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Abstract: Vegetation growth and its response to climatic factors have become one of the most pressing
issues in ecological research. However, no consensus has yet been reached on how to resolve this
problem in arid areas with a high-elevation gradient and complex underlying surface. Here, NOAA
CDR AVHRR NDVI V5 for 1981–2018 and China’s regional surface meteorological faction-driven
datasets were used. General linear regression, the Mann-Kendall test and sliding t-test, Pearson
correlations, and the Akaike information criterion (AIC), on a grid-scale, were applied to analyze
the annual normalized difference vegetation index (NDVI) and its relationship with temperature
and precipitation in the Altay region. Results revealed that the temporal trend of NDVI for most
grid cells was non-significant. However, mountains, coniferous forests, grasslands, and meadows in
the high-elevation zone displayed a slow increasing trend in NDVI. Further, NDVI was positively
correlated with the mean annual temperature and total annual precipitation, the latter playing a
more significant role. Yet, for desert and shrub vegetation and coniferous forest, their NDVI had
insignificant negative correlations with the mean annual temperature. Hence, both the trends and
drivers of NDVI of high elevation are highly complex. This study’s findings provide a reference for
research on vegetation responses to climate change in arid areas having a high-elevation gradients
and complex underlying surfaces.

Keywords: NDVI; complex underlying surface; high elevations; spatial and temporal variation
characteristics; climate-driven; Altay region

1. Introduction

As the main biotic component of terrestrial ecosystems [1,2], vegetation plays an
irreplaceable role in carbon balance regulation, soil and water conservation, and the main-
tenance of ecosystem stability [3–5]. Vegetation growth is sensitive to climate change [6,7].
Accordingly, it is of great practical significance to study the temporal and spatial charac-
teristics of vegetation growth and its response to climate change under the background of
global climate change [8]. A normalized difference vegetation index (NDVI) can accurately
convey the information of vegetation cover and growth status, and is not susceptible to
influences from cloud cover, terrain, solar elevation angle, and other factors. For these
reasons, NDVI is widely used to study the characteristics of vegetation change under long
time series [9–11].

The emergence of long time series NDVI datasets, such as AVHRR NDVI, GIMMS
NDVI, MODIS NDVI, SPOT-VGT, and so on, made it possible to study the change trend of
vegetation under long time series [12,13]. Numerous studies worldwide have investigated
the interannual variation of vegetation growth and its driving forces at different spatio–
temporal scales. However, due to the influence of the studied area, and the scale and
methods used, their findings are not consistent. For example, Liu et al. [14] used the
Theil–Sen median slope method to analyze the annual global NDVI from 1982 to 2012;
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they found that NDVI of most regions showed an increasing–decreasing–increasing trend
across years, for which the year of abrupt change were 1995 and 2004. Li et al. [15] applied
the same method, finding that NDVI of Central Asia showed an increasing trend during
1982–1998, but a decreasing trend during 1998–2013. Yao et al. [16] used the Mann-Kendall
trend analysis method to test NDVI of Xinjiang during 1981–2010, showing that the NDVI
trend significantly increased and then decreased, and the year of abrupt change also
occurred in 1998. In addition to scale effect, different vegetation types and responses to
climate change in different areas may also be the reasons for the different trends of NDVI
and the year of abrupt change. Gouveia et al. [17] used NDVI to study the response of
five vegetation types to climate change in the Mediterranean; they found that temperate
marine vegetation responded most to drought intensity, in that as the drought intensity
increased, the vegetation’s NDVI declined rapidly. Bao et al. [18] analyzed vegetation NDVI
of Mongolia during 1982–2010, reporting that NDVI stagnated or even declined during
1991–1994, being most pronounced in meadow, grassland, and forest areas. Li et al. [19]
used the second-order correlation to analyze the response of different vegetation types
of NDVI to temperature in the North–South transition zone of China during 1982–2015,
and found that only the NDVI of evergreen broad-leaved forest was rising, while others
were declining. These studies found that the inter-annual trends of NDVI of different
vegetation types in the same study area were different, and the same vegetations would
show different changes in different study areas. In addition, they respond differently
to meteorological factors, where there is a strong correlation between vegetation change
and temperature or precipitation. Moreover, such correlations can also significantly differ
among various regions [20,21]. Based on MODIS NDVI data and ERA5 meteorological
data, Wei et al. [22] calculated the risk-detector and found that the influence of temperature
was most significant in Northeast, East and central China during 2001–2020, while the
influence of precipitation was most significant in North, South and Northwest China. Work
by Song et al. [23] uncovered, by analyzing NDVI from 1982 to 2005, that total annual
precipitation had the greatest impact on it in arid and semi-arid areas, while annual mean
temperature had differential effects on vegetation. Yang et al. [24] studied the trends and
factors influencing of NDVI during the growing season of vegetation in five climatic regions
of the Qinghai–Tibet Plateau, detecting significant differences in the dominant roles of
air temperature and precipitation in differing climatic regions, but the effect of overall air
temperature on NDVI was generally stronger than that of precipitation. Yu et al. [25] used
Pearson correlations to analyze the relationships between NDVI and climate factors in
Xinjiang, showing that precipitation has a greater impact on NDVI of this region, being
more significant in northern Xinjiang. Despite the mounting studies of vegetation change,
the research scale is often too large, the response of vegetation to climate is too general,
and there is a dearth of specific studies focused on different underlying surface types. In
addition, consistent conclusions remain elusive from corresponding studies on arid areas
featuring a high-elevation gradient and complex underlying surface.

The Altay region is located in the arid hinterland of Eurasia continent and its underly-
ing surface is complex and diverse, and the ecological environment is fragile. Elevation in
the Altay region spans more than 4000 m, where the vegetation’s vertical zonality is stark.
In the context of ongoing global climate change, the climate in this region has undergone
obvious “warming and humidification” changes [26,27]. Therefore, it is an ideal, natural
test site for studying vegetation growth changes in arid areas with a high-elevation gradient
and complex underlying surface. In addition, the Altay region is a necessary passage of the
Silk Road, connecting many countries in Central Asia. The ecological problems caused by
the changing ecological environment are also important factors affecting the political and
economic stability of this region. The data source for this paper is NOAA CDR AVHRR
NDVI V5. We used grid cells to study the spatial and temporal variation trends and driving
factors of vegetation’s NDVI of the Altay region in a recent 38-year period, across a suite of
geomorphic and vegetation types. Our findings provide scientific theoretical support for
the protection and utilization of vegetation in this kind of fragile ecological environment.
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2. Materials and Methods
2.1. Study Area

The Altay region lies in the northern part of Xinjiang Uygur Autonomous Region
at these geographical coordinates: 85◦31′36′ ′–91◦01′15′ ′ E, 44◦59′35′ ′–49◦10′45′ ′ N. It is
located in the southwest foot of the middle portion of the Altay Mountains and north
of the Junger Basin. According to the geomorphic types, the region can be divided into
four geomorphic units: northern mountain area, central platform, central plain valley
area, and southern hilly area. These accounting for 32.3%, 10.2%, 27.0%, and 30.5% of the
region’s total area, respectively. The region has a temperate continental climate. Annual
precipitation is 400–600 mm in the northern mountains, 150–200 mm in the central plains
and tablelands, and about 95 mm in the southern hills. Overall, the region’s annual mean
temperature is 3.7 ◦C, but it can vary by up to 30 ◦C; in mountainous and hilly areas it is
lower than 4 ◦C, while in plains and platform areas it is higher than 4 ◦C [28]. Affected by
terrain and other factors, the northern mountains are mainly covered with alpine vegetation,
coniferous forests, meadows, and shrubs. Grassland is mainly distributed at lower elevation
in the foothills. Broad-leaved forest and cultivated vegetation are more widely distributed
along the region’s rivers. Desert is mostly found in the southern part of the region at low
elevation, where it is relatively dry [29]. Generally, the vegetation in the Altay region is
rich and diverse, and seriously affected by global climate change [30].

