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Abstract: The study aimed to forecast and monitor drought over degraded land based on monthly
precipitation using the Seasonal Autoregressive Integrated Moving Average (SARIMA) approach.
Several statistical parameters to select the most appropriate model were applied. The results
indicate that the SARIMA (1,1,1) (0,1,1)12 is the most suitable for 1981 to 2019 CHIRPS time-
series data. The combination of precipitation data and this approved model will subsequently be
applied to compute, assess, and predict the severity of drought in the study area. The forecasting
performance of the generated SARIMA model was evaluated according to the mean absolute
percentage error (15%), which indicated that the proposed model showed high performance
in forecasting drought. The forecasting trends showed adequate results, fitting well with the
historical tendencies of drought events.
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1. Introduction

Precipitation is considered a main component in the water cycle. The global average
precipitation is estimated between 2.5 and 2.8 mm/day [1,2]. However, the distribution
of rainfall is uneven, with arid and semi-arid regions suffering the most from irregular
rainfalls and water scarcity, leading to drought events that affect the land. Drought can
vary from year to year.

Drought is considered to be a major factor in land degradation processes. Several
research works have highlighted the impacts of arid episodes and the occurrence of major
degradation locally and globally [3–6]. Scientific discussion on these issues is ongoing.
Scientists have identified several types of droughts as an effective way to monitor and
classify them. Meteorological drought typically occurs when a dry weather pattern domi-
nates a specific region. This type of drought is based on the degree of rainfall deficit and
the duration of the dry period. It is identified when rainfall is less than average over a
significant period, often a month. Hydrological drought happens when low water supplies
become evident in the water system, influenced by the impact of rainfall deficits on the
water system and supply, such as reservoir and lake levels, stream flow, and ground water
table decreases.

Moreover, when crops are damaged and affected by drought, we define it as agri-
cultural drought. This refers to the impacts on agriculture by various water irrigation
factors (soil water deficits, rainfall deficits, ground water decline, or reservoir levels).
The best way to monitor agricultural drought is by mapping rainfall records and vegeta-
tion conditions. Ecological drought happens when natural ecosystems are influenced
by drought, and socioeconomic drought is felt when multiple demands and supplies of
commodities (e.g., vegetables, grains, fruits and meat) are affected by drought conditions
(agricultural, meteorological or hydrological drought). This generally occurs when the
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demand for an economic good surpasses supply as a result of deficit in water supply
caused by weather.

Many research studies have suggested a potential rise in global average temperature,
which will alter climate components such as rain, snow, clouds, and the water cycle. The
increase in average heat will accelerate the rate of evaporation, and more water vapor will
be generated in the air causing greater rainfall. Many predictive models have indicated
a probable increase of 1 ◦C in the average global temperature leading to a rise of 1 to 3%
in yearly precipitation, reaching 12% in 2100. Mediterranean regions will get the least
amount of precipitation and will be affected by a severe drought and water shortage [7].
This potential increase will lead to more snow and a higher risk of flooding, as well as other
severe weather disasters. Therefore, the instability of precipitation has elicited a proactive
approach for water resource management to reduce the impacts of future drought. In that
context, machine learning prediction models can play an essential role in water resource
management to reduce the impacts of water scarcity and climate change.

The advance of science has led to the application of artificial intelligence and machine
learning for weather forecasting. Former traditional methods were based on the physical
simulation of the atmosphere presuming it to be a fluid. Therefore, the approach applies
thermodynamic and fluid equations to compute the future behaviour of the weather. The
generated model is unstable and too sensitive because of uncertainties in measurement.
Moreover, the complex, non-linear and stochastic features of climate result in a physical
model based on ordinary differential equations being unable to fully represent the complex
process of the atmosphere, generating unreliable forecasting models. Machine learning
algorithms, on the other hand, are robust and do not require studying all the physical
components that interfere with the atmosphere.

Various machine learning methods have so far been conducted in weather forecast-
ing [8,9], suggesting new methods to improve time series predictions and accuracy im-
provements. The main objective of machine learning is to improve prediction accuracy by
minimizing forecasting error. On the other hand, machine learning forecasting can often
generate implausible solutions leading to an exaggerated simulation scenario. Therefore,
the application of a certain model must be contingent on various and complex parameters
before accepting the forecasting results [10].

