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Abstract: Groundwater is an essential resource that meets all of humanity’s daily water demands,
supports industrial development, influences agricultural output, and maintains ecological equilib-
rium. Remote sensing data can predict the location of potential water resources. The current study
was conducted in China’s Yellow River region, Ningxia Hui Autonomous Region (NHAR). Through
the use of a GIS-based frequency ratio machine learning technique, nine layers of evidence influenced
by remote sensing data were generated and integrated. The layers used are soil characteristics, aspect,
and roughness index of the terrain, drainage density, elevation, lineament density, depressions, rain-
fall, and distance to the river from the location. Six groundwater prospective zones (GWPZs) were
found to have very low (13%), low (30%), moderate (25%), high (16%), very high (11%), and extreme
potentiality (5.26%) values. According to well data used to validate the GWPZs map, approximately
40% of the wells are consistent to very high to excellent zones. Information about groundwater
productivity was gathered from 150 well locations. Using well data that had not been used for model
training, the resulting GWPZs maps were validated using area-under-the-curve (AUC) analysis. FR
models have an accuracy rating of 0.759. Landsat data were used to characterize the study area’s
changes in land cover. The spatiotemporal differences in land cover are detected and quantified using
multi-temporal images which revealed changes in water, agricultural, and anthropogenic activities.
Overall, combining different data sets through a GIS can reveal the promising areas of water resources
that aid planners and managers.

Keywords: groundwater; remote sensing; GIS; data-driven modeling

1. Introduction

The ability to access water is crucial for maintaining life. Since the beginning of
the twenty-first century ref. [1], population growth, environmental, climatic, and socio-
economic variables have all contributed to an increasing worry about the demand for
fresh water in the world. Water resources are necessary for the growth of the agricultural,
urban, and industrial sectors. In terms of total freshwater resources, groundwater makes
up around 20% of them, placing it behind glaciers and lakes which make up only 1% and
79%, respectively, of the world’s total freshwater resources. It is one of the water reserves
that can be used to combat the problem of water shortage [2,3] as it can be used when
necessary and is an effective substitute for limited surface water, which is getting harder to
find [1]. Groundwater is increasingly needed around the world for a variety of reasons [4,5]
because it is more predictable and fresher than surface water, less likely to be polluted,
always present, widely accessible, has great natural quality, is clean and accessible, and is
inexpensive [6]. It is crucial to remember that 80% of the world’s rural population relies
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on groundwater for their clean drinking water. It is an essential water resource since it
provides drinking water to more than half of the population [7].

Because groundwater resources are buried beneath strata, it is vital to use predic-
tion models to investigate and uncover water resources [8–10] utilizing various meth-
ods. Groundwater discovery by traditional means is more time- and money-consuming.
Groundwater exploration, prediction, and regional estimation can be done using remote
sensing (RS) and geographic information systems (GIS) [11,12]. A GIS technique can be
used to combine and interpret large amounts of geographical data to forecast and locate
new water sources [13]. The RS and GIS can be used to identify potential groundwater
resource locations, as demonstrated by several studies [9,14,15]. For instance, multi-criteria
decision-making is a quick and economical method [5,10].

In groundwater modeling, several knowledge-based (overlay, AHP, Boolean logic,
index overlays, and analytical hierarchy process) and data-driven (e.g., WOE, machine
learning models, logistic regression, weights of evidence, linear regression decision tree
analysis, and neural networks) techniques are frequently used [16,17]. The frequency ratio
(FR) approach, a data-driven and bivariate statistical method, assesses spatial relationships
between the dependent variable, e.g., water wells, and the independent variables, namely
classes of thematic layers, to assign a rating (r) rate to each factor [18,19]. It is widely applied
in probabilistic processes such as geohazards [20–23] and in groundwater exploration in
different environments [3,24–31]. The FR method provided better results than the evidential
belief function (EBF) method [16,32]) and gave valuable information when coupled with the
overlay analysis. In this technique, several criteria such as geologic, topographic, climatic,
and hydrologic information are utilized for the prediction of groundwater occurrences by
preparing, normalizing, and combining these elements [33].