2.2. Data Collection and Processing
2.2.1. NDVI Dataset

This paper used the NOAA CDR AVHRR NDVI V5 at a 5000 m spatial resolution,
for 1981–2018, provided by the National Oceanic and Atmospheric Administration. These
datasets have been widely used to study changes to NDVI under long time series, because
of its long time series (1981—current day) and medium spatial resolution [31,32]. Although
there are many NDVI product datasets with a higher resolution, they are not optimal in
this study due to the shorter time series they provide [33].

The maximum value of annual NDVI is an important phenological attribute, which
can make the data dimension decrease exponentially [34]. The online platform Google
Earth Engine (GEE) is a high-performance cloud-based platform that not only has access to
a large and growing amount of earth observation data, but also the ability to analyze and
process data [11,35]. Therefore, a total number of 4892 NDVI grid cells of the Altay region
were extracted by annual maximum synthesis and masking on the GEE.

2.2.2. Climate Dataset

Climate data were derived from the 0.1◦ resolution China Meteorological Forcing
Dataset (CMFD), provided by the Tibetan Plateau Data Center [36]. This dataset was based
on the existing Princeton reanalysis data, GLDAS data, GEWEX-SRB radiation data and
TRMM precipitation data, and integrates the routine meteorological observation data of the
China Meteorological Administration [37,38]. More stations were used to generate CMFD
and the accuracy of superior quality, than the existing international reanalysis data. Due
to its continuous temporal coverage and consistent quality, CMFD has become one of the
most widely used climate datasets in China. The datasets not only show strong adaptability
in the complex underlying surface in high elevation, but are also representative of the arid
area of Xinjiang [39].

Because the spatial resolution of CMFD dataset is low, there may be errors in the
analysis based on grid cells. To this end, we used a geographically weighted regression
(GWR) model to measure the annual mean temperature (K) and annual mean precipitation
rate (mm·hr−1) from 1981 to 2018, downscaling to 5000 m spatial resolution [40–42]. The
annual mean precipitation rate was converted to total annual precipitation (mm). Then the
climate data was applied a spatio–temporal and NDVI dynamic analyses.
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2.2.3. Geomorphic and Vegetation Regionalization Data

Geomorphic regionalization data were selected from the 1:1,000,000 spatial distri-
bution dataset of geomorphic types, provided by the Cloud Platform of Resources and
Environmental Data, Chinese Academy of Sciences [43]. This study used four landform
types: mountains, platforms, plains, and hills in the Altay region (Figure 1b) for the analysis.
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Figure 1. Summary maps of the study area: (a) geographical location and distribution of (b) its
geomorphic types and (c) vegetation types.

Vegetation regionalization data were selected from the 1:1,000,000 Vegetation Map of
China, provided by the Cloud Platform of Resources and Environmental Data, Chinese
Academy of Sciences [44]. Nine vegetation types, coniferous forest, alpine vegetation, culti-
vated vegetation, broadleaf forest, shrub, desert, grassland, meadow, and ‘other vegetation’
(Figure 1c), were extracted for the analysis.

These data were published in 2001 and 2009, respectively. Although there may be
some changes in the current vegetation distribution, they are still the most authoritative
data in the application of vegetation classification and geomorphic classification in China.
Elevation distribution characteristics of geomorphic and vegetation types are clear. Figure 2
shows the distribution of geomorphic types and vegetation types at different elevations.

2.2.4. The Digital Elevation Model (DEM)

The digital elevation model (DEM) was obtained from the website of United States
Geological Survey (USGS), and the complete DEM data of Altay region were obtained by
stitching and clipping.

Sources of cartographic data and statistics are listed in Table 1.

Table 1. Sources of principal data.

Data Name Data Resolution Data Source

NDVI dataset 5000 m (yearly) National Oceanic and Atmospheric Administration
(http://www.noaa.gov/web.html, accessed on 1 June 2022)

Climate dataset 10,000 m (yearly) National Data Center for Tibetan Plateau Science
(http://data.tpdc.ac.cn, accessed on 27 July 2022)

Vegetation regionalization data 1:1,000,000
Cloud Platform of Resources and Environmental Data, Chinese

Academy of Sciences (http://www.resdc.cn, accessed on 10
September 2022)

Geomorphic regionalization data 1:1,000,000
Cloud Platform of Resources and Environmental Data, Chinese

Academy of Sciences (http://www.resdc.cn, accessed on 10
September 2022)

SRTM 90 m CGIAR Consortium for Spatial Information
(http://srtm.csi.cgiar.org/, accessed on 1 June 2022)

http://www.noaa.gov/web.html
http://data.tpdc.ac.cn
http://www.resdc.cn
http://www.resdc.cn
http://srtm.csi.cgiar.org/
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vegetation types.

2.3. Methods

First, we used the Sen’s trend slope and a quadratic polynomial equation model
to analyze the interannual trends of the annual maximum NDVI on each grid cell of
its own study period, separately [45,46]. In order to fully capture the trends of NDVI,
corresponding linear models (increasing and decreasing) and nonlinear models (increasing
and then decreasing unimodal trend or decreasing and then increasing U-shaped trend)
were fitted in parallel. Among them, the most representative model was selected to capture
the spatial distribution characteristics of the trend in NDVI change in the Altay region [47].
The screening principle for the optimal model was as follows: when only one of the linear or
nonlinear relationships between NDVI and year was significant, this relationship was used
as the optimal fitting model of that particular grid cell. When both linear and nonlinear
models fit well, the optimal fitted model was selected according to the Akaike information
criteria (AIC) (the lower the AIC value, the better the model fitting effect) [48]. When
both the linear and nonlinear relationships of the maximum yearly NDVI trends were not
significant, this proved that the relationship between the two was negligible [49]. Secondly,
the Mann-Kendall test and sliding t-test were further used to determine the corresponding
abrupt-change year of NDVI [50]. Finally, we used a Pearson’s correlation coefficient to
analyze each relationship between NDVI and climate factors in the Altay region [51]. All
the above analyses were completed in the R software. In order to understand the methods
we used in this paper, the analysis workflow chart is shown in Figure 3.
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3. Results
3.1. Interannual Variation in NDVI

The fitted general linear model revealed that the trends of NDVI over the past 38 years
(1981–2018) in the Altay region could be classified into five categories. Specifically, 55.6%
of the grid cells in the region displayed no significant relationship between NDVI and
year (p > 0.05) (Table 2). In the remaining 44.4% of grid cells, there were four types of
NDVI trends in the past 38 years: significant increase, significant decrease, unimodal (first
increasing, then decreasing), and “U-shaped” (first decreasing, then increasing) (p < 0.05)
(Table 2). Of those four, a significant increase trend was prevalent, accounting for 35.2% of
the number of grid cells in the study area (Table 2). Significant reduction, unimodal and
U-shaped trends together accounted for 9.2% of the total number of grid cells (Table 2).
Additionally, from the distribution trend of NDVI, we found that the grid cells with non-
significant trends were distributed around south of the Altay region, and the unimodal and
“U-shaped” grid cells were more scattered (Figure 4).