Seasonality is one of the most important features for many time-series data. As a
result, it has been found that the Seasonal Autoregressive Integrated Moving Average
(SARIMA) is very effective in forecasting seasonal time series data in various fields [11–15].
The popularity of SARIMA arises from Box and Jenkin (1976) [16]. The applied method-
ology, while building the model, requires that all the data are seasonally differentiated to
fulfill the stationarity condition. This step is required to eliminate the effect of seasonal
variation which can obstruct the measurement of other time series components. As a
result, the first step in this model consists of applying seasonal adjustments to remove
seasonal variation. Once this is done, the model is calibrated and scaled back using specific
seasonal parameters.

Many studies have widely used SARIMA models for understanding and forecasting
climate variables. Dimri et al. (2020) [17] applied a combination of ARIMA and SARIMA
for forecasting temperature and precipitation for the Bhagirathi River basin (India). They
used multiple SARIMA versions depending on the weather component. The resulting
forecasting information serves for better water management of the area. Eni and Adey-
eye (2015) [18] used the diverse parameters of the SARIMA model (Akaike’s Information
Criterion (AIC), Schwartz’s Bayesian Criterion (SBC),complemented with autocorrela-
tion interpretation to determine the most efficient SARIMA model to fit the historical
rainfall data. This model was applied to visualize and forecast precipitation amounts
for 2013 in the regions of Warri town (Nigeria). Mohan and Vedula (1995) [19] used
the SARIMA model to forecast monthly reservoir inflows for 27 years. The model was
based on 25 years of historical data with logarithmic transformation. The results based
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on the applied machine learning model proved that SARIMA is efficient in forecasting
reservoir inflows.

In this paper, we applied the SARIMA model to monthly in situ precipitation data
from 1981 to 2019. To identify the most appropriate SARIMA model, we first removed
the seasonal variation from the historical time series data. The chosen model must meet
all SARIMA statistical criteria in order to demonstrate its performance compared to other
proposed models, and the selected model be used to predict precipitation behavior, where
the forecast values are compared to the observed values. In the following section, we
describe the study area and the type of data used for the model. We then discuss SARIMA
and the best tools for validating and selecting the best model. The results and discussion
section regarding the experimental setup is followed by the conclusion.

2. Study Area

Zaghouan region is located in the northeast of Tunisia (Figure 1), at 36◦24′ North/
10◦09′ East. The city is situated on a hill of the Mountain of Zaghouan with an altitude of
1295 m. The region is tectonically active, known by the famous fault of Zaghouan, which
extends for 80 km long in a northwest-southeast direction. The total vertical displacement
of this mechanical structure is approximately 5 km. The active seismicity of the area has
generated a large number of water sources. The area is also known for the abundance
of hydrothermal water sources, which has made the region a famous destination for
health tourism. The local climate is semi-arid, the annual average temperature is around
18 ◦C and the total yearly rainfall rarely exceeds 500 mm. The estimated population
of the city is 20,837. Besides health tourism, a big part of local activities is based on
agriculture, where almost 1.4 million quintals are produced yearly from 300,000 ha of
land [20,21]. The area is suffering from land degradation (mainly soil salinization),
which constitutes a threat to the safe use of the groundwater in irrigation and for
drinking purposes [20,22]. The expansion of salt-induced soil in agriculture land use had
intensified the desertification phenomena and crop yield loss. The area is also suffering
from landscape degradation by the effect of soil erosion. The impact is amplified by
the aggressiveness of the semi-arid climate, the irregularity (frequency and intensity)
of rainfall, and the increased intensity of run-off water, causing multiple regions of
flood-prone land. The occurrence of such phenomena has caused significant losses in
soil and runoff water pouring into the seas [23,24].

