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Abstract: The rapid development of megacities has greatly impacted land use in the urban–rural
fringe area. The Western Protected Area defined by Chengdu’s Master Plan (2016–2035) to end the
unrestrained urban sprawl, where locates the most superior agricultural and ecological resources,
namely Mount Qingcheng and the Dujiangyan Essence Irrigation District, is facing great challenges
when implementing protective strategies, related to huge land use competition caused by land
multi-functionality. To better assess and understand land-use conflict and its influence, this paper
constructs a comprehensive evaluation model with ‘multi-functionality and landscape complexity’
based on existing research, with a 1 km × 1 km spatial resolution, and analyzes its relationship
with land-use and land-cover (LULC) change, based on 30 m land resolution data from 2000, 2010,
and 2020, produced by the Institute of Resource and Environmental Science and the Data Center
of the Chinese Academy of Sciences. Overall, two kinds of land-use conflict concerning function
suitability and landscape pattern co-emerge spatially, but there also exist “high-low” combinations.
The result shows that land consolidation or the adjustment of land use might take place more often
when both the suitability conflict and the landscape conflict reach a certain threshold. The results
provide enlightenment for further expanding the quantitative research on land-use conflict and
confirm the potential of applying the land-use conflict index in delineating territorial spatial planning
control areas.

Keywords: land-use conflict; Chengdu; China; multi-functionality; landscape complexity

1. Introduction

Accompanied by huge scale rural–urban immigration, food/energy consumption
adjustment, and a massive influx of investment into rural areas, the rural land-use function
is becoming more and more diversified, which has caused dramatic challenges for culti-
vated land protection and ecological protection by initiating frequent land-use conflicts [1].
According to the third Chinese national land survey, cultivated land has been reduced by
7.5 million hectares, largely due to the net flow of cultivated land into forest land with the
implementation of the Landscape Greening Project. In the Chengdu Plain Economic Zone,
a region in southwest China known as the “Tianfu granary”, the reduction has reached 40
percent in the last 10 years, which makes it quite urgent that conflict management is carried
out in this area.

Land-use conflict has exacerbated the contradiction between the economic benefits,
ecological benefits, and social benefits, with land scarcity and land-use diversification
as the basic driving mechanism, and has gained extensive attention from scholars [2–4].
More and more research has tried to utilize various quantitative methods to measure
the intensity or potential of land-use conflict. On one hand, land-use multi-functionality
has been used as a quantitative empirical method to assess potential land-use conflicts
by many scholars [5–7]. The criterion indicator generally includes natural conditions,
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locational conditions, and social conditions. However, inconsistency exists at the third-
level indicator due to the data sources used in further research, for e.g., a lack of soil
data when calculating the suitability of agricultural production and the ambiguity of
social condition indicators when calculating the suitability for life. Some studies make the
supplementation by imploring land survey data and zoning maps [8]. Special research
provides a detailed guide for this study, by constructing a comprehensive indicator system
to assess the conflict between agriculture and ecology [9]. On the other hand, the landscape
ecological risk index is another assessment method widely used by scholars, with three
dimensions of complexity (risk sources), fragility (risk receptors), and stability (risk effects)
of the land-use cover [10–13]. However, no research exists examining and comparing
the relationship between different assessment methods [14]. More important is the lack
of practical verification of the prediction effect of these indicators on land-use transfer.
Research papers on land-use and land-cover change [15,16] have also ignored the need to
include land-use conflict as an important independent variable, focusing more on social
and economic factors rather than land use and landscape characteristics.

This study is trying to put forward the research on land-use conflict in Chengdu’s
Western Protected Area, as a case for empirical analysis using multi-sourced data on land
use and the natural–economic–social elements, compared to the two most frequently used
land-use conflict identification methods, namely the land-use function conflict based on
establishing an evaluation system of land-use function suitability and the ecological risk
based on landscape metrics. Furthermore, this paper details the potential distribution
characters of land-use conflict and its relationship with land-cover change, which reveal
the underlying impact mechanisms of land-use conflict in a more quantitative way.