Table 2. Interannual variation of NDVI of geomorphic units in the Altay region from 1981 to 2018.

Geomorphic Type Significant Increase Significant Decrease Unimodal “U-Shaped” Non-Significant

All 1722 (35.2%) 50 (1.0%) 357 (7.3%) 45 (0.9%) 2718 (55.6%)
Plains 447 (33.8%) 11 (0.8%) 91 (6.8%) 26 (1.9%) 745 (56.4%)

Platforms 135 (27.0%) 4 (0.8%) 16 (3.2%) 14 (2.8%) 330 (66.1%)
Hills 378 (25.3%) 9 (0.6%) 82 (5.5%) 5 (0.3%) 1016 (68.1%)

Mountains 762 (48.1%) 26 (1.6%) 168 (10.6%) 0 (0.0%) 627 (39.6%)

Values are the number of grid cells (proportion) of the NDVI of different change characteristics in each
landform type.
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Figure 4. Spatial distribution of changes in the NDVI of the Altay region, from 1981 to 2018. From
the perspective of geomorphic types, the trend for NDVI was of increasing significantly mainly
in mountainous areas (48.1% of all grid cells). For the other three landforms, the majority of their
changes in NDVI consisted of non-significant trends, for which the proportion of grid cells was
56.45% (plains) to 68.1% (hills) (Table 2).

Among vegetation types, NDVI of coniferous forest, cultivated vegetation, broadleaf
forest, grassland, and meadow mostly increased significantly, this trend accounting for
43.3% (meadow) to 75.2% (cultivated vegetation) of the total number of grid cells. However,
alpine vegetation, shrub, desert and other vegetation types showed non-significant changes
(Table 3). At the same time, the interannual variation pattern of the NDVI differed among
vegetation types; for example, the “U-shaped” trend was not found for the distributions of
coniferous forest, alpine vegetation, shrub, meadow, and other vegetation types (Table 3). A
significant decreasing trend was not detected in cultivated vegetation, broad-leaved forest,
and shrub distributions (Table 3). Based on the above analysis, evidently the vegetation
types in the Altay region are primarily undergoing a greening trend. Under the influence of
human activities, the NDVI of cultivated vegetation significantly increased to the greatest
extent. In addition, the growth of NDVI was pronounced in coniferous forest, grassland,
and broadleaf forest near river valleys and high-elevation areas.

Table 3. Interannual variation in the NDVI of different vegetation types in the Altay region, from
1981 to 2018.

Vegetation Type Significant Increase Significant Decrease Unimodal “U-Shaped” Non-Significant

Coniferous forest 120 (53.0%) 1 (0.4%) 38 (16.8%) 0 (0%) 67 (29.6%)
Alpine vegetation 56 (30.1%) 4 (2.1%) 4 (2.1%) 0 (0%) 122 (65.5%)

Cultivated
vegetation 88 (75.2%) 0 (0%) 11 (9.4%) 3 (2.5%) 15 (12.8%)

Broadleaf forest 45 (55.5%) 0 (0%) 8 (9.8%) 1 (1.2%) 27 (33.3%)
Shrub 8 (34.7%) 0 (0%) 6 (26.0%) 0 (0%) 9 (39.1%)
Desert 662 (23.0%) 25 (0.8%) 142 (4.9%) 40 (1.3%) 2005 (69.7%)

Grassland 426 (66.0%) 1 (0.1%) 70 (10.8%) 1 (0.1%) 147 (22.7%)
Meadow 297 (43.3%) 17 (2.4%) 78 (11.3%) 0 (0%) 293 (42.7%)

Other vegetation 20 (36.3%) 2 (3.6%) 0 (0%) 0 (0%) 33 (60.0%)

Values are the number of grid cells (proportion) of the NDVI of different change characteristics in each
vegetation type.

3.2. NDVI ofterannual Trend in Geomorphic and Vegetation Types

For areas with significant changes in the NDVI over the years, histograms of their
slopes show that the proportion of grid cells with an increasing trend significantly exceeds
those with a decreasing trend, with higher slope values for the former than the latter
(Figure 5). The slope for a significant increase ranges from 0.01·10 y−1 to 0.11·10 y−1, but is
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centered mainly at 0.03·10 y−1. The slope values with a downward trend were mainly at
–0.02·10 y−1 (Figure 5).
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The slopes for increasing NDVI, in both hilly and platform areas, were mainly concen-
trated around a value of 0.04·10 y−1, while in plains it was 0.03·10 y−1, and in mountainous
areas it was 0.02·10 y−1 (Figure 5a). The slopes for decreasing NDVI of mountainous areas
were mainly concentrated at a value of about −0.03·10 y−1. The number of grid cells with
a decreasing trend on plains, hills, and platforms were fewer, and their slopes were mainly
concentrated around −0.02·10 y−1 (Figure 5a). In mountainous areas, a large proportion of
NDVI grid cells showed an increasing trend, but their slope values were generally low; in
contrast, the slopes were mostly high in decreasing-trend grid cells. Therefore, the growth
of NDVI of mountainous areas is slower than that in hilly or platform areas.

Among the nine vegetation types, the slopes of increasing NDVI of desert and culti-
vated vegetation areas were mainly concentrated around a value of 0.04·10 y−1; in alpine
vegetation, broadleaf forest, grassland, and other vegetation areas it was 0.03·10 y−1; in
coniferous forest, shrub, and meadow areas it was 0.02·10 y−1 (Figure 5b). Except for
cultivated vegetation, broadleaved forest, and shrub vegetation, the slopes of declining
NDVI of alpine vegetation and meadow areas were the greatest, being mostly−0.03·10 y−1,
while those in coniferous forest and desert were mainly −0.02·10 y−1 (Figure 5b).

Data above showed that the slope of increasing NDVI was highest for meadow vegetation,
and the increasing slope in desert vegetation was higher than the other types. However, the
slope was low in increasing grid cells of meadow vegetation during the same period.

3.3. Analysis of NDVI Abrupt-Change Year

In this paper, we analyzed the years when NDVI changed abruptly in the grid cells
featuring a unimodal or U-shaped trend, in the Altay region. In general, such years for
the former were mainly concentrated in the year 2000; those for the latter trend were
concentrated in 2003 (Figure 6a).

The frequency of distribution for the abrupt-change year was clearly different among
the four geomorphic types. In both plain and hilly areas, the abrupt-change year in
the NDVI grid cells of the unimodal trend was mainly concentrated in 2000, which was
consistent with that across the Altay region. The main abrupt-change years in mountains
were 1993 and 1994, and in platforms, 1986 (Figure 6b). In both plain and platform
areas, the abrupt-change year in the NDVI grid cells having a U-shaped trend was mainly
concentrated in 2003, which was consistent with the whole Altay region. In the hilly areas,
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the distribution of grid cells abrupt-change years of the U-shaped trend was scattered, and
there was no clear aggregation year (Figure 6c).
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The major abrupt-change years of the NDVI showed great differences among vege-
tation types. The major abrupt-change year of alpine vegetation was 2005; for coniferous
forest it was 1994; for steppe it was 1997, for meadow it was 1993; and for cultivated
vegetation it was 2001. Only shrub and desert vegetation types were consistent with the
whole of the Altay region in having abrupt-change years concentrated in 2000 (Figure 6d).
The U-shaped grid cells of the NDVI were mainly distributed in the desert vegetation,
of which the abrupt-change year most commonly occurred in 2003. In broadleaf forest,
grassland, desert, and cultivated vegetation, a small number of U-shaped grid cells were
found, and although the distribution of their abrupt-change years was scattered, they were
all concentrated around 2003 (Figure 6e).

