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Abstract: Urbanization imperils agriculture by converting farmland into uncultivable impervious
surfaces and other uses that limit land productivity. Despite the considerable loss of productive
croplands due to historic urbanization in the United States, little is known about the locations and
magnitudes of extant agricultural land still under threat of future urban expansion. In this study, we
developed a spatially explicit machine learning-based method to predict urban development through
2040 under a business-as-usual scenario and explored its occurrence on existing farmland. We
found that if urban development continues at the same pace as that between 2001 and 2016, by 2040,
highly developed areas and low-density residential areas will increase by 9.5 and 21 million acres,
respectively. This increase would result in 18 million acres of agricultural land lost, fragmented, or
compromised (~2% of total agricultural lands in 2016), with the remainder of projected development
occurring on other types of natural and semi-natural lands. Of the affected agricultural lands,
6.2 million acres (34%) would be converted to uncultivable urban uses and 12 million acres (66%)
to low-density residential uses. Agricultural land losses are projected to be greatest in fast-growing
regions such as Texas, California, and the Southeast, and on the outskirts of metropolitan areas across
the country, especially in the Midwest, where agricultural lands are more concentrated. The losses as a
percentage of existing agricultural lands are projected to be highest along the East Coast, where many
urban areas are forecasted to expand onto a limited remaining pool of cultivable lands. These findings
can help guide the efforts of local, state, and federal policymakers to reduce land use competition
between urban and agricultural systems and mitigate the impacts of projected urban expansion.

Keywords: urbanization; agricultural land loss; United States; land-use change; urban growth model

1. Introduction

The earth has undergone unprecedented urbanization in recent decades and the
global development of land consumes some of our planet’s most productive agricultural
lands [1–3]. This conversion is usually irreversible—once urbanized, agricultural lands are
very unlikely to be recultivated. Such losses of agricultural lands already pose a substantial
threat to local and regional food security, especially where rapid conversion of croplands is
occurring [3,4]. For example, the continued loss of farmland due to urban expansion has
raised concerns in many countries such as China, India, Canada, Indonesia, Nigeria, Egypt,
and Indonesia [5–10]; croplands converted by urban expansion in Nigeria, Indonesia, and
China between 2000–2010 were found to be 30–40% more productive than new cropland
for key stable crops [11]. It is projected that such trends of urbanization-induced cropland
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loss will continue if no actions are taken [12–14]. Protecting existing agricultural lands is
critical to meeting the demands of an increasing population and its attendant growing need
for food and fuel, especially under the compounding stresses of climate change, extreme
weather, and public health crises such as the COVID-19 pandemic [1,12,15].

Arable lands in the U.S. account for over 10% of the world’s total cultivable land [16,17].
The abundance and availability of agricultural lands have made the U.S. a food-secure
nation with an important role in global food security [18]. Beyond supplying food, agri-
cultural lands in the U.S. are also important resources for renewable fuels and fibers
production [19,20], and provide essential ecosystem services that improve the quality of
our life and that of the environment [21,22].

All these benefits are degraded when agricultural lands are converted to urban uses,
especially when they are poorly planned [23]. In 2020, the American Farmland Trust (AFT)
found that roughly 4 million acres of farmland were converted to highly developed urban
land uses between 2001 and 2016 [17,24]. The analysis also revealed that low-density
residential land use (essentially, sparse suburbanization) expanded even more rapidly and
contributed to the loss or fragmentation of nearly 7 million acres of farmland over the same
time period. Such rates of farmland conversion could accelerate given potential future
changes in lifestyles caused by societal shifts and climate change. For example, housing
preferences and the more available remote work options following the COVID-19 pandemic
could exacerbate the trend of residential growth at the expense of agricultural lands, as
more Americans shift to live in suburbs or less-populated areas [25,26]. Simultaneously,
climate change and extreme weather will continue to push farmers to abandon their fields
and eventually sell less-productive agricultural lands for urban development, particularly
where retaining production would require more investments and management (e.g., water-
saving irrigation techniques) to protect against future climate shocks.

These potential driving forces of farmland conversion in the U.S., together with other
interconnected socioeconomic factors, make adaptive land-use policymaking and imple-
mentation challenging, particularly when sufficient knowledge of farmland–urbanization
interactions is lacking. While previous work on quantifying historical farmland losses due
to urbanization is a critical step to understanding the impacts of the conversion that has
already occurred [15,17,24], it is also essential to know where remaining farmland is under
threat if urban development continues at its current pace. Starting from a business-as-usual
(BAU) projection analysis, landowners, policymakers, and scientists can further assess
alternative land-use scenarios (e.g., the effects of societal shifts and climate change) and
formulate corresponding policies in advance of potential conversion. For example, research
in the Adelaide metropolitan area of Australia used different development scenarios to
investigate the vulnerability of agricultural land to urban sprawl to help stakeholders
understand the land system vulnerability responses under extreme policy directions [27].