2. Materials and Methods
2.1. Research Area and Data

The “Western Protected Area” is defined by Chengdu’s Master Plan (2016–2035) to end
the unrestrained urban sprawl, which includes the location of the most superior ecological
resources and is the origin of the Minjiang and Tuojiang watershed. It contains 8 districts
outside the urban ring expressway, with 136 towns (7185 km2). We include all the towns in
these 8 districts as research sites, considering conflict in the urban–rural fringe designated
as an ecological zone around the city. Mountain Qing Cheng, a world heritage and famous
National Scenic Park, and the Dujiangyan Essence Irrigation District, another world heritage
site due to its irrigation system, are both located in the “Western Protected Area”, which
increased its particularity as a research base (Figure 1).
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This study used land cover type data with a 30 m spatial resolution for 2000, 2010, and
2020, which was produced by the Institute of Resource and Environmental Science and
the Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/ (accessed
on 1 May 2022)), by visual interpretation using Landsat MSS, Landsat TM/ETM, and
Landsat 8 data [17]. In addition to land-use data, we also collected other multiple-source
data, including natural condition data and social condition data, to meet the needs of
evaluating land-use functions. As for the social conditions, we calculated the distance
datasets using the “Euclidean Distance” analysis function in ArcGIS 10.6, containing the
distance from the main roads above the county level (DR), the distance from major rivers
(RIV), the distance from the township (DT), the distance from education facilities (DEF),
and the distance from medical facilities (DMF), with road and river data, and a facility data
download from the Baidu map. Soil quality was supplemented by the Institute of Resource
and Environmental Science and the Data Center of the Chinese Academy of Sciences and
CASEarth (Big Earth Data for three poles, http://poles.tpdc.ac.cn/zh-hans/ (accessed on
May 2022)), for e.g., the content of organic, phosphorus, potassium, pH value, erosion, soil
texture type (ST), and agricultural output per km2. Weather and terrain data, including
slope, elevation, geological disaster probability (GDsP), average annual temperature (AT),
and average annual precipitation (AP), were also collected, mainly provided by the Institute
of Resource and Environmental Science and the Data Center of the Chinese Academy of
Sciences, as well as economic (GDP per km2) and population data (pop per km2). As for the
ecological evaluation, we used data produced by the Institute of Mountain Hazards and
Environment in Chengdu, which is a branch of the Chinese Academy of Science, namely
water and soil loss vulnerability (WSLV), water conservation (WC), soil conservation (SC),
and biodiversity conservation (BC).

The research framework is shown in Figure 2, and the evaluation model is explained
in Section 2.2.
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2.2. Research Methods and Assessment Model
2.2.1. Developing an Assessment Model of Land-Use Conflict Based on Multi-Functionality

With references to other papers on land-use multi-functionality assessment [18,19] and
the “Technical Guide for Suitability Evaluation of Territorial Space Development” published
by China’s Ministry of Natural Resources, this paper includes our assessment system (see
Table 1). Based on the resolution of the available data and a reasonable research scale,
land-use conflict is analyzed with 1 km spatial resolution. In order to make classification
assignments from 1–5 for each evaluation index, the natural breakpoint method is used,
where 5 refers to the highest score and 1 refers to the lowest. Then, the entropy weight
method is used to calculate the basic index weight, with the entropy weight of the index k
calculated using Formula (1), in which ek is the entropy value of the index k and is calculated
using Formula (2). pkj refers to the proportion of the average value of index k in the total of
this index, calculated with normalized value.

uk = (1− ek)/
n

∑
k
(1− ek), (1)

https://www.resdc.cn/
http://poles.tpdc.ac.cn/zh-hans/
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ek = −
m

∑
j=1

(
pkjlnpkj

)
/ ln(m), (2)

Table 1. Production–living–ecological function evaluation system.

Factor
(Weight)

Indicator and Weight Indicator Classification and Score
Indexes ValueWeights 5 4 3 2 1

Production
Function

Soil
(0.3719)

Organic - 0.0431 Highest Very high Medium Low Lowest
Phosphorus - 0.0824 Highest Very high Medium Low Lowest
Potassium - 0.0332 Highest Very high Medium Low Lowest
pH value - 0.0348 6.5~7 6~6.5/7~7.5 5~6/7.5~8 4.5~5/8~8.5 <4.5/>8.5

Erosion - 0.0348 Slightest Slight Moderate Very
strong Strongest

Soil texture type - 0.0471 Clay - Silty - Sand
Agricultural output kg/ha 0.0966 >8000 6000~8000 4000~6000 1000~4000 ≤1000

Terrain
(0.2506)

