regarding the additional application of animal or green manure so as
to encourage aggregation, the formation of soil structure, and improved soil microbial
activity under appropriate tillage techniques. This suggests that the management of soils
at the sub-field level can help improve crop yield and quality [63,64]. Overall, this study
provided some useful information about the physico-chemical and nutrient properties
of the soil samples collected from the study area. Several factors influence the physical,
chemical, and biological characteristics of soil, including the climate, topography, land use,
and management practices. The physical properties of soil can be used as a key indicator
for soil management, as they can also define the type of soil and the long-term management
practices required for successful crop production.
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4. Conclusions

In the field of soil fertility management, the ability of policymakers and the public to
determine soil fertility is very important, so that they can better understand the status of
soil health. This study found that the soils of the Firozabad district were low in organic
carbon and available N content, while other macronutrients, such as P and K, were found
in sufficient levels in the soils. In the case of micronutrients, our study shows that the soil
was deficient in all (except Cu) micronutrients, including Fe, Mn, and Zn. Overall, the
Firozabad district was found to have a medium level of soil fertility. The computation
of the SFI infers that the south and southeastern region of the study area had very high
levels of soil fertility. The spatial distribution of the SFI was impacted by its coefficients of
variation, which varied as a result of the soil being formed by alluvial parent materials, as
recorded using the interpolation techniques.

The map presented in this study will provide an overview of soil quality for non-
academics and end users so that they can gauge the soil’s fertility. However, insights and
lessons learned from this study may be applied universally, even if they are limited to the
study area. Many developing countries, including other parts of India, share the same soil
fertility issues as the current study area. Due to climate change, and alterations in rainfall
frequency, soil quality and fertility could result from a combination of arid/semi-arid
climate, geological risks, and anthropogenic activities in those regions. To monitor these
soil resources for proper decision-making, the use of GIS platforms and soft computing
techniques offers the chance to create more accurate soil fertility/quality maps.

We recommend and encourage future researchers to use the SFI map as the foundation
for defining the various management zones in which soil deterioration must be combated so
that viable and sustainable agriculture can continue into the future, as based on the findings
of this study. Finally, this paper demonstrates the potential of merging remote sensing
vegetation-related indices to validate an advanced fertility model that is appropriate for
regions with semi-arid climates.
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