The time-series variation of rainfall for the city of Zaghouan, illustrated in Figure 2,
shows that precipitation has a sinusoidal trend, where maximum rainfalls occur in Novem-
ber, December, January, and March, and minimum rainfall is recorded in June, July, and
August. This data series has a seasonal variation, where maximum precipitation is recorded
in winter while the minimum rainfall occurs in summer. This climatic behaviour is consid-
ered one of the most important features that define the arid/semi-arid climate, where 50%
of annual precipitation occurs during the cold season (winter). The hotter season (summer)
is characterized by a high temperature and scanty rainfall.
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3. Methodology
3.1. Data

The monthly rainfall data used in this study are Chirps precipitation data covering
the period from 1981 to 2019. The data consist of 468 historical records collected from rain
station located at coordinates 36◦24′32.828′′ N 10◦8′32.341′′ E in the city of Zaghouan. The
collected data were used to assess the severity of rainfall deficits in Tunisia, a country with
high water stress [25]. The data were simulated using advanced models of terrain-induced
precipitation enhancement and compared with real station data and satellite observations.
This technique, developed by NOAA and NASA, was designed to generate rainfall maps
for regions with sparse surface data. With the advancement of new techniques and remote
sensing observations, the goals have reached a new level, such as providing yearly warnings
for trend analysis and seasonal drought monitoring. The site is now capable of providing
complete, reliable, and up-to-date data sets [26].

Estimating rainfall variations (in both space and time) is a crucial aspect of environ-
mental monitoring and drought early warning. Seasonal observation and monitoring data
must be placed in a historical context to evaluate the severity of rainfall deficits. However,
satellite data can now provide real and continuous averages that suffer from biases due
to the complex topography, which often miscalculate the intensity of extreme precipita-
tion events. Conversely, precipitation grids produced on the basis of station data suffer
more in rural areas where there are often few (sometime no) rain-gauge stations. In that
context, The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset
is based on previous approaches to smart interpolates, with high resolution, and a long
period of precipitation trends based on infrared Cold Cloud Duration (CCD) observations.
The algorithm is made around a 0.05◦ climatology that integrates satellite information to
represent sparsely gauged locations which incorporate daily and monthly precipitation
estimates that extend from 1981 to the present date. The algorithms blend station data to
generate a preliminary information product with a latency of approximate 2 days with
an ultimate final product with an average of 3 weeks latency. The model uses a novel
blending procedure that incorporates the spatial correlation structure of CCD-estimates
to interpolate weights. The CHIRPS algorithm has proven the capacity of quantifying the
hydrologic impacts of decreasing precipitation and increasing air temperature. Moreover,
using the Variable Infiltration Capacity model, CHIRPS can effectively forecast and analyse
hydrologic trend in many African places that suffer from serious droughts [26].

3.2. Seasonal Autoregressive Integrated Moving Average (SARIMA)

Box and Jenkins developed a model named Autoregressive Integrated Moving Average
(ARIMA) which is used to analyse stationary time-series data sets [16]. This model served
efficiently in forecasting non-seasonal data. However, the model seems to be unfit for data
with seasonal components. As a consequence, the two scientists developed an extended
version of ARIMA, named SARIMA, to deal with monthly or quaternary data that displays
annual seasonal patterns.

Generally, seasonal ARIMA models are denoted as follows SARIMA (p, q, d) (P, Q, D)s.
The structure of the model deals with two features of seasonal time series data. SARIMA (p,
q, d) is constructed to show the relationship between consecutive time-series observations,
whereas SARIMA (P, Q, D)s is modelled to depict the relationship between corresponding
observations of consecutive seasons.

The general equation of the SARIMA (p, q, d) (P, Q, D)s model is written as follow [27]:

φp(B)ΦP(Bs)∇d∇D
S zt = θq(B)ΘQ(Bs)at (1)

where:
φp (B): The non-seasonal autoregressive operator (AR) with pth order
θq (B): The non-seasonal moving average operator (MA) with qth order
ΦP (Bs): The seasonal autoregressive operator with Pth order
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ΘQ (Bs): The seasonal moving average operator with Qth order
B: The backshift operator
∇d: The non-seasonal differencing with dth order
∇D

S : The seasonal differencing with Dth order at s number of lags
at: an independent variable called also a normal random variable.
The Jenkins and Box methodology was based on several decisive rules to effectively

fit the SARIMA model with time-series data using the required parameters for SARIMA
(p, q, d) (P, Q, D)s for forecasting future outcomes for a specific period. It is necessary to
evaluate the efficiency of the chosen model by estimating the forecasting parameters of the
SARIMA model and testing the fitness of the model on the estimated residuals.