Estimating future urban development is challenging because it is driven by a variety
of biophysical, societal, and economic factors. To simulate future land use, many mod-
els have been developed, such as cellular automata-based models [28–30], CLUE-S [31],
FORE-SCE [32], CLUMondo [33], and FLUS [34]. Some efforts have been made to project
future urban development in the conterminous U.S. (CONUS), including U.S.-specific
predictions [35–39] and several global-scale projections that cover CONUS [14,40–42]. Since
existing maps and models are created for diverse application purposes, they are either not
urban-specific or lack sufficient consideration of local and regional agriculture-to-urban
interactions. Just as importantly, currently available maps project future urban areas with
substantial inconsistency (e.g., ranging roughly from 40 to 170 million acres by 2040 [43])
due to differences in starting points, land use definitions, data sources, and scenario as-
sumptions. All these uncertainties hinder analysis, particularly of threatened farmlands in
the U.S.

This study presents a spatially explicit approach to project future urban development
in the U.S. by 2040 under a BAU scenario. Using U.S.-specific datasets and a 2016 baseline,
we project the conversion of land from agricultural uses (i.e., croplands, pastureland,
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rangeland, and woodlands associated with farms) to urban and highly developed (UHD)
and low-density residential (LDR) land uses by the year 2040. The results, produced in
support of the American Farmland Trust’s Farms Under Threat (FUT) data series, can
be used to identify those locations at the greatest risk of development, in order to help
prioritize agricultural land protections, design more effective land-use policy, and assist
local and regional planning authorities to develop and implement smart growth and
sustainable land-use principles.

2. Materials and Methods

We assumed that the convertibility of a non-urban location to urban land use is a func-
tion of the location’s urban development potential (development suitability), development
restrictions (e.g., whether or not the site is protected or reserved for non-urban purposes),
historical conversion rate (transition probability), and urban land demand (land needed for
urban uses) [14,38,40]. We specifically modeled two types of threats to agricultural lands:
urban and highly developed (UHD), and low-density residential (LDR) land uses. These
definitions were adopted from the Farms Under Threat (FUT) land cover dataset created
by the American Farmland Trust (AFT) and Conservation Science Partners (CSP) [24,44].
In general, UHD reflects developed lands classified as developed open spaces and low- to
high-intensity urban land uses in USGS’s National Land Cover Database (NLCD), and is
mapped at the pixel level. In contrast, LDR refers to non-urban lands within U.S. Census
blocks with average acres-per-housing-unit smaller than approximately the 10th percentile
of the farm size distribution for each county; LDR areas are mapped at the level of the
census block. These LDR areas contain agricultural land that has been permanently con-
verted to residential use, as well as some remaining agricultural lands. We assume that the
agricultural lands that remain have been compromised due to their proximity to residential
areas, which could limit the options for agricultural production, and that they remain under
threat of further development unless restrictive zoning or permanent protection is applied.
For more information on the definitions of UHD and LDR, the processes for classifying
them, and the reasoning behind such delineations, see the previous FUT reports [17,24,44].

AFT used this land classification framework to identify and document locations where
conversion to UHD and LDR occurred from 2001 to 2016 [24]. In this study, we projected
continued conversion to UHD and LDR land uses between 2016 and 2040. In general,
there were four steps involved in our projection process: (1) estimating demand for new
UHD and LDR lands between 2016 and 2040, (2) creating suitability layers, (3) generating
probability layers, and (4) conducting spatial allocation (Figure 1). We implemented all
models at the county level with a spatial resolution of 30 m.

2.1. Projecting Urban Land Demands

In the BAU scenario, development, driven by existing land-use policies and consumer
preferences, remains on the same trajectory as that from 2001 to 2016, as documented in
Farms Under Threat: The State of the States [24]. For each county, we estimated UHD
demand in 2040 (devDemanduhd) as:

devDemanduhd = uhdIncRate2001−2016 ∗ 24 ∗ adjFactor (1)

where uhdIncRate2001–2016 is the average annual UHD increase in a county from 2001 to 2016
(i.e., total UHD increment divided by 15), adjFactor is the state-level adjusting factor that is
used for all counties within a state (see below), and the number 24 refers to the number
of years between 2016 and 2040. We used a population-change-driven adjusting factor to
reflect projected changes in the rate of UHD development because (1) population increase
is a good indicator of high-density urban development (e.g., more buildings are needed to
house a growing population) (Figure 2a), and (2) other indicators such as gross domestic
product (GDP) are not available at scales fine enough. We calculated the adjusting factor as:

adjFactor = 1 + r ∗ 0.1 (2)
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where r is the relative change rate of population growth between 2016 and 2040 and
2001–2016:

r = (popIncRate2016−2040 − popIncRate2001−2016)/abs(popIncRate2001−2016) (3)

where popIncRate is the average annual population increase (i.e., total population growth
during a period divided by the number of years). Population estimates for the years
2001 and 2016 were from the U.S. Census Bureau [45,46], and the state-level population
projections are from the Weldon Cooper Center for Public Service, University of Virginia
(see details in: https://demographics.coopercenter.org/national-population-projections/,
accessed on 15 March 2022). Because both datasets use the population census as reference,
we assumed the estimates and projections were consistent and compatible across states
and time.
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Given the lack of county-level population projections, we calibrated the adjusting
factor by state. This procedure of UHD demand estimation reflects the projected change in
population growth rate, but it is also designed to not substantially over- or under-estimate
future UHD needs. For example, if a state is projected to see 50% faster population growth
in 2016–2040 than it did in 2001–2016, the UHD conversion rate would increase by 5%. As
a result, the adjustment factor ranges from 0.8 to 1.1 for all states except for West Virginia,
which has the largest projected decline in population growth rate (adjustment factor is 0.54).