The permeability and porosity of aquifer elements are influenced by soil parame-
ters [34] and soil geometry, as the existence of sand and gravel deposits boosts porosity,
which is an important factor in recharging groundwater aquifers [35]. This is due to the
runoff of water through time-induced soil erosion [36,37]. When they flow in the same
direction, elevation significantly affects groundwater penetration and motion [38–40] as
runoff lowers groundwater potential in elevated regions, which also lowers the capacity
for recharging [41]. Additionally, the vegetation has gotten bigger on the faces to the north
and east that promote the recharging of groundwater. Geomorphologic characteristics
such as TRI have garnered a lot of interest, since it is essential for groundwater transport
and management in any research region. Moreover, with increasing distance from rivers,
the likelihood of encountering groundwater decreases [38,42]. The hydrologic element of
rainfall (Rf) is a significant source of recharge [43,44]. Precipitation has a significant impact
on percolation and recharging.

The LU/LC changes require thorough research in order to be properly planned,
utilized, and regulated for challenging environmental studies. Researchers can assess and
monitor the dynamics of natural resources using the LU/LC by utilizing remote sensing
techniques, which are crucial for sustainable management. In addition, the LU/LC offers
crucial evidence of the availability of water supplies. The present study aims to apply the
GIS-based hydride FR and weighted overlay technique for optimization and revealing
promising areas for water resources through analysis of multi-factors derived from satellite
data/images.

2. Study Area

The Yellow River, Ningxia Hui Autonomous Area, in central China is the location
of the current study (Figure 1). It covers a region with coordinates of 35◦45′43.30′′ and
35◦58′20.83′′ N and longitudes of 105◦8′18.82′′ and 107◦16′31.3′′ E. It covers about 35,915 km2.
Oriented from north to south, it drains the Yellow River basin. The Ningxia Hui Au-
tonomous Area in northwest China is the area under investigation [45]. It is situated in the
area of the inner desert. Warm continental arid and semi-arid weather and adequate light
energy are present at the study site. The average annual sunlight hours are expected to
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range from 2194 to 3082; the mean annual temperature will be between 5 and 9 degrees
Celsius; and the average annual precipitation ranges from 200 to 680 mm, with most of the
precipitation occurring in the summer. Groundwater may be divided into two groups: the
northern area’s water and the southern area’s water of the Quaternary deposits, depending
on hydrodynamic characteristics, aquifer types, and occurrence parameters of groundwater
karst in the southern area [46,47].
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Figure 1. (a) Location map of the present study area is marked in the blue polygon that covers the
majority of Niangxia Hui Region; (b) watershed of the study area overlain by well data.

3. Data and Methods

This study combined topography, hydrologic, and meteorological data with remote
sensing information from several sensors to show potential water resource areas. GIS
methods were utilized to combine various thematic maps created from these data, includ-
ing those of the soil, elevation, aspect, terrain roughness index, depression, lineaments,
drainage density, distance to a river, and rainfall intensity (Figure 2).

The DEMs were derived from the SRTM data (90 m cell size) of NASADEM 1arc
second WGS84 data (NASADEM 1arc second WGS84). The stream network was generated
by the 8D approach [48], and the stream density map was produced via a GIS program.
Estimating the depressions to illustrate where water accumulates can similarly be done
using the “fill-difference” method [10]. The OLI and TIRS sensors are carried by Landsat 8,
which was launched on 11 February 2013. To map the land use and cover, VNIR and SWIR
wavelength regions are used. Here, mosaiced obtained sceneries that featured the OLI
bands 2, 3, 4, 5, and 7 underwent image alterations and enhancing procedures. Landsat-8
data “LC08_L1TP_129034_20220312_20220312_02_RT” was utilized to display vegetation
and the signature of water resources.
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Figure 2. Data and methods utilized in the present study include the factors influencing groundwater
occurrence. Abbreviations: Drainage density (Dd), Receiver Operating Characteristic (ROC) curve,
Terrain Roughness Index (TRI), Frequency Ratio (FR), Deterministic-8 (D-8), Land use/Land Cover
(LU/LC), Flow direction (FD), Flow Accumulation (FA).

The TRMM rainfall measurements provided information on average rainfall. The
data can be downloaded from Giovanni/NASA on the time period covered by the data
on average rainfall, which runs from January 1998 to November 2015. The soil map was
collected from the Geo Network Web Portal for the FAO Soil Map.