Identifying the best model involves the basics of autocorrelation properties. This
is the key step in which we can detect suitable(s) model(s) for any specific time-series
data. Therefore, we applied Autocorrelation Function (ACF) and Partial Autocorrelation
Function (PACF), which consist of identifying the parameter orders of the SARIMA model
by measuring the relationship between the current and past observations. Other order
selection methods must be taken into consideration, such as Akaike’s information criterion
(AIC) [28], the Bayesian information criterion (BIC) [29,30], the Ljung–Box test [31,32], and
the Jarque–Bera test [33,34]. In addition, different approaches and new testing parameters
are applied to evaluate the efficiency of the model and improve the accuracy of forecasting
models, such as the likelihood ratio [35,36].

One of the most important steps in forecasting is that time series values must be
converted into stationary data. This condition is crucial during the identification process
of parameters orders. After achieving stationarity, the time series is suitable for statistic
evaluation. For example, selecting the precise order of differencing (d) corresponds to
the lowest standard deviation value. After selecting the right orders, taking care to not
make the model over or under-differencing, and not getting into root units, evaluating the
model adequacy must fulfill statistical characteristics such as mean absolute percentage
error (MAPE) or standard error (SE). The best suitable model corresponds to the model that
has the lowest MAPE and SE coefficients.

If the statistic laws and the outcomes from residual plot observations suggest that the
selected model is not suitable with respect to the historical data, a new proposed model
should be identified and operated with respect to all previous checking and validation
steps. In some cases, many alternative models can be identified. The best model is the one
that has the lowest statistical forecasting errors. The final chosen model would serve in
rainfall forecasting. All processing and statistical steps were run in the Spyder environment
using (and written in) the Python language.

3.3. Statistical Parameters of the SARIMA Model
3.3.1. Term Significance

To prove whether the association between the response and each term in the SARIMA
model is statistically significant, we assessed the null hypothesis by comparing the p-value
for the term to each significance level. The null hypothesis assumed that the term was
not significantly different from 0, which denotes no association between the term and the
response. Usually, the threshold of significance level (denoted as α or alpha) is around 0.05
which means that a significance level of 0.05 indicates there is a 5% risk that the term is not
significantly different from 0, when it is, in fact, significantly different from 0.

3.3.2. Ljung-Box

The Ljung-Box Q statistic is used to test whether a series of observations are random
and independent over time. If the observations are not independent, an observation can be
correlated with another observation k time units later, establishing a relationship called
autocorrelation. Autocorrelation can affect the accuracy of a time-based forecasting model,
such as a time series plot, and lead to misinterpretation of data.
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3.3.3. Heteroscedasticity

Heteroskedasticity is used to evaluate standardized residuals. It checks whether the
sum-of-squares in the first third of the sample is significantly different than the sum-of-
squares in the last third of the sample. The null hypothesis assumes no heteroskedasticity. In
the context of regression modeling, heteroscedasticity means that the conditional variance
of the data is not constant. Conditional variance is the variability of the dependent variable
(named y) for each value of time period t (in case of time series data), or each value of
explanatory variables (named X) in general.

3.3.4. Jarque-Bera

The Jarque-Bera test is used to assess the normality of standardized residuals. It is
generally a goodness-of-fit test of whether time series data have kurtosis and skewness
matching a normal distribution. The resultant value from the test is always non-negative.
The null hypothesis assumes the normality of the sample data. In a case where the test
statistic is far from zero, it presumes that the data do not have a normal distribution.

3.4. Standard Precipitation Index (SPI)

Over the years, many drought indices have been developed and used around the world.
The standard precipitation index (SPI) is a powerful index. It is based on precipitation as
parameter to analyse rainfall deficits and their potential impacts. It is also very effective
in analyzing both wet and dry periods. The reason for using SPI is that computing of
the parameters deals only with precipitation, which could be useful in case of lack of
supplementary data (temperature and humidity, among others). In addition, it is efficient
in characterizing drought (or abnormal wetness) at various time scales depending on
the time availability of water resources type (e.g., snowpack, groundwater, soil moisture,
reservoir storage and river discharge). Another distinctive feature of the SPI index is
that it is more comparable across regions with different climates than other indexes (like
Palmer Severity Drought Index (PDSI)). In addition, computing of SPI is less complex than
other indexes (PDSI). It generally uses long-term precipitation data which are fitted on a
probability distribution (such as gamma distribution) and then transformed into a normal
distribution so that the generated SPI value is zero. Generated values can be positive or
negative, where positive amounts are greater than the median precipitation and negative
rates indicate less than the median precipitation. The interpretation of SPI values is shown
in the following Table 1 [37]:

Table 1. Standard Precipitation Index classes and interpretation.