Finally, we divided UHD demand into two components—LDR-to-UHD and non-LDR-
to-UHD—so that future UHD development would occur on LDR at an appropriate rate.
Because LDR is usually near existing UHD, it is more likely to be urbanized than non-LDR

https://demographics.coopercenter.org/national-population-projections/
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land uses. Assuming that the proportion of UHD development on LDR (compared to
the total UHD development) remains unchanged from 2001 to 2016 and 2016 to 2040, the
amount of future LDR-to-UHD conversion was estimated as:

devDemandldr2uhd = devDemanduhd ∗ propldr2uhd (4)

where propldr2uhd is the proportion of UHD development on LDR from 2001 to 2016. Sub-
sequently, the amount of non-LDR-to-UHD conversion was calculated as devDemanduhd—
devDemandldr2uhd.

We used a similar method to estimate future LDR demand per county:

devDemandldr = ldrIncRate2001−2016 ∗ 24 (5)

where ldrIncRate2001–2016 is the average annual LDR increase in a county from 2001 to 2016
(i.e., total LDR increment divided by 15). However, we did not apply a population-driven
adjusting factor for LDR demand estimation because past LDR increases were found to
have a weak relationship with population change (Figure 2b).
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2.2. Creating Development Suitability Layers

We estimated development suitability for each pixel within a county on a scale of 0
to 1 (higher values imply an area more suitable for development), with the potential for
a location to be urbanized as defined by a set of spatial and socioeconomic determinants
(Table 1). Predictor variables included terrain, relationships to existing urban areas, trans-
portation networks, water resources, other land resources (e.g., protected natural resources),
the urban fraction within a pre-defined buffer, land value, and nighttime light intensity (to
account for scale-dependent effects of urban development, e.g., urban development can be
more likely to occur around large cities for some counties).

We built the UHD suitability layer from these estimators by employing random forest
classifiers [47]. The computation of UHD suitability layers was conducted per county. For
each county, UHD and non-UHD training samples were randomly stratified from FUT and
NLCD 2016 layers. We tested a series of sample sizes (from 50 to 1000 for each class, with
an increment of 50) for classifier training. While too dense a sampling scheme can result in
the problem of over-fitting the model, too few samples can exaggerate projections. After
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testing, we found reasonable results (based on visual inspection) were achieved using 400
samples (200 for each class) per county. County-specific random forest classifiers trained
from stratified samples and predictor variables were then used to calculate UHD suitability
layers. The county-level suitability layers were then mosaicked to create a nationwide map.

Since sample size and location are critical to image classification, as well as to estimate
suitability in this study, we repeated the procedure of sample stratification and suitability
calculation 100 times. As a result, we created 100 nationwide suitability layers, which
were then averaged to generate the mean suitability layer (see Figure 3 for an overview of
UHD suitability). This final UHD suitability layer was later used in the steps of estimating
development probability and spatial allocation.
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Table 1. Socioeconomic and physical variables used to estimate urban development suitability.

Variable Name Spatial Resolution Year of Data Data Sources

Nighttime light intensity 500 m 2016 NOAA NPP/VIIRS
Land value 480 m 2010 [48]
Elevation 30 m 2000 NASS Shuttle Radar Topography

MissionSlope 30 m 2000
Distance to existing urban boundary 30 m 2016 FUT2016 and NLCD2016
Distance to primary roads 30 m 2016

TIGER: US Census RoadsDistance to secondary roads 30 m 2016
Distance to water bodies 30 m 2016 NLCD2016
Size of the closest urban cluster 30 m 2016 FUT2016
Urban fraction within a 1 km ∗ 1 km buffer 1 km 2016 NLCD2016
Distance to forest 30 m 2016 NLCD2016
Distance to protected ag land 30 m 2016 AFT PALD
Distance to protected areas 30 m 2019 PAD-US

2.3. Development Restriction Layers

We assumed certain land uses are unlikely to be urbanized. These areas were removed
from the suitability layer before conducting spatial allocation. In this study, development
restrictions included existing UHD, federal lands, protected agricultural lands, land in
the Protected Areas Database of the U.S. (USGS PAD-US v.2.1), wetlands (only for UHD
allocation), and water bodies. The extent of UHD and federal lands were derived from FUT
2016 [24]. Wetlands and water bodies were extracted from NLCD 2016 [49]. The protected
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agricultural lands dataset (PALD) and PAD-US were from AFT (https://farmlandinfo.org/
statistics/pald/, accessed on 15 March 2022) and USGS [50], respectively.