Elevation m 0.1362 ≤800 800~1500 1500~2500 2500~3500 >3500
Slope ◦ 0.0277 ≤2◦ 2–6◦ 6–15◦ 15–25◦ >25◦

Geological disaster
probability

- 0.0867 Highest Very high Medium Low Lowest

Weather
(0.1693)

Average annual
temperature °C 0.1024 ≥18 ◦C 15~18 ◦C 10~15 ◦C 5~10 ◦C <5 ◦C

Average annual
precipitation mm 0.0669 ≥1200 800~1200 400~800 200~400 <200

Location
(0.2082)

Distance from main
roads above county

level
m 0.0972 ≤10 10~50 50~100 100~300 >300

Distance from major
rivers m 0.1111 ≤100 100~200 200~400 400~800 >800

Living
Function

Terrain
(0.6018)

Elevation m 0.2006 ≤800 800~1500 1500~2500 2500~3500 >3500
Slope ◦ 0.1605 ≤3◦ 3–8◦ 8–15◦ 15–25◦ >25◦

Geological disaster
probability

- 0.2407 Highest Very high Medium Low Lowest

Social
(0.1321)

Population Per
km2 0.0151 ≥1500 1000~1500 600~1000 400~600 0~400

distance from
education facilities m 0.0522 Highest Very high Medium Low Lowest

Distance from
medical facilities m 0.0536 Highest Very high Medium Low Lowest

GDP Per
km2 0.0112 ≥30,000 10,000~30,000 3500~10,000 2500~3500 <2500

Location
(0.2661)

Distance from the
township m 0.0761 <500 500~1000 1000~3000 3000~5000 >5000

Distance from main
roads above county

level
m 0.0994 ≤100 100~200 200~400 400~800 >800

Distance from major
rivers m 0.0906 ≤100 100~200 200~400 400~800 >800

Ecological
Function

Ecological
Sensi-
tivity

(0.282)

Water and soil loss
vulnerability - 0.2820 Lowest Low Medium Very high Highest

Ecosystem
Ser-
vice

(0.718)

Water conservation - 0.1970 Highest Very high Medium Low Lowest
Soil conservation - 0.1970 Highest - Medium - Lowest

Biodiversity
conservation

- 0.3240 Highest Very high Medium Low Lowest
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The adjustment is executed by referring to the existing research and opinions of
planning practitioners.

The method most used when identifying the land-use conflict zone involves the
construction of 27 combinations of multi-land use functions by categorizing each special
unit into strong (S), medium (M), and weak (W) levels, according to the natural breakpoint.
The deficiency is apparent when used in later analysis, due to too many conflict types,
even though scholars merged all the elements into 8 strong categories and 16 medium
categories [8]. We constructed a new suitability conflict assessment index normalized
by using the newly emerged calculation method for land-use multi-functional trade-off
synergy status [20]. Figure 3 shows the conflict potential between specifical land-use
functions (e.g., LUF1 and LUF2). Points O1 and O2 are located on the 45◦ straight line,
representing the ‘weak-weak’ and ‘strong-strong’ combination, respectively. The stronger
the conflict level will be when a spatial unit is closer to point O2. The distance away from
the 45◦ straight line in the A and B regions represents the relative advantage favoring the
LUF1 or LUF2. We define |OP − PQ| as the quantitative index to measure the degree of
suitability conflict potential. The detailed calculation equation is as below:

LUFC =
√

LUF2
1 + LUF2

2 − |(LUF1 − LUF2)|
√

2/2, (3)
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Then 3 sets of potential conflict values are obtained, and, thus, the maximum results
for land-use conflict for the specific unit.

2.2.2. Assessment Model of Land-Use Conflict Based on Landscape Ecology

The land-use conflict measurement index is constructed, namely the SSCI, shown in
Formula (4). The complexity index (CI) is mainly calculated by the area-weighted patch
fractal dimension (AWMPFD) using fragstats. The higher the fractal index is, the more
likely it is to be interfered with by the surrounding adjacent landscapes, shown in Formula
(5). The vulnerability index (FI) represents the resistance to interference. It is commonly
accepted that different land cover types have different degrees of resistance, while the list
from weak to strong is built-up land (1), forest (2), grassland (3), arable land (4), water (5),
and unused land (6) [21], shown as Formula (6). The stability index (SI) is represented
by the patch density (PD), shown in Formula (7). A higher PD means a high degree of
landscape fragmentation, a lower recovery capability after interference, and worse stability.
However, the FI index calculated by the landscape ecological risk is more biased towards
ecological vulnerability [22], so the SCCIN index is proposed to calculate the potential of
land-use conflict in this paper, shown in Formula (8). Land cover data with a 30 m spatial
resolution were collected, and land-use conflict focused on landscape ecological risk was
analyzed with a 1 km spatial resolution to be in accordance with the LUFC.