SPI Values Interpretation

≥2 Extremely wet

[1.5 to 1.99] Very wet

[1.0 to 1.49] Moderately wet

[−0.99 to 0.99] Near normal

[−1.0 to −1.49] Moderately dry

[−1.5 to −1.99] Severely dry

≤−2 Extremely dry

4. Results and Discussion

This section describes the use of several Python packages in the study. The tasks of
reading a CSV file and data analysis were performed using the “pandas” package. The sta-
tistical analysis and time-series forecasting were carried out using the “SARIMAX” function
of the “statsmodels” package. Data visualization was performed using the “Matplotlib”
package. The time-series data were processed in Python to remove seasonal variation
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and make them stationary. The initial statistical evaluation indicated that rainfall has a
fluctuating statistical property that depends on time. The PACF plot (Figure 3A) reveals
that the series has a strong positive autocorrelation for a high number of lags, requiring a
differencing order “d” to ensure stationarity in the time-series data. The optimal differenc-
ing order was determined to be “d = 1”, where the standard deviation (SD) was the lowest
(SD = 1.70–15 for d = 1, and SD = 2.26–15 for d = 2). The low SD value indicates that the data
points are close to the mean. Upon inspection of the ACF and PACF plots of the differenced
series (Figure 3B), adding AR (1) and MA (1) terms to the model was necessary to adjust
the sharp cutoff in the series, as the time-series data appeared to be under-differenced. The
positive aspect of the first observation (lag) in the PACF supported the addition of the AR
(1) term. At this stage (Figure 3D), ACF and PACF plots still show a consistent and strong
seasonal pattern, which repeatedly arise in the 11th, 12th, 24th, and 25th lags. Therefore,
we added one seasonal difference “D” to the series. Based on the last observation of the
ACF and PACF plot (Figure 3E), we detected a persistent negative autocorrelation at the
11th lag which repeatedly appeared with less amplitude. Consequently, this point made
us consider adding an SMA (1) term “Q”. The final ACF and PACF plots of the deduced
SARIMA can be seen in Figure 3F. According to this, we can conclude that the best SARIMA
for this time-series data is SARIMA (1,1,1) (0,1,1)12. A summary of the model is illustrated
in Table 2.

Table 2. Table summary for SARIMA (1,1,1) (0,1,1)12 model.

SARIMA Results

Dep. Variable Rainfall

No. of Observations 468

Model SARIMA (1, 1, 1) × (0, 1, 1, 12)

Log Likelihood −2061.268

AIC 4130.536

BIC 4147.017

HQIC 4137.029

Sample 01-01-1981–12-01-2019

Covariance Type opg

coef std err z p > |z| [0.025 0.975]

ar. L1 0.0586 0.043 1.349 0.177 −0.026 0.144

ma. L1 −0.9963 0.035 −28.824 0 −1.064 −0.929

ma. S. L12 −0.9973 0.54 −1.847 0.065 −2.056 0.061

sigma2 449.4187 234.936 1.913 0.056 −11.047 909.884

Ljung-Box (Q) 48.19 Jarque-Bera (JB) 393.37

Prob(Q) 0.18 Prob (JB) 0

Heteroskedasticity (H) 0.94 Skew 1.21

Prob(H) (two-sided) 0.68 Kurtosis 6.86
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4.1. Forecasting Accuracy Measurement

The best way to estimate and compare forecasted with actual values is by operating
backward forecasting. The SARIMA predictive values were calculated and compared with
the historical values of the time series data. Many criteria and statistical tools can evaluate
forecasting accuracy. The Mean absolute error (MAE) is one of the most common tools for
evaluating forecasting performance. The equation is formulated as follows [38]:

MAE =
∑n

i=1|yi − xi|
n

(2)

where yi is the forecasted value, and xi is the observed value.
The MAE value is expressed as a percentage (%). The lower the value, the better

the forecasting. Compared to other models, it seems that the chosen SARIMA (1,1,1)
(0,1,1)12 model generated the lowest MAE value, which was 15.9%. Hence, the evaluation
of the forecasting accuracy of this SARIMA model accords with the criteria of Lewis
(1982) [39], which classifies our model with a good forecasting accuracy.