The GWPZs are produced using a data-driven FR modeled on a GIS. Numerous
forecasting techniques utilized this kind of multi-criteria decision-making process. The
relative weights of each observation in this model, which is based on data from remote
sensing, hydrology, and geology, are chosen by the user [49]. The GIS approach uses a
raster combination in which each layer’s pixel is matched with a certain geospatial site.
The fusion processes are then more adapted to combining qualities from several data sets
into one output layer.

The FR model, which indicates the probability of incidence for a given feature, is
a straightforward geographic evaluation tool that is utilized to predict the consistency
between GRW promising areas and the effective factors [3,27]. The recharge occurrence
ratio for each subclass of conditioning factors is calculated, and the frequency ratio is
applied to the total recharge. The FR ratio for each predictor is computed and normalized
regarding the total area of the watershed. Based on their degree of correlation with the
GWR potential inventory, the FR numbers for each sub-feature of GWR potential influence
factors were estimated. The scores of thematic maps were multiplied (Equation (1)) to
determine the GWPZ [50], as shown in the following equation:

GWPZ =
n

∑
i=1

Tm × fc (1)

where Tm is thematic maps and Fc is subclasses.
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4. Results
4.1. Soil

Due to geometric characteristics and the nature of the soil of the surface layer regu-
lating how much precipitation seeps into the subsurface aquifer, lithological parameters
are crucial. The size, shape, and arrangement of the soil grains, as well as the pore system
that corresponds to them, can all have a major impact on the vertical and lateral flow of
water. The development and management of groundwater resources depend mostly on the
soil. Based on the arrangement of soil grains controlling the infiltration and recharge, each
soil type was given a set of soil and textural characteristics based on the SWAT Soil Data
classes for the various category levels in soil classification. The soil map of the study area
is divided into Calcic xerosols (loam), Luvic xerosols (sandy clay loam), Lithosols (loam),
Eutric Gleysols (clay loam), and Calcic cambisols (loam), which account for 26.13, 0.66,
53.06, 19.29, and 0.87% of the total area, respectively (Figure 3a).
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displays the variations in elevation.

4.2. Elevation

The flow of groundwater and surface discharge is influenced by topography. The link
between infiltration and low-altitude areas is positive. Considering this, it is likely that
low-lying places accumulate surface water following severe storms that drain downstream
networks. Due to the substantial infiltration of river water, groundwater potential is often
high in plain floodplain zones but decreases at high elevations. The topographical layer is
crucial in determining groundwater availability, recharge capacity, and water movement
across the land [4]. Therefore, the elevation map of the study region varies from 1087 to
2941 m. The elevation map (Figure 3b) was divided into three classes, 1087 to 1276, 1276 to
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1479, 1479 to 1705, and 1705 to 1998, encompassing 19, 31, 25, 18, and 7% of the total
area, respectively.

4.3. Aspects

The DEM in ArcGIS 10.8 is used to extract aspects. There are 10 categories for aspect
measurements: flat (or no aspect direction), N, NE, E, SE, S, SW, W, and NW. Water resources
are more prevalent north of the Earth’s equator on slopes that look north and east than on
slopes that stand facing south and west. The mountain’s eastern and northern slopes get
less sunlight than its southern and western sides. The aspect map (Figure 3b) which was
derived from the DEM was divided into three categories: Flat (−1), N (0–22.5), NE, E, SE, S,
SW, W, NW, and N. These categories, collectively account for 0.26, 8.45, 14.54, 10.98, 10.29,
12.08, 12.92, 11.29, and 12.

4.4. Topography Roughness Index (TRI)

The TRI, a geomorphometric index that identifies and quantifies the geometry of land-
surface terrain in the area under investigation, has an impact on groundwater occurrence
as well. Afterward, using ArcGIS and the Natural Break Classifier (NBC), the TRI map
was separated into four classes. The TRI map (Figure 4b) was divided into five categories:
0.614 to 0.889, 0.535 to 0.614, 0.461 to 0.535, 0.379 to 0.461, and 0.111 to 0.379 which,
respectively, covered 10, 24, 31, and 10% of the overall region.

Land 2023, 12, x FOR PEER REVIEW 7 of 23 
 

4.4. Topography Roughness Index (TRI) 
The TRI, a geomorphometric index that identifies and quantifies the geometry of 

land-surface terrain in the area under investigation, has an impact on groundwater occur-
rence as well. Afterward, using ArcGIS and the Natural Break Classifier (NBC), the TRI 
map was separated into four classes. The TRI map (Figure 4b) was divided into five cate-
gories: 0.614 to 0.889, 0.535 to 0.614, 0.461 to 0.535, 0.379 to 0.461, and 0.111 to 0.379 which, 
respectively, covered 10, 24, 31, and 10% of the overall region. 