3.4. Influence of Climatic Factors on NDVI Dynamic

Natural factors play a vital role in the growth of vegetation. Given that changes in
water and heat will directly affect it, analyzing trends in temperature and precipitation
can provide a basis for understanding vegetation growth dynamics. More than 50% of the
4892 grid cells in the Altay region underwent warming or humidification during 1981–2018.
Furthermore, no grid cells of total annual precipitation showed a significant decreasing
trend (Table 4). Therefore, climatic characteristics of the Altay region in the past 38 years
were distinguished by significant “warming and wetting” changes.
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Table 4. Trends of climatic factors from 1981 to 2018.

Climatic Factors Significant Increase Significant Decrease Unimodal “U-Shaped” Non-Significant

Annual mean
temperature 2744 (56.0%) 29 (0.5%) 8 (0.1%) 864 (17.6%) 1247 (25.4%)

Total annual
precipitation 3160 (64.5%) 0 (0%) 66 (1.3%) 60 (1.2%) 1606 (32.8%)

Values are the number of grid cells (proportion) of the annual average temperature and total annual precipitation
of different change characteristics.

The annual mean temperature increased significantly, occurring at 56.0% of the total
number of grid cells concentrated in the central plain and platform areas. The rate of
rising temperature declined from the interior to the periphery of the Altay region. The grid
cells with non-significant changes in annual mean temperature were mainly distributed
in the northern part of the study area. There, the landform is largely mountainous, with
high-elevation vegetation types found, namely meadow, grassland, coniferous forest,
and alpine vegetation. The U-shaped variation trend accounted for 17.6% of the total
number of grid cells concentrated in the southwestern hilly desert area of the Altay region
(Figures 1c and 7a).
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The total annual precipitation in the Altay region was dominated by a significantly
increasing trend, this characterizing 64.5% of the total number of grid cells, and mainly
distributed in the mountainous area in the northeast and the hilly area in the southwest
of the Altay region; the highest rate of precipitation increase happened in the northern
mountains. Those grid cells featuring a U-shaped trend accounted for 1.2% of the total
number of grid cells distributed in the southwestern hilly area, and surrounded by grid cells
with a significant increasing trend. The interspersed grid cells of the unimodal trend were
distributed in the central region with non-significant trends and the northeast region with
significant increase, together accounting for 1.3% of all grid cells. There was no significant
decreasing trend for total annual precipitation in the Altay region. Grid cells in which
non-significant trends occurred were widely dispersed in the central plain, platform and
parts of the southeastern hilly area with low annual rainfall (Figures 1c and 7b).

The Pearson correlation analysis of the NDVI with climatic factors at the grid-cell scale
revealed that total annual precipitation has a more extensive augmentative effect on NDVI
than annual mean temperature in the Altay region. The NDVI often had an insignificant
negative correlation with the mean annual temperature, these cases accounting for 45.95%
of the total number of grid cells. However, among the grid cells having a significant
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correlation, more had a significantly positive than negative correlation with annual mean
temperature, accounting for 7.5% (Table 5). The largest number of correlations between
NDVI and total annual precipitation were significantly positive, corresponding to 84.1% of
all grid cells in the Altay region. And no grid cells had an insignificant negative correlation
with total annual precipitation (Table 5).

Table 5. Correlation between the NDVI and climatic factors, from 1981 to 2018.

Climatic
Factors

Significant Positive
Correlation

Significant Negative
Correlation

Insignificant Positive
Correlation

Insignificant Negative
Correlation

Annual mean
temperature 368 (7.5%) 109 (2.2%) 2166 (44.2%) 2249 (45.95%)

Total annual
precipitation 276 (5.6%) 501 (10.2%) 4115 (84.1%) 0 (0%)

Values are the number of grid cells (proportion) for correlations between the NDVI and the annual average
temperature or total annual precipitation (p < 0.05).

Spatially, the Pearson correlation coefficient between the NDVI and the annual mean
temperature gradually decreased from the central part of the Altay region to its surround-
ing area. Among them, the grid cells having a positive correlation were found mostly
distributed in the river and lake basins in the central part of the study area, as well as some
mountain valleys. The grid cells with a negative correlation are mainly distributed in the
desert, in the region’s northwest and southeast. The correlation between the NDVI and the
annual mean temperature in other vast parts was low and their distribution characteristics
are not significant (Figures 1c and 8a). The grid cells that had a positive correlation between
NDVI and total annual precipitation were mainly located in the central and northern areas
of the Altay region. The increase of precipitation in this area would have promoted the
growth of vegetation. The correlation between the NDVI and total annual precipitation
was negative only in the northern mountain highlands, the western Urungu Lake and parts
of the southeastern hills area. Finally, the correlation between the NDVI and total annual
precipitation was low in the northwestern and southern desert areas, as well as at the foot
of the Altay Mountains (Figures 1c and 8b).
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There were insignificant positive correlations between annual mean temperature and
the NDVI of the plain, platform, and mountain areas. The hilly area showed an insignificant
negative correlation, with more than 50% of the total grid cells of this geomorphic type
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(Table 6). Among the grid cells with significant correlation between different geomorphic
types, the significant positive correlation dominated, accounting for 1.7% (mountain) to
15.8% (platform) of the total grid cells per geomorphic type (Table 6). This analysis showed
that the overall NDVI of the platform area was higher, and its vegetation coverage was
better. The rising annual mean temperature in this area had the strongest effect on the
NDVI. In desert or hilly areas with sparsely distributed vegetation, evapotranspiration may
be intensified due to rising temperature, thus aggravating water stress and inhibiting the
growth of the NDVI.

Table 6. Correlations between the NDVI and climatic factors for different landform types.

Climatic
Factors Geomorphic Type

Significant
Positive

Correlation

Significant
Negative

Correlation

Insignificant
Positive

Correlation

Insignificant
Negative

Correlation

Annual mean
temperature

Plains 175 (13.2%) 27 (2.0%) 614 (45.5%) 504 (38.1%)
Platforms 79 (15.8%) 4 (0.8%) 247 (49.4%) 169 (33.8%)

Hills 86 (5.7%) 51 (3.4%) 540 (36.2%) 813 (54.5%)
Mountains 28 (1.7%) 27 (1.7%) 765 (48.3%) 763 (48.1%)

Total annual
precipitation

Plains 75 (5.6%) 107 (8.1%) 1138 (86.2%) 0 (0%)
Platforms 29 (5.8%) 28 (5.6%) 442 (88.5%) 0 (0%)

Hills 100 (6.7%) 183 (12.2%) 1207 (81.0%) 0 (0%)
Mountains 72 (4.5%) 183 (11.5%) 1328 (83.8%) 0 (0%)

Values are the number of grid cells (proportion) for correlations between the NDVI and annual average temperature
or total annual precipitation (p < 0.05) in each landform type.

In the four geomorphic types, an insignificant positive correlation between the NDVI
and total annual precipitation was common, accounting for 81.0% (hills) to 88.5% (platform)
of each geomorphic type grid cells (Table 6). No grid cells in the NDVI of the Altay region
and total annual precipitation had a significant negative correlation (Table 6). Therefore,
the NDVI mainly increased with more precipitation in each geomorphic type in the Altay
region. This promotion effect was strongest for platform and plain areas. Compared with
other geomorphic areas, the proportion of grid cells with significant positive correlation
between total annual precipitation and the NDVI was lower in the mountainous area.