In addition to these areas, mature forestlands within residential areas (urban trees) tend
to remain unchanged, given their importance to the urban environment (e.g., reduced urban
heat island, ecological and aesthetic values, etc. [51–53] (Figure 4). However, residential
forestlands are usually classified as LDR in FUT layers, since NLCD 2016 often did not
classify them as developed land use. They are also close to UHD, making them likely
to receive high suitability values and so are erroneously selected as areas for new UHD
conversion. To reserve these LDR areas, we developed a set of rules to identify them
using a random forest classifier. We first calculated the proportion of each U.S. census
block that was in LDR and other land cover/use classes (derived from FUT and NLCD
layers). We then calculated the maximum vegetation greenness in each census block for the
years 2001 and 2016. To calculate the vegetation greenness of a block, we first computed a
layer of yearly maximum NDVI from all available Landsat images within a year (i.e., 2001
and 2016), which were then aggregated as the mean value of all pixels within the block.
Blocks with and without LDR-to-UHD conversion during the period of 2001–2016 were
then marked and used as reference to train state-wise random forest classifiers. Predictors
included vegetation greenness and land use types and densities for the year 2001. The
trained classifiers were later applied to 2016 predictors to predict LDR blocks likely to
remain stable from 2016 to 2040. The detected stable LDR blocks were subsequently used
as an additional restriction layer for the 2040 UHD projection.
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Figure 4. Residential forestlands northeast of Atlanta (highlighted in black rectangle, primarily
classified as LDR in FUT layers) that maintain a stable classification of LDR over time, resisting
conversion to UHD, as reflected by comparison between FUT 2001 (a) and 2016 (c). (b) A very high-
resolution image for the year 2020 showing residential vegetation remains intact from urbanization.
(d) NLCD for the area, with OS: developed, open space; LI: developed, low intensity; MI: developed,
medium intensity; HI: developed, high intensity; DF: deciduous forest; EF: evergreen forest; MF:
mixed forest.

https://farmlandinfo.org/statistics/pald/
https://farmlandinfo.org/statistics/pald/
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2.4. Creating Development Probability Layers

Development probability is defined as the product of suitability and the historical
land use conversion rate (transition probability). We calculated the transition probability
statistics at the county level based upon the actual conversion rate of each non-urban land
use to urban use between 2001 and 2016 using FUT and NLCD layers. For each county,
we calculated the conversion to UHD for each land use in proportion to its total area from
2001 to 2016, including LDR, cultivated lands, forest, herbaceous, wetlands, bare land, and
water bodies. Because LDR is an integrated class that covers all other land uses except for
UHD, we further calculated the transition probability of each land use within LDR.

The calculation of transition probabilities for each county was conducted only within
the peri- to urban areas, as defined by nighttime light brightness greater than 1. The reasons
for this design are twofold. First, the area of land uses can vary substantially within a
county (e.g., some midwestern counties are dominated by croplands), which could lead to
distortions in transition probability if all land uses within the target county are counted.
In fact, land uses remote from urban areas tend to remain unurbanized and should have
low transition probability. Second, artificial nighttime lights were used to delineate urban
and peri-urban boundaries because they have good correlations with human activities,
including the extent of urban development [54–56]. The brightness threshold of 1 was used
to cover the majority of 2016 LDR and UHD extent and remove possible background noise
(i.e., lower brightness value for unlit areas due to systematic errors).

2.5. UHD and LDR Projections

After removing development restriction areas (Section 2.3) from the probability layer
(Section 2.4), we projected the location of future UHD development using a pixel-based
thresholding method. The projections of LDR-to-UHD and non-LDR-to-UHD were con-
ducted separately due to the unique characteristics of LDR compared with other non-LDR
land uses. After UHD allocation, the location of LDR development was estimated using a
census block-based thresholding method to maintain consistency with the previous FUT
approach and datasets. All projections were county-stratified and subsequently mosaiced
to nationwide maps.

2.5.1. Allocation of UHD Development

We first estimated where LDR will be converted to UHD. Spatial allocation was
applied based on pixel values and urban development demand from LDR (Section 2.1),
i.e., we estimated that locations with higher probability values will be urbanized earlier
than low-value pixels. A series of thresholds (from 0 to 1 with a step of 0.002) were used to
segment the probability layer until the amount of LDR to UHD conversion was met, which
resulted in a binary map showing whether an LDR pixel is projected to be developed or not.
For each block with LDR in 2016, the maximum conversion to UHD proportion was set
as the 75th percentile of the observed 2001–2016 rate of all LDR blocks with LDR-to-UHD
conversion within the county. This spatial allocation of LDR-to-UHD conversion was
constrained to the 2016 LDR extent.

A similar approach was used to allocate non-LDR-to-UHD conversion, but the pro-
jection was conducted within the 2016 non-LDR extent. The two binary projections (i.e.,
LDR-to-UHD and non-LDR-to-UHD) were then combined to generate a complete map of
UHD projections.