 
Figure 4. (a) Aspect map of the study area; (b) Terrain roughness index of the present study. 

4.5. Depressions/Sinks 
Areas with low surface elevations that might be flooded during rainstorms are indi-

cated by topographic depressions. These depressions can be filled with precipitated water 
until the water level increases to the point where the flow can exit. These areas are suitable 
for water resources because they flood the low topography. ArcMap version 10.5’s spatial 
analysis can identify depressions using SRTM DEMs. The research region’s 95.8, 2.7, and 
1.5% of the depression map (Figure 5a) were categorized into three classes: 0–1, 1–3.8, and 
3.8–72 (Table 1). 

Figure 4. (a) Aspect map of the study area; (b) Terrain roughness index of the present study.



Land 2023, 12, 771 7 of 20

4.5. Depressions/Sinks

Areas with low surface elevations that might be flooded during rainstorms are indi-
cated by topographic depressions. These depressions can be filled with precipitated water
until the water level increases to the point where the flow can exit. These areas are suitable
for water resources because they flood the low topography. ArcMap version 10.5’s spatial
analysis can identify depressions using SRTM DEMs. The research region’s 95.8, 2.7, and
1.5% of the depression map (Figure 5a) were categorized into three classes: 0–1, 1–3.8, and
3.8–72 (Table 1).
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Table 1. Factors controlling groundwater prospectivity.

Elevation No. Pixels in Domain Domain % No. Wells No. Wells % FR

1087 to 1276 1,016,102 0.19 38 0.38 1.97

1276 to 1479 1,641,795 0.31 20 0.2 0.64

1479 to 1705 1,315,398 0.25 24 0.24 0.96

1705 to 1998 942,575 0.18 15 0.15 0.84

1998 to 2941 349,645 0.07 3 0.03 0.45

TRI classes

0.614 to 0.889 542,030 0.10 12 0.12 1.17

0.535 to 0.614 1,244,420 0.24 21 0.21 0.89

0.461 to 0.535 1,655,667 0.31 27 0.27 0.86
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Table 1. Cont.

Elevation No. Pixels in Domain Domain % No. Wells No. Wells % FR

0.379 to 0.461 1,299,650 0.25 24 0.24 0.97

0.111 to 0.379 533,086 0.10 16 0.16 1.58

Dd reclasses

5.31 to 31.10 6537 0.12 6 0.06 0.49

31.20 to 43.10 15,167 0.29 26 0.26 0.91

43.20 to 54.30 15,598 0.29 30 0.3 1.02

54.40 to 66.70 11,203 0.21 24 0.24 1.14

66.80 to 101 4551 0.09 14 0.14 1.63

Soil

Calcic
xerosols 13,224 0.261334 21 0.21 0.80

Luvic
xerosols 332 0.006561 0 0 0.00

Lithosols 26,848 0.530572 35 0.35 0.66

Eutric
Gleysols 9759 0.192858 43 0.43 2.23

Calcic
cambisols 439 0.008676 1 0.01 1.15

Dist River

1480 to 1750 1,870,410 0.046373 0 0 0

1110 to 1480 5,139,914 0.127435 12 0.12 0.94

740 to 1110 8,467,401 0.209934 13 0.13 0.62

370 to 740 11,778,792 0.292033 32 0.32 1.10

0 to 370 13,077,205 0.324225 43 0.43 1.33

Depression

0 to 1 5,041,843 0.957521 95 0.95 0.99

1 to 3.8 144,133 0.027373 4 0.04 1.46

3.8 to 72 79,539 0.015106 1 0.01 0.66

ASPECT

Flat (−1) 13,758 0.002613 0 0 0

North
(0–22.5) 444,969 0.084506 20 0.2 2.37

Northeast
(22.5–67.5) 766,094 0.145493 20 0.2 1.37

East
(67.5–112.5) 578,467 0.10986 4 0.04 0.36

Southeast
(112.5–157.5) 542,320 0.102995 6 0.06 0.58

South
(157.5–202.5) 636,523 0.120885 11 0.11 0.91
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Table 1. Cont.