The correlations between the NDVI and annual mean temperature were not the same
among vegetation types. Among the types with significant positive correlations between
the NDVI and annual mean temperature, the number of grid cells in cultivated vegetation
and broadleaved forest was the largest, respectively, accounting for 34.1% and 28.3% of
their total grid cells. In the alpine vegetation, cultivated vegetation, broadleaved forest,
grassland and meadow area NDVI was mainly not significantly (positively) correlated
with annual mean temperature, representing 56.9%, 46.1%, 46.9%, 52.0%, and 48.7% of
the vegetation type grid cells, respectively. For coniferous forest, shrub, desert and other
vegetation types, there were mainly insignificant negative correlations, accounting for 47.5%
(desert) to 65.2% (shrub) of the total number of grid cells per vegetation type (Table 7).
Thus, with a rising annual mean temperature, the NDVI of cultivated vegetation and
broad-leaved forest increased more clearly than other vegetation types. On the contrary,
the decrease in temperature will promote the growth of coniferous forest, shrub, desert
slightly. Rising global temperature may inhibit their growth in the future.

We found insignificant positive correlations between NDVI and total annual precipi-
tation in all kinds of vegetation types, accounting for 69.8% (alpine vegetation) to 96.5%
(cultivated vegetation) of the total number of grid cells for each vegetation type (Table 7).
The increase in total annual precipitation likely promoted the growth of vegetation in all
vegetation types, especially coniferous forest. However, in alpine, broadleaf forest, meadow,
desert and other vegetation distribution areas, the presumed promotion effect was weak.
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Table 7. Correlations between the NDVI and climatic factors for different vegetation types.

Climatic Factors Vegetation Type
Significant

Positive
Correlation

Significant
Negative

Correlation

Insignificant
Positive

Correlation

Insignificant
Negative

Correlation

Annual mean
temperature

Coniferous forest 4 (1.7%) 9 (3.9%) 95 (42.0%) 118 (52.2%)
Alpine vegetation 2 (1.0%) 2 (1.0%) 106 (56.9%) 76 (40.8%)

Cultivated
vegetation 40 (34.1%) 0 (0%) 54 (46.1%) 23 (19.6%)

Broadleaf forest 23 (28.3%) 0 (0%) 38 (46.9%) 20 (24.6%)
Shrub 0 (0%) 0 (0%) 8 (34.7%) 15 (65.2%
Desert 252 (8.7%) 81 (2.8%) 1173 (40.8%) 1368 (47.5%)

Grassland 20 (3.1%) 3 (0.4%) 336 (52.0%) 286 (44.3%)
Meadow 21 (3.0%) 14 (2.0%) 334 (48.7%) 316 (46.1%)

Other vegetation 6 (10.9%) 0 (0%) 22 (40.0%) 27 (49.0%)

Total annual
precipitation

Coniferous forest 7 (3.0%) 10 (4.4%) 209 (92.4%) 0 (0%)
Alpine vegetation 11 (5.9%) 45 (24.1%) 130 (69.8%) 0 (0%)

Cultivated
vegetation 3 (2.5%) 1 (0.8%) 113 (96.5%) 0 (0%)

Broadleaf forest 9 (11.1%) 11 (13.5%) 61 (75.3%) 0 (0%)
Shrub 1 (4.3%) 1 (4.3%) 21 (91.3%) 0 (0%)
Desert 189 (6.5%) 314 (10.9%) 2371 (82.4%) 0 (0%)

Grassland 21 (3.2%) 17 (2.6%) 607 (94.1%) 0 (0%)
Meadow 34 (4.9%) 88 (12.8%) 563 (82.1%) 0 (0%)

Other vegetation 1 (1.8%) 14 (25.4%) 40 (72.7%) 0 (0%)

Values are the number of grid cells (proportion) for correlations between NDVI and annual average temperature
or total annual precipitation (p < 0.05) in each vegetation type.

4. Discussion

The results revealed that most grid cells in the NDVI of the Altay region were marked
by a non-significant trend of change during the 1981–2018 study period, while a signif-
icantly increasing trend was a secondary feature of this region. The spatial distribution
characteristics of NDVI trends are generally consistent with the findings of Liu et al. [52].
Among different geomorphic types, the NDVI of plain, platform, and hilly areas mainly dis-
played non-significant changes. In the mountainous area, the NDVI ofcreased significantly,
especially in valleys, depressions and riverbanks, albeit slowly, over time. This result is
consistent with findings of Xiong et al. [53]. The principal reason for this phenomenon in
the mountainous area may be that its snowmelt supplies more water to vegetation along the
runoff banks. That NDVI has a low correlation with total annual precipitation, but a high
correlation with annual mean temperature, further proves this phenomenon. He et al. [54]
found that cultivated vegetation, grassland, and desert vegetation increased the most in
northern China during 1982–2015, which is similar to the results of our study. In addition,
the NDVI rate of increase is pronounced in coniferous forest and broad-leaved forest in the
Altay region, whereas its change in desert vegetation is small because of sparse vegetation
there. Only the grid cells close to the water source show rapid greening over time [55].
Under the influence of human activities, the range and rate of NDVI growth of cultivated
vegetation are increasing, which is consistent with prior research [56]. The overall NDVI
growth trend of coniferous forest, broadleaved forest, grassland, and meadow vegetation
was relatively slow, in line with findings reported by Ma et al. [57].

In our study area, there was an insignificant correlation between the NDVI and annual
mean temperature, and this relationship differed significantly among vegetation types.
Piao et al. [58] and Zhu et al. [59] also obtained similar results. They also found that the
contribution of warming to vegetation growth in the northern hemisphere is gradually
diminishing. This phenomenon is related to the drought trend in temperate regions of the
Northern Hemisphere, and the adaptation of vegetation growth to climate warming at
high latitudes [60,61]. However, Kong et al. [62] did not reach the same view, a discrepancy,
perhaps related to the different scales used between the studies. Among geomorphic types,
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in the plain, platforms, and mountainous areas, the NDVI and annual mean tempera-
ture have predominantly insignificant positive correlations, while those grid cells with
insignificant negative correlations are mostly limited to hilly parts. This phenomenon
could be due to the relatively high elevation of the Altay region, where the accumulated
temperature of its vegetation is relatively low [63]. The annual mean temperature captures
the mean values of the four seasons on an annual scale. In mountainous and hilly areas
at high elevation, the annual mean temperature captures spring and autumn temperature
information to a certain extent [64]. However, the vegetation growth phenology in these
areas is short and concentrated in summer [65]. Therefore, the correlation between average
annual temperature and the NDVI is not significant in high-elevation, mountainous and
hilly areas [58]. The hilly areas consist mostly of desert, where plants are sparse; hence,
it is difficult for climate change to significantly impact the vegetation in that geomorphic
type in only a few decades. Further, because of already high temperatures, as they continue
to rise, evaporation will increase, which will affect the growth of desert vegetation, thus
leading to its prevailing insignificant negative correlation between the NDVI and annual
mean temperature [66]. In addition, cultivated vegetation and broadleaf forest are mainly
distributed along rivers. Precipitation is not the limiting factor for vegetation growth in
these areas because of river recharge and melting water of alpine ice and snow caused by
the temperature rise. Therefore, a significant positive correlation between the annual mean
temperature and the NDVI characterizes the cultivated vegetation and broad-leaved forest.
In the higher-elevation vegetation, distribution areas, such as alpine vegetation, grassland,
and meadow, their NDVI and annual mean temperature mainly showed an insignificant
positive correlation [67,68]. While coniferous forest and shrub vegetation types changed
differently under the influence of annual mean temperature, as found in previous research,
their NDVI was mainly negatively correlated with annual mean temperature [69].