4.2. Summary of the SARIMA Model

The SARIMA (1,1,1) (0,1,1)12 model was found to have the best performance statisti-
cally compared to other models. It had the lowest standard error of residual variance (σ2)
compared to the others. However, the value was still high, indicating that the forecasted
model was not a perfect fit to the observed data. This can be seen in Figure 4, which shows
the heterogeneity between the forecasted and observed values.
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The log-likelihood ratio (log likelihood) measures how well the forecasted model fits
the observed values. A higher ratio indicates a better fit. Our selected SARIMA model had
the highest log likelihood ratio compared to the other models. AIC (Akaike information
criterion), BIC (Bayesian information criterion), and HQIC (Hannan-Quinn information
criterion) are statistical estimators that indicate how well the forecasted model fits the
observed data. Models with the lowest AIC, BIC, and HQIC values are considered to have
the best fit. However, it is important to note that the AIC ratio may be penalized if the
corresponding model uses multiple parameters, as is the case with our SARIMA model.
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Overall, compared to other models, our chosen SARIMA model had the highest log
likelihood ratio and the lowest AIC, BIC, and HQIC values. Hence, it can be concluded
that our model was the best fit for forecasting values (as shown in Table 3).

Table 3. Statistical assessment between different ARIMA and SARIMA models.

SARIMA (1,1,1)
(0,1,1)12

SARIMA (0,1,1)
(0,1,1)12

SARIMA (1,1,1)
(0,1,0)12

ARIMA (0,1,1) ARIMA (1,1,1)

MAE (%) 15.91 15.98 22.25 43.8 40.8

Log. Likelihood −2061.268 −2062.039 −2224.694 −2203.468 −2182.855

AIC 4130.078 4130.536 4455.387 4412.935 4373.710

BIC 4142.439 4147.017 4467.748 4425.374 4390.296

HQIC 4134.948 4137.029 4460.257 4417.831 4380.237

SE (σ2) 234.936 432.148 1009.043 *** ***

SE 0.618 0.996 1.034 1.25 1.2

*** mean that this statistical variable is not available/ relevant for ARIMA model.

4.2.1. Term Significance

The statical significance of the model parameters is supported by the probability values
(p-values). The null hypothesis regarding this probability value is that each parameter of
our chosen model is not statistically significant. In this case, the p-values of all parameters,
except AR (1) were equal or less than 0.05 (critical value) which allows us to reject the null
hypothesis and deduce that all cited parameters are statically significant. As for AR (1),
the p-value was higher than 0.05 (0.177 > 0.05). In this case, we conclude that the null
hypothesis is retained but this does not allow us to say that the AR (1) is not statically
dependent [40]. This is shown in Figure 3 where we can see the difference of the ACF
and PACF plots when we add the AR (1) term to the model (plot D). However, we want
to evaluate the accuracy performance of the SARIMA model by removing the AR (1)
parameter. According to the results in Table 3, although there is a big similarity in both
models, we can see that the standard errors (SE) have deteriorated, which shows that the
accuracy of the SARIMA (0,1,1) (0,1,1)12 has declined compared to the previous model.
This supports our assumption that the AR (1) term has a statistical significance, but could
not as indicated by the p-value.

4.2.2. Ljung-Box

According to E.P Box et al. (1970) [16,27,33], this test is generally applied to evaluate the
randomness of data by checking if (or not) the autocorrelations of time series data are different
from zero. Therefore, the Ljung-box ratio is set to test a null hypothesis that assumes that the
autocorrelations are equal to zero up to a certain lag n. Since our probability (0.18) was above
the specified critical value (0.05), we cannot reject the null hypothesis. Therefore, we can say
that the autocorrelations of one or more lags are different from zero as shown in the ACF and
PACF plots (Figure 3). Accordingly, our time-series data are random and independent over
time. Autocorrelations of one to more lags can be different from zero.