Elevation No. Pixels in Domain Domain % No. Wells No. Wells % FR

Southwest
(202.5–247.5) 680,426 0.129223 9 0.09 0.70

West
(247.5–292.5) 594,492 0.112903 12 0.12 1.06

Northwest
(292.5–337.5) 654,449 0.12429 13 0.13 1.05

North
(337.5–360) 354,017 0.067233 5 0.05 0.74

Lineaments

0 to 3.3 14,814 0.29 34 0.34 1.18

3.3 to 8.04 15,780 0.31 30 0.3 0.98

8.04 to 13.30 13,530 0.26 23 0.23 0.88

13.30 to 21.10 6090 0.12 10 0.1 0.85

21.10 to 40.87 1312 0.03 3 0.03 1.18

Precipitation

234 to 288 4585 0.28 34 0.34 1.21

288 to 338 4168 0.26 26 0.26 1.01

338 to 394 4408 0.27 25 0.25 0.92

394 to 477 3094 0.19 15 0.15 0.79

4.6. Lineaments

Lineaments are linear geometrical structures that represent underlying cracks in the
earth’s surface [51]. These structures can be used to better define the existing aquifers
and discover new reservoirs near densely populated areas that promote fluid migration
to the bottom [52] and lineaments that can provide information on water penetration and
circulation [53]. When compared to other topographical features, they are the porosity of
secondary sources and are visible as textural changes on satellite photos. A lineament might
be anything from a crack to a fracture to a master joint. Long, linear geological formations,
topographic linearity, and the straight routes that streams follow are further examples [54].
They affect how deeply runoff water permeates below the strata and replenishes the
aquifer’s groundwater flow and storage. The lineament density map (Figure 5b) was
obtained after digitizing lineaments from satellite images and then classified using Natural
Breaks intervals into five classes, viz., 0 to 3.3, 3.3 to 8.04, 8.04 to 13.30, 13.30 to 21.10, and
21.10 to 40.87, covering 29, 31, 26, 12, and 3 % of the study area (Table 1; Figure 5b).

4.7. Distance to River

Alluvial deposits are typically found in river channels, especially in semi-arid regions;
therefore, being close to hydrological systems is important when looking for water re-
sources. The ideal circumstances for excellent penetration and, consequently, groundwater
replenishment are provided by neighboring rivers. Utilizing data on rivers that were
gathered from the OSM dataset, the distance from rivers was determined using ArcGIS’
“Euclidean distance function”. Spatial Analyst Tools were used to determine the distance
from the river, which was then divided into five categories (Figure 6a): 1480 to 1750, 1110 to
1480, 740 to 1110, 370 to 740, and 0 to 370. These categories, which covered 4.64, 12.74, 20.99,
29.20, and 32.42 percent of the total area, respectively, each represented a different distance
from the river.
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4.8. Rainfall Data

The distribution and volume of rainfall determine how much water is present in a
hydrologic system. Rainfall intensity in a region allows for surface water accumulation
which promotes infiltration, recharging, and runoff. The frequent precipitation through the
years is the main source of rivers, lakes, and recharging the groundwater aquifers [26,55].
Because rainfall is the main source of recharging the groundwater aquifers through the
years, it is essential for this process [56,57].

The area that is exposed to storms that bring rain encourages groundwater recharge
when it rains. Researchers can monitor, document, and measure the frequency of rainstorms
in the watershed under study using information from the CRU data. Due to the high
precipitation and flooding caused by this downpour, there was a scarcity of water supply,
and infrastructure was severely damaged.

The study area’s yearly mean rainfall from 2011 to 2020 was provided by the Climate
Research Unit (https://crudata.uea.ac.uk/cru/data/hrg/ accessed on 10 January 2022).
The precipitation point format was modified into a raster format using Multidimensional
Tools of Spatial Analyst. We next converted the raster format to points by the Conversion
Tools [49], which were interpolated by applying the Kriging method.