The Altay region has a temperate continental climate and is an arid zone, where water
is the main factor limiting vegetation growth [70]. Therefore, most of the study area is
positively correlated with total annual precipitation, especially in plains and platform areas,
where there are no rivers or lakes. Lacking another water supply, vegetation in the region
strongly relies on precipitation, so there is a significant positive correlation between the
two. Sun et al. [71] also obtained similar results. Vegetation growing in mountain and river
valleys has access to abundant water and can rely less on precipitation, leading to its low
correlation with total annual precipitation [72]. Alpine vegetation and desert vegetation
have non-significant changes due to their sparse plants; hence, most of their grid cell NDVIs
show an insignificant positive correlation with total annual precipitation [73].

Since the start of the 21st century, climate change has driven an increase in precipitation
in the Altay region, where its climate is becoming more suitable for vegetation growth.
Further, government policies, such as zoning and rotation grazing, resting grazing and
banning grazing, as well as the Regulations on Ecological and Environmental Protection in
Altay Region, not only promote the environmental and ecological protection of the Altay
region and the sustainable development of its local economy, but also effectively protect
local vegetation and promote greater NDVI [74]. Accordingly, NDVI is not only affected by
climatic factors, but also human activities that are important factors affecting vegetation
change in the Altay region.

In general, the NDVI of the Altay region has been developing in a good direction in
the recent 38-year period studied here. Nevertheless, under the influence of climate change
and human activities, there is still a “mosaic” of declining NDVI trends in the study area.
This poses a hidden danger to the sustainable environment and the stability of agriculture
and animal husbandry in the region [75]. Therefore, it is imperative to put forward targeted
guidance on policy, to improve the vegetation greening situation in the Altay region under
the background of global climate change, and promote local sustainable development.

This paper emphasizes the analysis of the spatio–temporal changes of a long time
series of NDVIs (38 years) and their driving force in terms of climatic indicators. Although
there are many datasets with a higher resolution, due to the long time series of NDVI
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data (NOAA CDR AVHRR NDVI V5) in this study, its rough spatial resolution was an
unavoidable compromise. In the future, it is necessary to use higher resolution NDVI
datasets or appropriate methods to improve the resolution of data sets for further analysis.
Specifically, this study aims at elucidating the relationship of annual maximum NDVI to
annual mean temperature and total annual precipitation. However, the CMFD dataset in
this study still has the problem of a low resolution. However, it was chosen because of
its applicability in our study area. The low-resolution problem of CMFD was solved by
GWR downscaling. If there is a long-term series of high-resolution datasets supported by
more site data in this study area in the future, the influencing factors of the vegetation
change trend of complex underlying surfaces can be better analyzed. Therefore, although
these relationships can capture the average feedback state between vegetation and climatic
factors on the complex underlying surface in arid areas at high elevation and latitudes,
there are still many problems to be solved. In the near future, fine-scale temporal studies
using seasonal and monthly analytical scales will also be the next step.

5. Conclusions

(1) During 1981–2018, the annual NDVI of the Altay region showed a non-significant
trend, followed by a significant increase trend. Among the geomorphic types, the northern
mountain has the highest grid cell proportion, with a significant increasing trend. Among
its nine vegetation types, the main trend in the NDVI of coniferous forest, cultivated
vegetation, broadleaf forest, grassland, and meadow was of a significant increase over time.

(2) For grid cells with a linear temporal trend for the NDVI, the proportion of those
with a significant increase in the NDVI was considerably higher than that with a significant
decrease trend, which applied to all geomorphic types and vegetation types. Statistical
analysis of the rate of change in the NDVI showed that it expanded fastest in hilly and
platform areas, and receded fastest in the mountainous area. Among vegetation types,
desert vegetation and cultivated vegetation grew fastest, while alpine vegetation and
meadow declined at the fastest rate.

(3) Statistical analysis of grid cells with nonlinear changes showed that, in the study
period, the abrupt-change year of annual NDVI with a unimodal trend was mainly concen-
trated in 2000, and a U-shaped trend was mainly concentrated in 2003. Among geomorphic
or vegetation types, there were some differences in their abrupt-change year. The main year
that the platform area showed a unimodal trend was 1986, but it was much later for the
mountain areas (1993 and 1994). The U-shaped grid cell abrupt-change years in the hilly
area were scattered, precluding an obvious aggregation year, while there were no U-shaped
grid cells in the mountainous area. The main abrupt-change years of unimodal grid cells for
vegetation types were 2005 for alpine vegetation, and likewise, 1994 for coniferous forest,
1997 for grassland, 1993 for meadow, and 2001 for cultivated vegetation. The U-shaped
grid cells were mainly distributed in desert vegetation, and the main abrupt-change years
were consistent with the whole Altay region.

(4) The time series analysis of annual average temperature and total annual precip-
itation in the 38-year period shows that the whole Altay region presents a phenomenon
of “warming and wetting”. The correlation analysis showed that this region’s NDVI was
positively correlated with annual mean temperature and precipitation. Yet, among all geo-
morphic types, due to desert conditions in the hilly area, evapotranspiration is intensified
due to rising temperature, rendering a higher proportion of grid cells with an insignificant
negative correlation between the NDVI and annual mean temperature. Among vegetation
types, the proportion of grid cells with an insignificant negative correlation between the
NDVI and annual mean temperature was higher in coniferous forest, shrub, and desert
vegetation. In the geomorphic or vegetation types, the NDVI was mainly positively corre-
lated with total annual precipitation. This indicates that precipitation has a more significant
augmentative effect on vegetation in the Altay region.

Author Contributions: All authors contributed to the design and development of this manuscript.
Conceptualization, J.C. and H.W.; methodology, J.C.; software, Y.L.; validation, Y.Y. and J.F.; formal



Land 2023, 12, 564 16 of 18

analysis, H.W.; investigation, Y.Y. and J.F.; resources, Y.L.; data curation, J.C., Y.L. and Y.Y.; writing—
original draft preparation, Y.Y.; writing—review and editing, J.C.; visualization, Y.L.; supervision,
J.C.; project administration, H.W.; funding acquisition, J.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China
(32260280).

Institutional Review Board Statement: “Not applicable” for studies not involving humans or ani-
mals.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: We thank the College of Resources and Environment of Xinjiang Agricultural
University for their support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, C.; Fu, B.; Wang, S.; Lindsay, C.S.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and impacts of changes in China’s drylands. Nat.

Rev. Earth Environ. 2021, 2, 858–873. [CrossRef]
2. Cao, D.; Zhang, J.; Xun, L.; Yang, S.; Wang, J.; Yao, F. Spatiotemporal variations of global terrestrial vegetation climate potential

productivity under climate change. Sci. Total Environ. 2021, 770, 145320. [CrossRef]
3. Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamaki, J.V.;

Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [CrossRef]
4. Anderegg, W.R.L.; Wu, C.; Acil, N.; Carvalhais, N.; Pugh, T.A.M.; Sadler, J.P.; Seidl, R. A climate risk analysis of Earth’s forests in

the 21st century. Science 2022, 377, 1099–1103. [CrossRef] [PubMed]
5. Phiri, D.; Morgenroth, J.; Xu, C. Long-term land cover change in Zambia: An assessment of driving factors. Sci. Total Environ.