2.5.2. Allocation of LDR Development

To be consistent with the 2001 and 2016 FUT layers, LDR projections were conducted at
the U.S. Census block level. After allocating UHD locations, we calculated block-level LDR
probabilities as the median value of UHD suitability for the remaining undeveloped and
available land within census blocks. That is, we excluded existing UHD, LDR, restriction
areas, and projected UHD and then calculated the suitability for the remaining block area
to identify the location’s likelihood for LDR growth. Finally, we implemented a probability
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layer-based thresholding method to predict specific locations where LDR development is
most likely to occur from 2016 to 2040. Like UHD projections, the thresholding method
tested a series of thresholds per county until the LDR demand was met, with the amount
of demand allocated to the most probable remaining blocks. All county-wide projections
were finally mosaiced to a nationwide map.

2.6. Model Validation

We first evaluated our projected UHD and LDR maps through discussions and visual
evaluation, including by AFT’s regional experts across the country. More particularly,
we visually assessed the location, size, and pattern of projected urban clusters based on
high-resolution aerial photography, thematic land use maps, and our knowledge of local
to regional urban environments. While this visual assessment was able to inform our
understanding of the reliability and robustness of our models and projections, quantitative
evaluation of the 2040 projections was not possible due to the lack of (future) reference data.

Thus, to quantitatively evaluate our model performance, we compared projected
urban development with actual growth for the period 2001 to 2016. Using 2001 as the
baseline year, we first projected UHD and LDR growth between 2001 and 2016. This
projected urban growth was then compared with reference urban growth observed by FUT
in its 2001 and 2016 layers.

Ten cities/metropolitan areas were selected across the country to conduct pixel-wise
site-specific locational accuracy assessments (Figure 5). They were selected to represent
diverse biophysical and socioeconomic conditions of cities across the country and to target
locations with which we were familiar. For each city/metropolitan area, we randomly
selected 1000 30 m locations (500 each for change and non-change categories) and calculated
accuracy metrics of overall accuracy (OA) and F1 score [57]. The stable UHD extent was
removed from the non-change class, as it remains unchanged after being built. Including it
in the assessment would artificially increase the apparent reliability of our models.

OA =
The number o f correct classi f ication

Total number
(6)

F1 =
2 ∗ UA ∗ PA

UA + PA
(7)

where UA and PA refer to user’s accuracy and producer’s accuracy of the UHD/LDR
class, respectively.

Land 2023, 12, x FOR PEER REVIEW 10 of 20 
 

Ten cities/metropolitan areas were selected across the country to conduct pixel-wise 
site-specific locational accuracy assessments (Figure 5). They were selected to represent 
diverse biophysical and socioeconomic conditions of cities across the country and to target 
locations with which we were familiar. For each city/metropolitan area, we randomly se-
lected 1000 30 m locations (500 each for change and non-change categories) and calculated 
accuracy metrics of overall accuracy (OA) and F1 score [57]. The stable UHD extent was 
removed from the non-change class, as it remains unchanged after being built. Including 
it in the assessment would artificially increase the apparent reliability of our models. 

𝑂𝐴 = ்௛௘ ௡௨௠௕௘௥ ௢௙ ௖௢௥௥௘௖௧ ௖௟௔௦௦௜௙௜௖௔௧௜௢௡்௢௧௔௟ ௡௨௠௕௘௥   (6)

𝐹1 = ଶ∗௎஺∗௉஺௎஺ା௉஺   (7)

where UA and PA refer to user’s accuracy and producer’s accuracy of the UHD/LDR class, 
respectively. 

 
Figure 5. Distribution of 10 selected cities/metropolitans for accuracy assessment. 

3. Results 
3.1. Map and Model Evaluation for the Period 2001–2016 

Running our models for the year 2016 resulted in similar patterns of urban develop-
ment as compared with FUT-derived reference maps (Figure 6). Quantitatively, our mod-
eling framework predicted UHD growth with a reasonable overall accuracy of 67.1% and 
an F1 score of 0.51 (Table 2). In general, the accuracies of UHD projection vary across 
metropolitan statistical areas (MSAs), which were often the unit of modeling. The greatest 
accuracies were achieved for Boise City, ID; Washington DC; Austin, TX; and Rock and 
Chicago, IL regions, with accuracies upwards of 70% and F1 scores close to or higher than 
0.6. In contrast, accuracies were the lowest for the Pittsfield, MA and Buffalo, NY areas 
(56–57%), with F1 scores only slightly above 0.2. 

The estimation of LDR development was less reliable compared with UHD but still 
yielded an overall accuracy over 60%. Given the variety of land use compositions within 
modeling regions, a high UHD estimation for a city/metropolitan area is not an assurance 

Figure 5. Distribution of 10 selected cities/metropolitans for accuracy assessment.



Land 2023, 12, 574 10 of 19

3. Results
3.1. Map and Model Evaluation for the Period 2001–2016

Running our models for the year 2016 resulted in similar patterns of urban devel-
opment as compared with FUT-derived reference maps (Figure 6). Quantitatively, our
modeling framework predicted UHD growth with a reasonable overall accuracy of 67.1%
and an F1 score of 0.51 (Table 2). In general, the accuracies of UHD projection vary across
metropolitan statistical areas (MSAs), which were often the unit of modeling. The greatest
accuracies were achieved for Boise City, ID; Washington DC; Austin, TX; and Rock and
Chicago, IL regions, with accuracies upwards of 70% and F1 scores close to or higher than
0.6. In contrast, accuracies were the lowest for the Pittsfield, MA and Buffalo, NY areas
(56–57%), with F1 scores only slightly above 0.2.
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Table 2. Accuracy assessment of projected UHD growth from 2001 to 2016 compared with actual
changes.