The rainfall map was classified into four classes, viz., 234 to 288, 288 to 338, 338 to 394,
and 394 to 477 covered 28, 26, 27, and 19 % of the study area, respectively (Figure 6b).

https://crudata.uea.ac.uk/cru/data/hrg/


Land 2023, 12, 771 11 of 20

4.9. Drainage Density (Dd)

Drainage density, which is an effective indication for predicting infiltration rates,
controls the relationship between water flow and water penetration in a terrain [58]. By
dividing the total number of streams and rivers in a drainage basin by its surface area, the
drainage density of that basin can be determined [58,59]. The kind of vegetation, the soil’s
ability to absorb precipitation, the slope gradient, and the bedrock nature and structure all
have an impact on where rainfalls [1]. Locations with less surface runoff and high drainage
density have higher infiltration rates. A zone with high groundwater capacity is indicated
by high drainage density values because they favor runoff [10]. The Dd map (Figure 7a,b)
was divided into four classes, encompassing 12, 29, 29, and 9% of the area, respectively,
from 5.31 to 31.10, 31.20 to 43.10, 43.20 to 54.30, and 54.40 to 66.70.
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5. Groundwater Potential Mapping and Validation of the Built Models

FR is the possibility that a phenomenon matches a given feature. [13]. The locations
of the validated wells and the training variables (the independent variables), e.g., the soil,
and Dd were entered using the FR method [60]. The frequency of wells in each class for all
parameters was determined using FR [13]. Using the below formula (Equation (2)), it was
determined how each factor affected the predictor:

FR = (A/B)/(C/D) (2)
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A represents the percentage of points in each class, B is the total number of points
across all classes, C is the number of classes, and D is the total number of pixels, where
FR seems to be the ratio at which each class of each feature affects the parameter. The
weights of each class of factors associated with the subject layers for delineating GWPZs
are determined by the FR values generated for each class of conditioning factors. The new
thematic layer is the input value to the hybrid model after each class has been subjected
to FR.

In order to ascertain the spatial correlations between well sites and training factors,
the FR model was applied (Table 1). FR values below 1 denote low correlation, while those
above 1 denote higher correlation [61]. The greatest FR (1.97) was recorded for elevation
classes (Figure 8) 1087 to 1276, followed by 1479 to 1705 (0.96), 1705 to 1998 (0.84), 1276 to
1479 (0.64), and 1998 to 2941. (0.45). As a result, regions with low elevations between
1087 and 1276 are more likely to contain groundwater. Additionally, the range from 1 to 3.8
(FR = 1.46) has the largest potentiality in the context of depressions, while the ranges from
0 to 1 (FR = 0.99) and 3.8 to 72 (FR = 0.66) have low potentialities.

The lowest FR (1.21) for rainfall classes (Figure 8) was found in locations receiving
between 234 and 288 mm, followed by 288 and 338 mm (1.01). The lowest FR values were
found in areas with a lot of precipitation: 338 to 394 mm (0.92) and 394 to 477 mm (0.79).

The soils classed as Eutric Gleysols “clay loam” (FR 2.23) and Calcic cambisols “loam”
(FR 1.15) have FR values, while Luvic xerosols “sandy clay loam” (FR = 0) is the lowest and
has no potential.

The class of TRI with the highest probability of groundwater potential was 0.111 to
0.379 (FR = 1.58), followed by 0.614 to 0.889 (FR = 1.17) and 0.379 to 0.461 (FR = 0.97). The
TRI classes of 0.461 to 0.535 (FR = 0.86) and 0.535 to 0.614 (FR = 0.89) have low probability.
The slope aspect group with the highest FR (2.37) belongs to N (0–22.5), followed by NE
(1.37), west (1.06), and NW ( 1.05). While Flat (−1) has little potential, other characteristics
such as E (0.36), SE (0.58), SW (0.70), N (337.5–360) (0.74), and S (0.91) are at their lowest.
The categories from 0 to 370 m (FR= 1.33) and 370 to 740 m (FR = 1.10) had the highest
probabilities for places in terms of their proximity to rivers. The potential is zero for 1110 to
1480 (FR = 0.94), 740 to 1110 (FR = 0.62), and 1480 to 1750 (FR = 0).

High potentiality occurs mostly in the Dd ranges of 66.80 to 101 (FR = 1.63), 54.40 to
66.70 (FR = 1.14), and 43.20 to 54.30 (FR = 1.02) in terms of drainage density. The ground-
water potentiality is low in the lower instances of the drainage density ranging from 5.31 to
31.10 (FR= 0.49) and 31.20 to 43.10 (FR= 0.91), respectively. High potentiality can be seen
in the lineament density of low values 0 to 3.3 (FR = 1.18) and high values 21.10 to 40.87
(FR = 1.18). The other classes were 3.3 to 8.04, 8.04 to 13.30, and 13.30 to 21.10 (FR = 0.98,
0.88, and 0.85, respectively).