SCCI = CI + FI − SI, (4)
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AWMPFD =
m

∑
i=1

n

∑
j=1

[
2 ln
(
0.25Pij

)
ln
(
aij
) ( aij

A

)]
, (5)

FI =
n

∑
i=0

Fi ×
ai
S
(n = 4), (6)

SI = 1− PD− PDmin
PDmax − PDmin

, (7)

SCCIN = CI − SI, (8)

2.2.3. Multivariate Linear Regression Model of Land-Use/Cover Change

In the multivariate linear regression (MLR) model, variables that have multicollinearity
can be filtered and removed using a stepwise regression. Research has shown that land-use
change is driven by various factors: population aggregation and economic development
are two major driving forces of land-use change [23], the growth of infrastructure and
residential facilities would significantly increase fixed assets investment (FAI), which in
turn stimulates land-use change [24], which could be measured using road length and the
number of POIs in the analysis unit. As the urbanization level casts great importance, we
also used the distance from urban areas as control variables. We assumed that land-use
change is stimulated by land-use conflict, a multivariate linear regression model was used
to detect the relative importance of the land-use function conflict and landscape conflict,
the interaction effect was also considered. All the data were calculated into a grid-based
unit with a 1 km spatial resolution. Then the parameters were estimated in the MLR by
ordinary least squares, and significance was accepted at p = 0.01. The statistical analyses
were conducted in Python 3.7.

3. Results
3.1. Spatial Distribution Characteristics of Land-Use Conflict
3.1.1. LUFC Zones Based on Multi-Functionality

The suitability conflict between the production and living function is dominant, which
is to some extent due to the lack of high suitability of the ecological units, as shown in
the probability distribution diagram (Figure 4). The suitability degree can be divided into
four partitions, with a normalized LUF value for each function; units with an LUF ≥ 0.8
are of the highest suitability, while units with a 0.8 > LUF ≥ 0.6 are slightly high. Then,
LUFC ≥ 1.13 means high conflict units, and LUFC ≥ 0.85 are for normal conflict units,
according to Formula (1). In 7069 spatial units, 6.9% (488) are of high conflict, while 42.8%
(3027) are of normal conflict. The sensitivity analysis (Table 2) shows that conflict units
dramatically decrease while the suitability threshold increases, for e.g., 13.0% (916) are
conflict units if the LUFC is calculated with LUF ≥ 0.76, and 21.1% (1489) if calculated
with LUF ≥ 0.72. This result further proved the disadvantage of the traditional methods,
which divide suitability grade according to the natural breakpoint method and delineate
the conflict units according to suitability combinations, while the quantitative measurement
index proposed by this paper enhances the flexibility of the conflict unit identification and
delimitation, aimed at strengthening territorial management accordingly.

The conflict units are mainly distributed in the plain area (Figure 5a), which align
with the fact that the plain area of Chengdu is suitable for urban and rural construction as
well as agricultural planting due to the good irrigation system, while a small number of
ecological–living and ecological–production conflict units are distributed in the western
mountainous area. As for the vulnerability of ecological areas, the identification of conflict
unit thresholds can be moderately reduced to reflect conflict more accurately in the shallow
mountain areas of the Long Quan (Figure 5b).
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Table 2. Sensitivity analysis of the conflict units with different thresholds of land-use function
suitability.

Threshold of High LUF 0.4 0.5 0.6 0.64 0.68 0.72 0.76 0.8

Corresponding LUFC 0.57 0.71 0.85 0.91 0.97 1.02 1.07 1.13
Number of Conflict Units 6515 5250 3515 2856 2156 1489 916 488

Ratio of Conflict Units 92.2% 74.3% 49.7% 40.4% 30.5% 21.1% 13.0% 6.9%
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Figure 5. Distribution of land-use function suitability conflict. (a) Considering production–living–
ecological conflict and (b) only considering living–ecological conflict.