Cities/Metropolitan Areas UHD LDR

OA (%) F1 Score OA (%) F1 Score

Madison–Milwaukee Corridor, WI 66.6 0.51 56.8 0.25
Raleigh–Durham–Cary, NC 68.5 0.55 65.3 0.50
Austin–Round Rock, TX 70.3 0.59 58.4 0.34
Fresno, CA 67.3 0.52 52.9 0.12
Boise City–Nampa, ID 76.0 0.68 59.3 0.32
Pittsfield, MA 56.2 0.22 61.9 0.40
Chicago–Naperville–Elgin, IL–IN–WI 70.1 0.59 57.7 0.30
Atlanta–Sandy Springs–Alpharetta, GA 66.0 0.52 67.5 0.57
Buffalo–Cheektowaga, NY 57.0 0.26 63.4 0.45
Washington–Arlington–Alexandria,
DC–VA–MD–WV 72.6 0.63 62.0 0.43

Average 67.1 0.51 60.5 0.37

The estimation of LDR development was less reliable compared with UHD but still
yielded an overall accuracy over 60%. Given the variety of land use compositions within
modeling regions, a high UHD estimation for a city/metropolitan area is not an assurance
of high accuracy for its LDR projection. For example, Atlanta–Sandy Springs–Alpharetta
has the highest LDR projection accuracy (F1 score of 0.57) but is middle-of-the-road for
UHD projection accuracy. The lowest LDR accuracies were achieved in Fresno and the
Madison–Milwaukee Corridor (F1 scores of 0.12 and 0.25, respectively).

Note, however, that these results reflect the accuracy of UHD and LDR growth, and
not their total extent. Estimating growth (a dynamic land-use class) is more difficult than
estimating total extent (where most land is static) but gives a better indication of the
model’s performance in estimating agricultural land conversion, which is our output of
interest. Given (1) the complexity of driving forces of urban development, (2) limited data
availability for some variables needed to predict UHD and LDR (e.g., farm size), and (3) the
inherent uncertainty in making future predictions [34,38,43], the achieved accuracies should
be considered both sufficient and appropriate for making future projections to inform land
conservation and prioritization. For reference, commonly acceptable accuracies for the
historic detection of dynamic, remotely sensed land cover change classes are often between
60 and 70% [58,59]. Thus, achieving a similar level of overall accuracy for the prediction
of change should meet or exceed performance requirements for most applications of
these data.

3.2. Spatial Patterns of Projected Urban Development by 2040

The 2040 UHD and LDR development in Figure 7 shows that our proposed model
provides reasonable projected urbanization patterns. Our maps show that future ur-
ban development will primarily occur in suburban to peri-urban areas where devel-
opable lands are available and close to existing low- to high-density built-up areas and
transportation networks.

Our projections see diverse local to nationwide urban growth by 2040. If urban devel-
opment continues at the same pace as that in 2001–2016, our modeling shows an additional
9.5 million acres of UHD development, with 6.2 million occurring on agricultural land na-
tionwide. Notable UHD increases are projected to occur especially in the Southeast, Texas,
and California (Figure 8a). Despite being highly urbanized already, several metropolitan
areas in these states would continue to expand, such as Riverside, CA; Dallas–Fort Worth,
TX; Houston, TX; Austin, TX; Orlando, FL; Atlanta, GA; and Raleigh, NC.
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Arizona, Illinois, Tennessee, and South Carolina would also see increases of
250–350 thousand acres of UHD. Metropolitan areas such as Phoenix–Mesa–Chandler, AZ;
Chicago, IL; Nashville, TN; and Greenville, SC would experience the largest UHD gains in
these states. In addition, we found several cities/metropolitan areas with sizeable UHD expan-
sion in the Midwest and eastern U.S., including Minneapolis–St. Paul–Bloomington, MN–WI;
Milwaukee–Waukesha, WI; Columbus, OH; and Washington–Arlington–Alexandria, DC–VA–
MD. With the exceptions of California and Arizona, most other western states showed relatively
small UHD increases, ranging from <50 to 250 thousand acres.

Accompanying the high-density urban development, our projections also show an
additional 21.1 million acres of land that would be converted to LDR use. Compared
with UHD, LDR projections show a higher contrast between the western and eastern
U.S., with much lower rates of LDR conversion in the west (Figure 8b). Texas and North
Carolina show the most LDR development, with increases of >1.5 million acres, followed by
Georgia, Tennessee, and Virginia, with 0.9–1.5 million acres, while the Midwest (Minnesota,
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Wisconsin, Michigan, and Missouri) and some southeast states (South Carolina, Alabama,
Mississippi, and Florida) show 0.3–0.9 million acres of LDR conversion.
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3.3. Farmland under Threat by Urbanization

If urban development continues at the same pace as it did from 2001 to 2016, our
projection shows that 18.2 million additional acres of farmland will be lost, fragmented,
or compromised by 2040. Of these areas, 6.2 million (34%) will be converted to UHD
development, and 12 million (66%) will be vitiated through conversion to LDR land use.