4.2.3. Heteroscedasticity

The heteroscedasticity statistical test is used to evaluate if the residual errors have the
same (constant) variance (homoscedastic). The related probability value is compared to the
critical value in a way to accept or reject the null hypothesis. Since the resultant probability
value (0.66) was higher than 0.05, we accept the null hypothesis that the residuals have
a constant variance. It seems that this point is quite reasonable due to the fact that the
historical data show a close resemblance in some specific years. The data show the same
precipitation amounts (close monthly or yearly average) in some years. Therefore, there
may be the same residual variance for some lags.
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4.2.4. Jarque-Bera

This statistical test of Jarque and Bera (1980) [41] determines if the data have a normal
distribution. The correspondent probability value tests the normality of the errors. Since
our p-value (0) was under 0.05, we reject the null hypothesis that the data are normally dis-
tributed. Since it has a seasonal variation, our data series must not be normally distributed.
The skewness and kurtosis are correspondent features of the Jarque-Bera test. Therefore,
we conclude that our time series data have a slight positive skew and a large kurtosis.

4.2.5. Forecasting Results

The SARIMA (1,1,1) (0,1,1)12 forecast trend is depicted in Figure 5. The model shows
a consistent precipitation trend with an average of 470 mm/year. The highest amounts of
precipitation are predicted for January (60 mm) and December (55 mm), while the lowest
are expected in July (7 mm). However, the model’s forecast deviates from the observed
historical data, as it fails to capture irregular precipitation patterns where monthly rainfall
exceeds 100 mm. The model projects similar precipitation behavior over a five-year period,
as it mimics the first-year trend and repeats it for the following years. This is due to
SARIMA’s one-period-ahead prediction approach, which assumes previously forecasted
data as historical data.
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SARIMA models are favored for their ease of implementation and accuracy in short-
term forecasting. It has been demonstrated that SARIMA can provide a sufficient modeling
approach for weather forecasting. Depending on the data type, SARIMA can generate
multiple potential forecasting models [18,42,43], but generating one SARIMA model is
also feasible. Our case study is similar to the study conducted by Dimri et al. (2020),
where the authors found that SARIMA (0,1,1) (0,1,1)12 was the most appropriate model for
precipitation forecasting in Uttarakhand, India.

SARIMA is not ideal for long-term forecasting, as the model relies on a forecasting
equation for one period ahead and repeats it for future periods as desired. Over a long-term
period, this extrapolation can be rigid, especially if the model produces the best forecasting
equation. It would be more beneficial to combine SARIMA models with other sources and
technologies that enhance multi-period forecasting [13].
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Additionally, SARIMA requires a substantial amount of data, with a minimum of
50 values, and optimally around 100 values [43]. However, it may be difficult to obtain this
amount of data in some cases due to uncertainties or a lack of measurement tools. New
forecasting technologies typically use a small amount of data over a shorter period.

4.2.6. Drought Forecasting

Based on the results generated from Figure 6 and Tables 4 and 5, it was determined
that the region is at high risk of drought. The results were based on the monthly variation
of the SPI index. The overall evaluation shows that around 50% of the period is classified
as near normal, with a significant dry stage constituting 35% of the whole period. The
results also show that the area experiences a rare wet period that covers nearly 15% of the
estimated period. The refined classification allows for the distinction of different drought
categories. It confirms that the main drought category is near normal. On the other hand,
the dry period classification reveals a severe drought intensity period, where 26% of the
period is categorized as very to extremely dry (13% each), and only 9% of the cumulative
period is defined as moderately dry. The wet period is classified with 6.5% of the total
period as moderately wet, 5.5% as very wet, and only 2% as extremely wet.
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Table 4. SPI prediction from 2022 to 2030.