Setting 0.8 > LUF ≥ 0.6 as a slightly high suitability threshold, we detect urban and
rural construction land, forest land, and cultivated land as the main component of the land-
use structure of the conflict unit, with a small amount of grassland and water. From 2000
to 2020, urban and rural construction land in the high conflict unit increased by 22.1 km2

and cultivated land decreased by 26.1 km2, while construction land in the normal conflict
unit increased by 199.5 km2 and cultivated land decreased by 224.0 km2, which confirms
the judgment detailed before that the conflict between agricultural production and living
functions are dominant. What is more, as shown in Table 3, the proportion of forest land
in conflict units is about 13.5%~14.3%. Forest land increased by 28.6 km2 from 2000 to
2020, indicating that the net flow of other land types into forest land was also very large,
especially in the first 10 years, as China officially launched the implementation of large
eco-projects, such as concerning natural forest resource protection or the return of farmland
to forests in specific areas since 2001.
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Table 3. Land-use status of conflict unit (km2).

Land Use and
Conflict Grade

2020 2010 2000

Normal High Normal High Normal High

Construction land 552.51 84.73 466.87 75.39 353.02 62.60
Bare land 0.52 0.00 0.49 0.00 0.00 0.00
Woodland 482.68 33.47 484.07 33.44 459.18 30.36

Water 56.29 5.75 56.61 5.63 54.61 5.02
Agriculture 1990.25 378.17 2074.38 387.66 2214.23 404.30
Grassland 36.15 0.50 35.91 0.50 37.31 0.34

3.1.2. LUFC Zones Based on Landscape Pattern

The land use and conflict measurement index, both SCCI and SCCIN, measure the
relative degree of conflict risk within a region. However, compared with SCCI, this paper’s
newly constructed index, SCCIN, has significantly reduced the number of high conflict units
and increased the number of low conflict units in all 3 years, 2000, 2010, and 2020 (Figure 6).
While the main difference between the two formulas is land-cover types, it indicated that
the structure of land-cover types contributes greatly to the landscape ecological risk in the
traditional calculation method, as the traditional landscape ecological risk measurement
method focuses on the risk impact of the composition of construction land patches, rather
than the characteristics of the land use configuration pattern. Taking the year 2020 as an
example, the conflict risk units identified with SCCIN are almost contained in those with
SCCI (Figure 7). However, the conflict risk inside urban built-up areas and at the edge of
built-up areas is significantly reduced. Even though there are also ecological, water system,
and other non-construction land in the urban built-up area, the possibility of land-use
transfer are far lower than that outside in the countryside, which results in the difficulty for
SCCI to reflect the resilience resistance landscape ecological risk itself inside built-up areas,
proving that the SCCIN constructed by this paper to be more reliable.
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Figure 6. Probability density diagram of land-use conflict index based on the landscape ecological
risk index, (a) with traditional measures and (b) with newly constructed index not considering the
vulnerability index.

Compared with the degree of suitability conflict potential (LUFC), the spatial agglom-
eration of the conflict units defined by the landscape pattern is more obvious, forming
relatively continuous conflict agglomeration areas. As shown in Figure 8, while beyond
a certain landscape risk degree, namely 0.2, the higher the LUFC, the stronger the land-
scape complexity (SCCIN), this is mightily due to more intense “competition” between
the different functions for land space, resulting in the mixing of agriculture and forestry
land or mosaic landscape patterns in these regions. So, special attention should be paid to
areas with high conflict risk accordingly, from the perspective of the regional agricultural–
ecological landscape and the protection of the settlement landscape with the local feature.
Specifically, the four kinds of relationship situations between the LUFC and SCCIN are
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as follows: (1) units of low functional suitability conflict and low landscape complexity
conflict, mainly concentrated in areas with ecological advantages in deep mountains, as
shown in Figure 9a, where suitability for agricultural production and urban–rural liv-
ing is poor; (2) units of low functional suitability conflict and high landscape complexity
conflict, as shown in Figure 9b, mainly concentrated in the shallow mountain and hilly
areas, dominated by the mixture of ecological space and agricultural production space.
Agricultural land in the valley is continuously distributed along the terrain, resulting in
land use vulnerable to the impact of land consolidation projects, such as “slope upgrading,
land greening or returning the forest to farmland”; (3) units of high functional suitability
conflict and low landscape complexity conflict, as shown in Figure 9c,d, while the former
is dominated by the large scale of farmland or forest land, and the latter is dominated by
high density and relatively homogeneous rural settlements, which are generally identified
as construction land patches in 30 m resolution remote sensing recognition, resulting in
lower landscape complexity; and (4) units of high functional suitability conflict and high
landscape complexity conflict, as shown in Figure 9e, where the residential area is more
sparse and the density is lower, the agricultural production space and urban–rural living
space are mixed.
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Figure 9. Types of landscape complexity conflicts for units of high or low functional suitability
conflict, with typical sites of (a) low LUFC and low landscape complexity conflicts, (b) low LUFC
and high landscape complexity conflicts, (c) high LUFC and low landscape complexity conflicts
with ecological aspects dominating, (d) high LUFC and high landscape complexity conflicts, (e) high
LUFC and low landscape complexity conflicts with production aspects dominating.