Spatially, agricultural land conversion is particularly concentrated in the Southeast,
where six states (North Carolina, Tennessee, Georgia, Florida, Alabama, and Mississippi)
would convert between 500,000 to over a million acres by 2040 (Figure 9a,b and Table S1).
Texas alone would see over 2 million acres of agricultural lands converted if its cities
continue to grow at the existing pace. A cluster of smaller states in the Northeast—New
Jersey, Connecticut, Massachusetts, Rhode Island, and Delaware—would see over 10% of
their agricultural land lost or fragmented, severely threatening their local food supply and
farm economies (Figure 9c,d and Table S2). The state of North Carolina stands out with
11.6% of its agricultural land—nearly 1.2 million acres—projected to be converted to UHD
and LDR uses.

Particular hotspots of conversion are even more apparent at the level of counties and
metropolitan areas (Figure 10). Shockingly, ten different counties in Georgia would see over
40% of their agricultural land converted (to UHD and LDR) as the Atlanta megalopolis
expands. Three Texas counties—Tarrant, Harris, and Dallas—would convert 39–62% of
their agricultural land, and in total would lose or fragment over 250,000 acres of agricul-
tural lands. Five North Carolina counties would see more than 35% of their agricultural
lands converted. Additionally, at the top of the list, over 70% of agricultural lands in
Broomfield County, Colorado will likely be turned over to more developed uses. Beyond
these top-ranked counties, it is striking to see how widespread the conversion of agri-
cultural lands will be in the next 20 years under the BAU scenario. Across the country,
2159 counties—nearly two-thirds of the total number of counties in the U.S.—will have at
least 1000 acres of conversion. Additionally, among counties that will see over 100 acres
of conversion, 445 of them will see at least 10% of their agricultural land lost, fragmented,
or compromised.
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Figure 9. Per-state area and percent of agricultural lands conversion to urban and highly developed
(UHD) and low-density residential (LDR) land uses by 2040. (a) area of agricultural land conversion to
UHD, (b) area of agricultural land conversion to LDR, (c) percentage of agricultural land conversion
to UHD, and (d) percentage of agricultural land conversion to LDR.
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Figure 10. Per-county area and percent of agricultural lands converted to urban and highly developed
(UHD) and low-density residential (LDR) land uses by 2040. (a) area of agricultural land conversion to
UHD, (b) area of agricultural land conversion to LDR, (c) percentage of agricultural land conversion
to UHD, and (d) percentage of agricultural land conversion to LDR.
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4. Discussion
4.1. Impacts on Local to National Food Security

Among all possible urbanization-induced agricultural land losses, we found nearly
50% (9.0 million acres) will occur on nationally significant land, defined as the most pro-
ductive, versatile, and resilient lands (See Text S1 for the definition of nationally significant
land). These lands are of particular value to the continued production of food as the warm-
ing climate makes it harder to farm and our growing population puts ever higher demands
on the food system. Although two-thirds of the projected conversion (i.e., that to LDR) may
not permanently replace agricultural lands with uncultivable impervious surfaces, it can
still greatly increase the risk of permanent conversion and drastically undermine family
farmers, the agricultural land base, and our food security. Meanwhile, to make up for agri-
cultural land losses, cultivation would likely shift to land with lower productivity, which
would put even more pressure on already overtaxed water, soil, and biodiversity [60,61].

This substantial loss of significant farmland is especially concerning for metropolitan
areas where urban extent will continue to expand rapidly on limited agricultural lands, such
as Phoenix, AZ; Riverside–San Bernardino–Ontario, CA; Dallas–Fort Worth–Arlington, TX;
and most metropolises on the east coast. The projected continued growth of metropolises
could possibly threaten the variety, quality, and security of food production and supply
in the U.S. For instance, metropolitan counties and adjacent areas supply nearly 60% of
the market value of U.S. farm production and they play important roles from local to
national food security [17]. These counties supply 91% of domestically sourced fruits,
tree nuts, and berries; 77% of vegetables and melons; 68% of dairy; and 55% of eggs and
poultry [17]. Farms in metropolitan counties often supply local and regional markets,
making up 81% of the food sold directly to consumers; 76% of community-supported farms;
and 74% of farms selling directly to retail outlets [17,24]. It is important to note that fruits
and vegetables often require unique soils and microclimates, access to water and labor,
an existing infrastructure that has been built up over time (e.g., farm equipment, storage,
processing, and packing facilities, etc.), and markets to support production and sales [62].
The difficulty in moving the production of these high-value crops elsewhere has likely
kept producers from expanding production, even though domestic demand for fruit and
vegetables continuously increases [17,63].