The integrated groundwater potential zone (GWPZ) map, which was created by com-
bining nine thematic maps, was then divided into six classes using a natural break approach,
ranging from extremely low to high potentiality (Figure 9a). The classes considered were
very low (13.13%), low (29.97%), moderate (25.07%), high (16.01%), very high (10.56%), and
extremely high potentiality (5.26%) (Figures 8 and 9a). The majority of the extremely high
to extreme GWPZ is covered by plant and water resources, according to Landsat-8 band
composites 7, 5, and 3 (Figure 9b–d).

The ROC curve for GWPZ is shown in Figure 10. The AUC emphasizes the importance
of the prediction by demonstrating the system’s capacity to predict “groundwater” and
“no-existence of groundwater” with equal accuracy. The AUC is a 0-to-1 scale which scores
less than 0.5, suggesting model coherence and higher simulations have greater accuracy.
The results demonstrate great accuracy in creating a groundwater potential map by fusing
statistical models with the RF model. The improved accuracy of the model (AUC = 0.759)
is caused by the results’ unknown existence of groundwater.



Land 2023, 12, 771 13 of 20
Land 2023, 12, x FOR PEER REVIEW 14 of 23 
 

 

0.00 1.00 2.00

1087 to 1276

1276 to 1479

1479 to 1705

1705 to 1998

1998 to 2941

Elevation 

0.00 1.00 2.00 3.00

Calcic xerosols

Luvic xerosols

Lithosols

Eutric Gleysols

Calcic cambisols

Soil

0 1 2 3

Flat

NE

SE

SW

NW

Aspect

0.00 1.00 2.00

0.614 to 0.889

0.535 to 0.614

0.461 to 0.535

0.379 to 0.461

0.111 to 0.379

TRI

0.00 0.50 1.00 1.50

 0 to 1

1 to 3.8

3.8 to 72

Depression

0.00 0.50 1.00 1.50

0 to 3.3

3.3 to 8.04

8.04 to 13.30

13.30 to 21.10

21.10 to 40.87

Lineaments

0 0.5 1 1.5

1480 to 1750

1110 to 1480

740 to 1110

370 to 740

0 to 370

Distance  to rivers

0.00 0.50 1.00 1.50

234 to 288

288 to 338

338 to 394

394 to 477

Rainfall

0.00 1.00 2.00

5.31 to 31.10

31.20 to 43.10

43.20 to 54.30

54.40 to 66.70

66.80 to 101

Dd

0.00 10.00 20.00 30.00

Very low

Moderate

Very high

GWPZs vs. Area

Figure 8. A two-dimensional bar chart, for comparing the FR values among classes of the influencing
factors (e.g., soil, elevation, aspect, TRI, depressions, lineaments, distance to rivers, rainfall, and
drainage density (Dd)) and the areas covering the GWPZs.
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6. Changes Detection of in Land Use Land Cover

The analyses of land use and land cover (LULC) have the capacity to identify water
resources that increase the quantity of agriculture and other anthropogenic activities [62]. In
order to plan, use, and regulate natural resources effectively for complicated environmental
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studies, LULC changes must be well studied. Through the use of remote sensing techniques,
which are extremely essential for sustainable management, researchers are able to evaluate
and track the dynamics of natural resources using the LULC [63,64]. Additionally, the
LULC provides important proof of the provision of water supplies.

Differences between two Landsat images acquired on 23/2/2010 (Landsat-5; bands 7,
4, and 2 in R, G, and B) and 12/3/2022 (Landsat-8; 7, 5, and 3 in R, G, and B) are assessed
using the Difference tool of ArcGIS. To quantify the changes in LULC, the “Difference”
function in ArcGIS is utilized. The differences between Landsat images from 2010 and 2022
are quantified (Figure 11). In this approach, the zero value reflects coherence among the
processed images, and the more change between the multi-temporal images the farther
the value divergence from zero. In Figure 11a,d,g, the differences in land cover/land
use between Landsat 2010 and 2022 are detected in blue (positive); however, negative
changes appear in dark brown. Such an approach detected changes in water, vegetation,
and infrastructures. Based on this approach, the area experienced major changes regarding
anthropogenic activities. There were more abundances of water in 2022 lakes than in 2010
as shown in Figure 11d–f, and more land reclamation in Figure 11h versus Figure 11g.
The analyses of land use and land cover have the capacity to identify water resources that
increase the quantity of agriculture and other anthropogenic activities.
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7. Discussion