3.2. LUCC Pattern and Its Relationship with Land-Use Conflicts
3.2.1. Land-Use/Cover Change in the Research Area

During 2000–2010 and 2010–2020, cultivated land, especially paddy fields, decreased
by the most, transforming into urban–rural construction land, but this has eased in the last
10 years. Another land use transformation worth noticing is the transformation of dry land
into sparse forest land and shrub forest land (with a total amount of 81.3 km2), which went
through little change during 2010–2020 (Figure 10a). Thanks to the transformation of paddy
fields into dry land, and land consolidation projects that restore the shrubbery to dry land,
the full scale of dry land remained unchanged from 2010 to 2020 (Figure 10b). The different
patterns of land use transformation among the “ecology, production and living” space in
the different regions of the “Western Protected Area” are shown. From the perspective
of net flow from 2000 to 2020 (Table 4), the net flow of paddy fields to construction land
was 318 km2, and 18.9 km2 to forest land, the net flow of dry land to construction land
was 7.7 km2 and 50.1 km2 to forest land, which represented two types of multi-functional
conflict, the “production–living conflict” and “production–ecology conflict”.
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Table 4. Net change of land-use structure in the “Western Protected Area” from 2000–2020 (km2).

Land-Use Type ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Medium Coverage Grassland 1 � * � � � � � � � � � � � � �
Low Coverage Grassland 2 −0.7 � � � � � � � � � � � � �
Other Construction Lands 3 −0.1 0.0 � � � � � � � � � � � �

Other Forest Lands 4 −0.4 0.0 0.0 � � � � � � � � � � �
Rural Settlements 5 −0.3 −12.7 9.8 1.8 � � � � � � � � � �

Urban Construction Land 6 −0.1 0.0 −5.7 0.0 −22.4 � � � � � � � � �
Dry Land 7 3.0 −0.2 6.2 0.8 −1.3 2.8 � � � � � � � �

Forest Land 8 −0.4 0.1 2.3 0.0 −0.7 −0.3 −1.5 � � � � � � �
Bare Land 9 −2.5 0.0 0.1 0.0 0.0 0.0 −1.1 −9.5 � � � � � �

Water 10 −0.2 0.0 0.5 0.1 −1.3 0.1 0.0 −1.8 0.0 � � � � �
Paddy Field 11 0.4 0.0 97.0 2.0 89.9 130.9 33.8 5.7 0.0 3.9 � � � �
Shrub Wood 12 1.5 0.8 1.3 0.3 −0.8 −0.1 −6.6 −3.9 7.8 1.2 −1.9 � � �

Sparse Woodland 13 −15.1 1.7 1.1 0.0 −0.8 0.3 −41.1 4.9 4.1 1.4 −9.3 0.4 � �
High Coverage Grassland 14 −45.8 −3.2 −0.2 0.0 −0.1 0.3 −4.4 −0.1 0.1 0.0 −1.7 −2.4 −0.1 �

* Net change of land-use structure is symmetric matrix; therefore, only semi-symmetric data is displayed.

3.2.2. Relationship of Land-Use/Cover Change and Land-Use Conflict

As mentioned above, conversions among cultivated, forest, and construction land
are the most significant part of land-use transfer in the study area. They fully reflect the
functional conflict of the “production–living–ecological” aspects. Take the sum scales
for the mutual transfer of these three types of land as the dependent variable and ana-
lyze the prediction effect of the “conflict risk index” and other independent variables on
land-use change.