4.2. Policy Implications

To meet the twin goals of sustainable urban development and food production, it will
be imperative for planners, policymakers, and concerned citizens to guide future urban
expansion toward more condensed forms and prioritize the protection of agricultural land
before it is lost. Encouraging compact, public transport-oriented urban forms could help
contain the expansion of urban areas, thereby preserving agricultural lands in peri-urban
and suburban areas [64]. In addition to urban development policies that could reduce
development on agricultural lands, a comprehensive national strategy is needed. Such ap-
proaches could include, for example, (1) increasing federal investments in agricultural land
protection through the USDA Agricultural Conservation Easement Program—Agricultural
Land Easement, (2) supporting programs that provide spatially explicit information to help
monitor changes in U.S. agricultural resources, and (3) enhancing federal agricultural land
protection platforms to more effectively address the interconnected threats to farmland
from development [24]. At the state level, multiple policy approaches should be used
and enhanced, depending on the nature and extent of the threat, its underlying causes,
each state’s policy framework, and public support. Actions available to individual states
include (1) mapping and analyzing detailed conditions and trends of agricultural resources,
(2) strengthening and/or adopting a suite of coordinated policies to protect farmland,
(3) supporting farm viability and access to land for a new generation of farmers, and
(4) establishing a public-policy framework to support agricultural economic development
and to protect farmland for current and future generations [17].
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The effectiveness of urban planning and agricultural land protection strategies de-
pends on many factors, including the willpower of policymakers, geographic contexts, and
local to regional demographic, economic, and societal conditions. If we can reduce UHD
and LDR expansion by 25% and 50%, respectively, over the next 20 years (see definition
of the better-built-cities scenario in Table S3 and more scenario description details in [65]),
7.5 million fewer acres of agricultural lands would be lost or compromised relative to
the BAU scenario (Table S1). This is the equivalent of saving an area roughly equivalent
to the state of Maryland. Across the nation, 42% less of our nationally significant farm-
land would be converted in such a scenario. Some states stand to particularly benefit
from this smart planning: in New Mexico, for example, only one-third as many acres
of nationally significant farmlands would be converted, and in just four states (Texas,
North Carolina, Tennessee, and Ohio), we could save over a million acres of our nationally
significant farmland.

Alternatively, if sprawling exurban development accelerates over the next 20 years
(for example, adding 50% more LDR to the BAU scenario, as captured by the runaway-
sprawl scenario in Table S3, with more scenario description details in [65]), we estimate that
6 million more acres of agricultural lands would be lost or degraded—an area roughly the
size of New Hampshire. In such a future with unfettered expansion of large-lot housing,
over 12 million acres of nationally significant land would be lost or compromised by 2040.
Compared with BAU, an additional half million acres would be converted in both Texas and
North Carolina, with Tennessee, Georgia, and Virginia close behind (Table S1). Meanwhile,
Connecticut, North Carolina, New Jersey, and Delaware would see an additional 4–5% of
their farmland converted (Table S2). As a result, Connecticut and New Jersey would both
see over 20% of their remaining farmland converted by 2040. While conversion increases
33% nationwide in this runaway sprawl scenario compared with BAU, Vermont would
see nearly 50% more farmland conversion, and Montana, West Virginia, Mississippi, and
Michigan would experience 44–46% more.

Given that development is just one of the many threats to the nation’s agricultural
lands, more cooperative efforts should be made by urban residents, farmers, planners,
and policymakers to mitigate the risks that can take agricultural lands out of production.
Several other factors that should be simultaneously considered might include climate
change (e.g., sea level rise and droughts), extreme weather, and demographic and land
ownership changes. Collectively, these threats to our agricultural lands are likely to strain
our future food production systems. By studying the likely patterns, processes, and impacts
of these threats to our landscapes, society, and the environment, we stand a better chance
of navigating their associated challenges and improving our agricultural systems and
their resiliency.

5. Conclusions

To evaluate possible agricultural land losses to future urban development in the U.S.,
we developed a spatially explicit machine learning method to forecast urban expansion
by 2040 under a business-as-usual scenario. The analysis of our projected map shows
that highly developed urban areas would increase by 9.5 million acres (as compared with
the baseline year of 2016) if urban development continues at the same pace, with another
21.1 million to be converted to low-density residential uses. This increase would collectively
result in 18.2 million acres of agricultural land lost and fragmented. Considerable agricul-
tural land loss would take place particularly in the southern states (e.g., Texas, California,
and the southeast coast) and metropolitan areas that play important roles in community, re-
gional, and nationwide food supply. Since urbanization is not just a local issue, our analysis
further emphasizes the necessity of cooperative efforts from local to federal policymakers
to relieve land use competitions between urban and agricultural systems.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/land12030574/s1. Text S1. Nationally significant land; Table S1. Per-state
agricultural lands projected to be converted to highly developed urban and low-density residential
use by 2040. Ag2UHD: agricultural lands converted to highly developed urban use; Ag2LDR:
agricultural lands converted to low-density residential use; LDR2UHD: low-density residential
land converted to highly developed urban use; Ag2Urban: agricultural lands converted to either
highly developed urban or low-density residential use (Ag2UHD + Ag2LDR). States are ranked by
Ag2Urban. Units in thousand acres; Table S2. States with the greatest proportion of agricultural
land projected to be converted to highly developed urban and low-density residential uses by 2040.
Units in percent of total agricultural land; Table S3. Modeling assumptions for the business-as-usual,
runaway-sprawl, and better-built-cities scenarios.
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