Month SPI Month SPI Month SPI

Jan-22 −2.9 May-25 0.54 Sep-28 −1.96

Feb-22 −2.81 Jun-25 0.23 Oct-28 −1.92

Mar-22 −2.83 Jul-25 0.39 Nov-28 −1.91

Apr-22 2.82 Aug-25 0.39 Dec-28 −2.01

May-22 −2.78 Sep-25 0.39 Jan-29 0.08

Jun-22 2.03 Oct-25 0.39 Feb-29 −1.31

Jul-22 1.56 Nov-25 0.39 Mar-29 0.27

Aug-22 1.55 Dec-25 0.39 Apr-29 −0.53

Sep-22 1.55 Jan-26 0.4 May-29 −0.88

Oct-22 1.55 Feb-26 0.42 Jun-29 −1.34

Nov-22 1.55 Mar-26 0.37 Jul-29 −1.16

Dec-22 1.55 Apr-26 −0.45 Aug-29 −1.56

Jan-23 0.73 May-26 0.4 Sep-29 −2.12

Feb-23 0.96 Jun-26 −0.84 Oct-29 −2.09

Mar-23 0.46 Jul-26 −0.01 Nov-29 −2.08

Apr-23 −0.38 Aug-26 −1.07 Dec-29 −2.17

May-23 0.8 Sep-26 −1.81 Jan-30 −1.18

Jun-23 0.87 Oct-26 −1.77 Feb-30 −1.34

Jul-23 1.15 Nov-26 −1.76 Mar-30 0.24

Aug-23 1.16 Dec-26 −1.87 Apr-30 −0.56

Sep-23 1.16 Jan-27 0.29 May-30 −0.9

Oct-23 1.16 Feb-27 0.24 Jun-30 −1.58

Nov-23 1.16 Mar-27 0.34 Jul-30 −1.56

Dec-23 1.16 Apr-27 −0.48 Aug-30 −1.84

Jan-24 0.62 May-27 0.27 Sep-30 −2.33

Feb-24 0.78 Jun-27 −0.95 Oct-30 −2.3

Mar-24 0.43 Jul-27 −0.39 Nov-30 −2.3

Apr-24 −0.4 Aug-27 −1.15 Dec-30 −2.38

May-24 0.67 Sep-27 −1.85

Jun-24 0.55 Oct-27 −1.81

Jul-24 0.77 Nov-27 −1.81

Aug-24 0.77 Dec-27 −1.91

Sep-24 0.77 Jan-28 0.18

Oct-24 0.77 Feb-28 0.08

Nov-24 0.77 Mar-28 0.31

Dec-24 0.77 Apr-28 −0.51

Jan-25 0.51 May-28 0.14

Feb-25 0.6 Jun-28 −1.12

Mar-25 0.4 Jul-28 −0.77

Apr-25 −0.43 Aug-28 −1.32
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Table 5. Frequency of forecasted Monthly SPI values from 2022 to 2030.

SPI Frequency Percentage Interpretation Cumulative Percentage

−2.9 1 0.93

Extremely dry

−2.8 3 2.78

−2.4 1 0.93

−2.3 3 2.78

−2.2 1 0.93

−2.1 3 2.78

−2 2 1.85 12.98

−1.9 5 4.63

Very dry−1.8 6 5.56

−1.6 3 2.78 12.97

−1.3 4 3.7

Moderately dry
−1.2 3 2.78

−1.1 2 1.85

−1 1 0.93 9.26

−0.9 2 1.85

Near normal

−0.8 2 1.85

−0.6 1 0.93

−0.5 4 3.7

−0.4 4 3.7

0 1 0.93

0.1 3 2.78

0.2 4 3.7

0.3 5 4.63

0.4 12 11.11

0.5 3 2.78

0.6 3 2.78

0.7 2 1.85

0.8 8 7.41

0.9 1 0.93 50.93

1 1 0.93

Moderately wet1.1 1 0.93

1.2 5 4.63 6.49

1.5 5 4.63
Very wet

1.6 1 0.93 5.56

2 1 0.93
Extremely wet

2.8 1 0.93 1.86
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5. Conclusions

We estimated the amount of precipitation in the semi-arid city of Zaghouan. After
making the time-series data stationary, SARIMA was used to find the most appropriate
parameters for the model (SARIMA (1,1,1) (0,1,1)12). SARIMA (1,1,1) (0,1,1)12 showed
the best performance according to statistical parameters, generating a precipitation trend
similar to historical tendencies. The MAPE showed that SARIMA (1,1,1) (0,1,1)12 can
also accurately predict drought events based on precipitation data at different time scales.
However, additional climatic parameters, such as temperature, wind, and relative humidity,
should be considered for drought forecasting. The prediction of SPI was also calculated
from 2022 to 2030, and the evaluation of the forecasted monthly data showed a “near nor-
mal” trend with significant dry events and rare wet months, which make up approximately
13% of the total forecasted months. The results are presented in Tables 4 and 5.

Drought forecasting is crucial for drought management and plays a vital role in
providing early warning of potential drought events, which can help preserve crop yields
and quality in regions with degraded land that hinders land use sustainability.
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