The box chart analysis shows that, with the increase in landscape conflict risk in
2000–2010 and 2010–2020, the scale of land-use transition presents a trend of increasing and
then decreasing (Figure 11), which indicates that other factors are affecting the prediction
effect of landscape conflict risk, especially after the landscape conflict risk reaches 0.8.
Under the conditions of equal landscape conflict risk, the land-use transition scale within
the highest suitability conflict and standard suitability conflict units are significantly larger
than that of the low suitability conflict or no suitability conflict units. With the increasing
landscape conflict risk, this gap becomes more obvious, indicating that landscape conflict
risk can enhance the prediction effect of land-use transition caused by suitability conflict.
It is worth noting that there are outliers showing that the conflicting index is not the only
factor determining the land-use evolution. Some units with low conflict risk index represent
a larger scale of land-use evolution.
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Figure 11. The relationship between land-use change and land-use conflict (a) from 2000 to 2010 and
(b) from 2010 to 2020.
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With the sum of the mutual conversion among cultivated land, forest land and con-
struction land as the dependent variable, regression analysis shows certain prediction
reliability of the conflict risk index. Without considering the interaction effect, the suitabil-
ity risk index (LUFC) constructed in this paper has a strong positive prediction effect on
land-use transition. However, it is far weaker than the landscape conflict risk (SCCIN),
which is confirmed by the regression results of model 1 (Table 5). Road network density,
GDP density, population density, POI quantity, and other indicators reflecting human
settlement vitality positively predict land-use transition. The farther away from the urban
area, the smaller the change scale.

Table 5. Regression analysis of the driving factors of total land-use transition.

2000–2010 2010–2020

Model 1 Model 2 Model 1 Model 2
Coef P > |t| Coef P > |t| Coef P > |t| Coef P > |t|

Intercept −15.65 0.00 −2.5 0.058 −25.12 0.00 −10.42 0.00
LUFC 8.82 0.00 −9.13 0.00 17.04 0.00 −2.6 0.135

SCCIN_Normalized 21.02 0.00 −23.1 0.00 29.47 0.00 −17.8 0.00
SSCIN_Normalized × LUFC � * 0.00 51.15 0.00 � * 0.00 54.78 0.00

Road Length 9.81 0.00 10.51 0.00 7.84 0.00 8.38 0.00
GDP Per Km2 0 0.00 0 0.00 0 0.00 0 0.00

Population Per Km2 0.04 0.00 0.04 0.00 0.05 0.00 0.05 0.00
Number of POI 0.13 0.00 0.13 0.00 0.15 0.00 0.15 0.00

Distance From Urban Areas −1.18 0.00 −0.79 0.00 −1.59 0.00 −1.23 0.00
R-squared 0.533 0.544 0.638 0.647

* Model 1 did not include this variable for comparison with Model 2.

Considering the interaction effect, as in model 2, the prediction effect of suitability con-
flict risk and landscape conflict risk on land-use transition is mutually constrained, which
reflects a threshold effect. When landscape conflict risk is greater than 0.18 (=9.13/51.15)
during 2000–2010, the prediction of suitability conflict risk is a positive sign. With the
increasing suitability conflict risk, the prediction intensity is enhanced, and the threshold
value from 2010 to 2020 is 0.05 (=2.60/54.78). On the contrary, when landscape conflict risk
is lower than the threshold value, the prediction effect of suitability conflict is negative,
which might be due to the higher cost of land-use transition in areas with low landscape
conflict, as a certain type of suitable land is dominant and continuous. Similarly, the posi-
tive prediction effect of landscape conflict risk depends on the suitability conflict risk index,
with a threshold of 0.45 and 0.32 in 2000–2010 and 2010–2020, respectively. This means that
although the landscape pattern of the spatial unit is fragmented and diversified, landscape
conflict could lead to land-use transition only when the suitability conflict reaches a certain
degree. Otherwise, the possibility of adjusting the existing landscape pattern is low.