Based on the analysis of hydrologic, geologic, topographic, and climatic data, the
downstream area has high groundwater potentiality as indicated by the spatial and sta-
tistical analysis of the input factors. The soil of “clay loam” and Calcic cambisols “loam”
recorded high FR values are 2.23 and 1.15, respectively. This is because the rate of pre-
cipitation and groundwater infiltration is substantially controlled by the soil character-
istics [49,65], as the arrangement of soil grains controlled the infiltration and recharge
capability and has a major impact on the vertical and lateral flow of water [66]. Addition-
ally, porous and permeable rocks facilitate water infiltration by subsurface fluxes [52]. The
existence of an equal proportion of sand, silt, and clay of lithosols facilitates the recharge
potential due to watershed and soil erosion (Nguyen et al., 2021). Therefore, the amount
and flow of groundwater in a specific area are determined by the soil underneath that loca-
tion [67]. Because the surface water can accumulate and drain downstream networks [4,68],
the low-elevation areas recorded the highest FR (1.97) for elevation classes 1087 to 1276.
Based on FR values, the N and NE have higher values of 2.37 and 1.37, respectively, in-
creasing the vegetation in some areas which improves surface infiltration and groundwater
recharge [11,69]. On hillsides that look north and east, transpiration is low despite the
significant soil moisture levels. The TRI factor was computed to assess how heterogeneous
the landscape was, and it was utilized to search for groundwater [63,64]. The areas of low
TRI have a high FR value of 1.58 and are positively related to water accumulation. The
groundwater aquifers would be able to receive water at topographic depressions [10,16],
as they recorded high FR values of 1.46 and 0.66. Furthermore, high lineament density
areas have a high FR value of 1.18. This is due to that location with high permeability
and potential groundwater [67,70–72] and, thus, groundwater occurrence. Geologic struc-
tures, such as drainage networks (rivers) and geological features (faults, fractures, and
lithological limits), are rectilinear due to a phenomenon that takes place below the surface
of the ground [52]. Such structures increase secondary porosity and infiltration. The areas
“0–370” km, as they are nearby rivers, are considered the more pronounced groundwa-
ter [64,73], as being close to hydrological systems is important when looking for water
resources [5,52]. The rainfall information may be useful in identifying regions that are
likely to accumulate water and represent the potential recharge areas [9,10,49,56]. Although
the areas of high rainfall has the lowest FR value (0.79), the area with low rainfall has the
highest FR (1.21) as the precipitation is driven by topography but water accumulates in
low elevated areas in rugged terrains [74]. Based on that Dd, classes 54.40 to 66.70 and
66.80 to 101 have the higher values 1.63 and 1.14. This is because the areas dissected by
lineaments have higher Dd. It suggests that high-drainage-density locations are suited
for the formation of groundwater [75–78]. In similar studies concerning groundwater
prospection which implemented bivariate statistical models [3,25,74], it was found that
the present study provided more balanced results for the training and validation points.
Although the present study presented a satisfactory output and validation performance, the
results are controlled by the quality of input data. Moreover, detailed field investigations
and very high-resolution images that reflect the hydrogeologic and geologic settings should
be utilized to predict the groundwater potentiality in the future.

8. Conclusions

In this article, a part of the Yellow River basin that covers 35,915 km2 was investigated
to delineate the prospective locations of water resources. To achieve that, geological,
hydrologic, topographic, and climatic data were combined with remote sensing and GIS
data. Nine predictive GIS maps including soil, elevation, lineaments, rainfall intensity, Dd,
Distance to the river, TRI, aspect, and topographic data were prepared and normalized
using the FR technique, which ranked each sub-class based on its capability for holding
groundwater. These layers were integrated using the overlay weight-based GIS technique.
The resulting map was then classified using NBC into six groundwater prospection zones
were found to have very low (~13%), low (~30%), moderate (~25%), high (~16%), very
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high (~11%), and extreme potentiality (~5.26%) of the entire area. The most plausible place
for groundwater resources is downstream. In conclusion, taking into account GWPZ’s
investigation is beneficial for research field decision-makers who are considering long-
term sustainability.
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