2019, 697, 134206. [CrossRef]
6. Huang, K.; Xia, J.; Wang, Y.; Ahlström, A.; Chen, J.; Cook, R.B.; Cui, E.; Fang, Y.; Fisher, J.B.; Huntzinger, D.N.; et al. Enhanced

peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol. 2018, 2, 1897–1905. [CrossRef] [PubMed]
7. Wang, Q.; Zhai, P.; Qin, D. New perspectives on ‘warmingewetting’ trend in Xinjiang, China. Adv. Clim. Chang. Res. 2020, 11,

252–260. [CrossRef]
8. Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z.; et al. Increased atmospheric

vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [CrossRef] [PubMed]
9. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150.

[CrossRef]
10. Yuan, W.; Wu, S.-Y.; Hou, S.; Xu, Z.; Lu, H. Normalized Difference Vegetation Index-based assessment of climate change impact

on vegetation growth in the humid-arid transition zone in northern China during 1982–2013. Int. J. Climatol. 2019, 39, 5583–5598.
[CrossRef]

11. Xu, Y.; Yang, Y.; Chen, X.; Liu, Y. Bibliometric Analysis of Global NDVI Research Trends from 1985 to 2021. Remote Sens. 2022, 14,
3967. [CrossRef]

12. Yang, W.; Kogan, F.; Guo, W.; Chen, Y. A novel re-compositing approach to create continuous and consistent cross-sensor/cross-
production global NDVI datasets. Int. J. Remote Sens. 2021, 42, 6023–6047. [CrossRef]

13. Yang, J.; Xin, Z.; Huang, Y.; Liang, X. Multi-source remote sensing data shows a significant increase in vegetation on the Tibetan
Plateau since 2000. Prog. Phys. Geogr. Earth Environ. 2023. [CrossRef]

14. Liu, Y.; Li, Y.; Li, S.; Motesharrei, S. Spatial and Temporal Patterns of Global NDVI Trends: Correlations with Climate and Human
Factors. Remote Sens. 2015, 7, 13233–13250. [CrossRef]

15. Li, Z.; Chen, Y.; Li, W.; Deng, H.; Fang, G. Potential impacts of climate change on vegetation dynamics in Central Asia. J. Geophys.
Res. Atmos. 2015, 120, 12345–12356. [CrossRef]

16. Yao, J.; Chen, Y.; Zhao, Y.; Mao, W.; Xu, X.; Liu, Y.; Yang, Q. Response of vegetation NDVI to climatic extremes in the arid region
of Central Asia: A case study in Xinjiang, China. Theor. Appl. Climatol. 2017, 131, 1503–1515. [CrossRef]

17. Gouveia, C.M.; Trigo, R.M.; Beguería, S.; Vicente-Serrano, S.M. Drought impacts on vegetation activity in the Mediterranean
region: An assessment using remote sensing data and multi-scale drought indicators. Glob. Planet. Chang. 2017, 151, 15–27.
[CrossRef]

18. Bao, G.; Bao, Y.; Sanjjava, A.; Qin, Z.; Zhou, Y.; Xu, G. NDVI-indicated long-term vegetation dynamics in Mongolia and their
response to climate change at biome scale. Int. J. Climatol. 2015, 35, 4293–4306. [CrossRef]

19. Li, L.; Zhu, L.; Xu, N.; Liang, Y.; Zhang, Z.; Liu, J.; Li, X. Climate Change and Diurnal Warming: Impacts on the Growth of
Different Vegetation Types in the North–South Transition Zone of China. Land 2022, 12, 13. [CrossRef]

http://doi.org/10.1038/s43017-021-00226-z
http://doi.org/10.1016/j.scitotenv.2021.145320
http://doi.org/10.1073/pnas.1710465114
http://doi.org/10.1126/science.abp9723
http://www.ncbi.nlm.nih.gov/pubmed/36048937
http://doi.org/10.1016/j.scitotenv.2019.134206
http://doi.org/10.1038/s41559-018-0714-0
http://www.ncbi.nlm.nih.gov/pubmed/30420745
http://doi.org/10.1016/j.accre.2020.09.004
http://doi.org/10.1126/sciadv.aax1396
http://www.ncbi.nlm.nih.gov/pubmed/31453338
http://doi.org/10.1016/0034-4257(79)90013-0
http://doi.org/10.1002/joc.6172
http://doi.org/10.3390/rs14163967
http://doi.org/10.1080/01431161.2021.1934597
http://doi.org/10.1177/03091333221148052
http://doi.org/10.3390/rs71013233
http://doi.org/10.1002/2015JD023618
http://doi.org/10.1007/s00704-017-2058-0
http://doi.org/10.1016/j.gloplacha.2016.06.011
http://doi.org/10.1002/joc.4286
http://doi.org/10.3390/land12010013


Land 2023, 12, 564 17 of 18

20. Jiao, K.; Gao, J.; Wu, S. Climatic determinants impacting the distribution of greenness in China: Regional differentiation and
spatial variability. Int. J. Biometeorol. 2019, 63, 523–533. [CrossRef]

21. Jiao, K.-W.; Gao, J.-B.; Liu, Z.-H.; Wu, S.-H.; Fletcher, T.L. Revealing climatic impacts on the temporal and spatial variation in
vegetation activity across China: Sensitivity and contribution. Adv. Clim. Chang. Res. 2021, 12, 409–420. [CrossRef]

22. Wei, Y.; Sun, S.; Liang, D.; Jia, Z. Spatial–temporal variations of NDVI and its response to climate in China from 2001 to 2020. Int.
J. Digit. Earth 2022, 15, 1463–1484. [CrossRef]

23. Song, Y.; Ma, M. A statistical analysis of the relationship between climatic factors and the Normalized Difference Vegetation
Index in China. Int. J. Remote Sens. 2011, 32, 3947–3965. [CrossRef]

24. Yang, D.; Yi, G.H.; Zhang, T.B.; Li, J.J.; Qin, Y.B.; Wen, B.; Liu, Z.Y. Spatiotemporal variation and driving factors of growing season
NDVI in the Tibetan Pla-teau, China. Ying Yong Sheng Tai Xue Bao 2021, 32, 1361–1372.

25. Yu, H.; Bian, Z.; Mu, S.; Yuan, J.; Chen, F. Effects of Climate Change on Land Cover Change and Vegetation Dynamics in Xinjiang,
China. Int. J. Environ. Res. Public Health 2020, 17, 4865. [CrossRef]

26. Li, S.; Li, X.; He, Q.; Yi, L. Study on Climate Change in Altay Prefecture since Recent 40 Years. Arid. Zone Res. 2006, 23, 637–643.
27. Zhang, Q.; Yang, J.; Wang, W.; Ma, P.; Lu, G.; Liu, X.; Yu, H.; Fang, F. Climatic Warming and Humidification in the Arid Region of

Northwest China: Multi-Scale Characteristics and Impacts on Ecological Vegetation. J. Meteorol. Res. 2021, 35, 113–127. [CrossRef]
28. Huang, H.; Xu, H.; Lin, T.; Xia, G. Spatio-temporal variation characteristics of NDVI and its response to climate change in the

Altay region of Xinjiang from 2001 to 2020. Acta Ecol. Sin. 2022, 42, 2798–2809.
29. Wang, B.; Cheng, W.; Song, K.; Wang, S.; Zhang, Y.; Li, H.; Deng, J.; Wang, R. Application of Ecology-Geomorphology Cognition