4. Discussion
4.1. Insight into Land-Use Conflict Characteristics

In this paper, an index representing land-use function suitability conflict is constructed
by referring to the multi-functional trade-off synergy analysis method. This facilitates
quantitative analysis of the land-use function conflict with a continuous variable LUFC,
resulting more in-depth analysis, such as sensitivity analysis of the conflict units with
different thresholds of land-use function suitability, compared with existing research that
would obtain 27 kinds of composition relations and eight types of LUFCs zones [5,8], or
the spatial autocorrelation of conflicts between the agricultural and ecological functions [9].
This might be useful as the land-use function suitability threshold should vary according
to the local physical geographical conditions [8], as the ratio of conflict units drops dra-
matically when the threshold of high land-use suitability increases and somehow provides
elasticity of land-use management rather than the existing method. We also make revisions
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to the calculation formula for landscape conflict, by neglecting the vulnerability index
which refers to ratios of land-cover types, as it mainly focuses on the ecological security
perspective [25] rather than the landscape pattern itself. Our findings show a tiny difference
between these two methods, especially in built-up areas.

The interactions and relationships among the different conflicts are important [26],
a comparison between the land-use function conflict and landscape conflict could be
analyzed, as these two indexes are of the same resolution. Research shows that elements
such as slope, elevation, average annual temperature, and soil type affect the spatial
differentiation of landscape conflict [27,28], but lack mechanism explanations for it. We
noticed that most of those are indexes are for the land-use suitability evaluation system,
and these two kinds of land-use conflict co-occur spatially overall, but there also exists
“high-low” combinations. These findings are crucial to the deep understanding of how
land-use suitability affects land-use conflict.

More importantly, it is still not clear about the relationship between land-use change
and land -se conflict, while pioneer research has been established to simulate sustainable
land-use scenarios based on conflict management [7]. The governance of spatial conflicts
can affect the mutual conversion between land uses through the optimal allocation of
land resources, resulting in changes in the level of spatial conflict driven by the rational
adjustment of land use [29], the process of land-use/land-cover (LULC) dynamics can lead
to dramatic changes in regional landscape patterns [30]. However, it is also possibly correct
vice versa, as landscape patterns have been influenced in some parts by land consolidation
works over the years [31], while the need for land consolidation comes from the reduction
of economic costs relating to land fragmentation [32]. Our findings from the multivariate
linear regression model confirmed that land consolidation or adjustment of land use took
place more often when both suitability conflict and landscape conflict reaches a certain
threshold, which might support more precise identification of land-use conflict zones.

4.2. Policy Implications for Chengdu’s Western Protected Area

As for the “Western Protected Area” in Chengdu, the reciprocal transformation of
land use among construction land, cultivated land, and forest land are dominant, which is
consistent with the land-use conflict analysis result, showing the great necessity to apply
land-use conflict assessment in comprehensive spatial planning and build more effective
protection and control systems. Plain areas should be paid more attention, as suitability
conflict and landscape conflict are both the highest, especially in urban–rural fringe areas
of Dayi and Chongzhou county, seen also in other research [33]. However, some counties
encountered low land-use conflict in urban–rural fringe areas such as Pidu and Dujiangyan,
reflecting good implementation of urban development boundaries. Strict control should
also be implemented at the foot of Mount Qingcheng where the terrain fluctuates rapidly,
as lots of units of high land-use conflict are located there.

4.3. Limitations and Future Research

The ecological risk index is optimized by highlighting the effect of landscape pattern
complexity on land-use conflict and the relationship between these two commonly used
land-use conflict assessment methods is thus cross-analyzed. Then, the two indexes were
further used to predict the land-cover change, other regression analysis methods could
be tested in the future, such as the optimal parameters-based geographic detector [28] or
machine learning to reveal the interaction mechanism on how suitability and landscape
conflict affects land-cover change.

What is more, this research did not recognize the land-use conflict of small-scale
agroforestry land due to limitations in data resolution and soil data richness, but the
production value of small-scale agroforestry land has been widely proven [34]. Linpan,
a special residential typology in rural areas with small-scale agroforestry land around
buildings, has also been specially protected by the government [35]. In addition, fine
planting conditions provide the potential for developing economic crops, such as nursery
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stock, flowers, and orchards, especially at the edge of the metropolis, where land-use
function shows characteristics of agriculture, but also forests, resulting in a new type
of land-use conflict. The assessment scale of land-use function suitability conflict and
landscape pattern conflict cannot distinguish this special scenario at the scale of a 1 km
grid and 30 m resolution, which might be breakthroughs for future research.
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