Approach in Land Type Classification: A Case Study in the Altay Region. Sustainability 2022, 14, 4023–4045. [CrossRef]
30. Xu, Y.; Yang, J.; Chen, Y. NDVI-based vegetation responses to climate change in an arid area of China. Theor. Appl. Climatol. 2016,

126, 213–222. [CrossRef]
31. Meng, X.; Gao, X.; Li, S.; Lei, J. Spatial and Temporal Characteristics of Vegetation NDVI Changes and the Driving Forces in

Mongolia during 1982–2015. Remote Sens. 2020, 12, 603. [CrossRef]
32. Peng, S.; Chen, A.; Xu, L.; Cao, C.; Fang, J.; Myneni, R.B.; Pinzon, J.E.; Tucker, C.J.; Piao, S. Recent change of vegetation growth

trend in China. Environ. Res. Lett. 2011, 6, 044027. [CrossRef]
33. Verhoeve, S.L.; Keijzer, T.; Kaitila, R.; Wickama, J.; Sterk, G. Vegetation Resilience under Increasing Drought Conditions in

Northern Tanzania. Remote Sens. 2021, 13, 4592. [CrossRef]
34. Whetten, A.B.; Demler, H.J. Detection of Multidecadal Changes in Vegetation Dynamics and Association with Intra-Annual

Climate Variability in the Columbia River Basin. Remote Sens. 2022, 14, 569. [CrossRef]
35. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial

analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]
36. He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process

studies over China. Sci. Data 2020, 7, 25. [CrossRef] [PubMed]
37. Li, Y.; Qin, X.; Liu, Y.; Jin, Z.; Liu, J.; Wang, L.; Chen, J. Evaluation of Long-Term and High-Resolution Gridded Precipitation and

Temperature Products in the Qilian Mountains, Qinghai–Tibet Plateau. Front. Environ. Sci. 2022, 10, 609. [CrossRef]
38. Peng, Y.; Duan, A.; Hu, W.; Tang, B.; Li, X.; Yang, X. Observational constraint on the future projection of temperature in winter

over the Tibetan Plateau in CMIP6 models. Environ. Res. Lett. 2022, 17, 034023. [CrossRef]
39. He, P.; Sun, Z.; Han, Z.; Dong, Y.; Liu, H.; Meng, X.; Ma, J. Dynamic characteristics and driving factors of vegetation greenness

under changing environments in Xinjiang, China. Environ. Sci. Pollut. Res. 2021, 28, 42516–42532. [CrossRef]
40. Lu, B.; Brunsdon, C.; Charlton, M.; Harris, P. A response to ‘A comment on geographically weighted regression with parameter-

specific distance metrics’. Int. J. Geogr. Inf. Sci. 2019, 33, 1300–1312. [CrossRef]
41. Li, J.; Guan, J.; Han, W.; Tian, R.; Lu, B.; Yu, D.; Zheng, J. Important role of precipitation in controlling a more uniform spring

phenology in the Qinba Mountains, China. Front. Plant Sci. 2023, 14, 1074405. [CrossRef] [PubMed]
42. Lu, B.; Yang, W.; Ge, Y.; Harris, P. Improvements to the calibration of a geographically weighted regression with parameter-specific

distance metrics and bandwidths. Comput. Environ. Urban Syst. 2018, 71, 41–57. [CrossRef]
43. He, F.; Yang, F.; Zhao, C.; Li, S.; Li, M. Spatially explicit reconstruction of cropland cover for China over the past millennium. Sci.

China Earth Sci. 2022, 66, 111–128. [CrossRef]
44. Liu, Y.; Lyu, Y.; Bai, Y.; Zhang, B.; Tong, X. Vegetation Mapping for Regional Ecological Research and Management: A Case of the

Loess Plateau in China. Chin. Geogr. Sci. 2020, 30, 410–426. [CrossRef]
45. Roy, D.P.; Yan, L. Robust Landsat-based crop time series modelling. Remote Sens. Environ. 2020, 238, 110810. [CrossRef]
46. Xing, X.; Yan, C.; Jia, Y.; Jia, H.; Lu, J.; Luo, G. An Effective High Spatiotemporal Resolution NDVI Fusion Model Based on

Histogram Clustering. Remote Sens. 2020, 12, 3774. [CrossRef]
47. Ma, J.; Liu, Y.; Sheng, J.; Li, N.; Wu, H.; Jia, H.; Sun, Z.; Cheng, J. Changes of relationships between dominant species and their

relative biomass along elevational gradients in Xinjiang grasslands. Acta Prataculturae Sin. 2021, 30, 25–35.
48. DelSole, T.; Tippett, M.K. A mutual information criterion with applications to canonical correlation analysis and graphical models.

Stat. Int. Stat. Inst. 2021, 10, e385. [CrossRef]
49. Su, R.; Cheng, J.; Chen, D.; Bai, Y.; Jin, H.; Chao, L.; Wang, Z.; Li, J. Effects of grazing on spatiotemporal variations in community

structure and ecosystem function on the grasslands of Inner Mongolia, China. Sci. Rep. 2017, 7, 40. [CrossRef]

http://doi.org/10.1007/s00484-019-01683-4
http://doi.org/10.1016/j.accre.2021.04.006
http://doi.org/10.1080/17538947.2022.2116118
http://doi.org/10.1080/01431161003801336
http://doi.org/10.3390/ijerph17134865
http://doi.org/10.1007/s13351-021-0105-3
http://doi.org/10.3390/su14074023
http://doi.org/10.1007/s00704-015-1572-1
http://doi.org/10.3390/rs12040603
http://doi.org/10.1088/1748-9326/6/4/044027
http://doi.org/10.3390/rs13224592
http://doi.org/10.3390/rs14030569
http://doi.org/10.1016/j.rse.2017.06.031
http://doi.org/10.1038/s41597-020-0369-y
http://www.ncbi.nlm.nih.gov/pubmed/31964891
http://doi.org/10.3389/fenvs.2022.906821
http://doi.org/10.1088/1748-9326/ac541c
http://doi.org/10.1007/s11356-021-13721-z
http://doi.org/10.1080/13658816.2019.1585541
http://doi.org/10.3389/fpls.2023.1074405
http://www.ncbi.nlm.nih.gov/pubmed/36844100
http://doi.org/10.1016/j.compenvurbsys.2018.03.012
http://doi.org/10.1007/s11430-021-9988-5
http://doi.org/10.1007/s11769-020-1120-5
http://doi.org/10.1016/j.rse.2018.06.038
http://doi.org/10.3390/rs12223774
http://doi.org/10.1002/sta4.385
http://doi.org/10.1038/s41598-017-00105-y


Land 2023, 12, 564 18 of 18

50. DiMaso, E.N.T.; Bondi, R.W.; Guo, J.; O’Brien, A.G. A method for real time detection of reaction endpoints using a moving
window t-test of in situ time course data. React. Chem. Eng. 2020, 5, 1642–1646. [CrossRef]

51. Weng, C.H.; Luo, X.; Yang, W.; Liu, L.; Zhang, Y.; Weerasinghe, R. Spatial-Temporal variations of vegetation and the relationship
with precipitation in summer-A case study in the hilly area of central Sichuan province. E3S Web Conf. 2018, 53, 03060. [CrossRef]

52. Liu, Y.; Tian, J.; Liu, R.; Ding, L. Influences of Climate Change and Human Activities on NDVI Changes in China. Remote Sens.
2021, 13, 4326. [CrossRef]

53. Xiong, Y.; Wang, H. Spatial relationships between NDVI and topographic factors at multiple scales in a watershed of the Minjiang
River, China. Ecol. Inform. 2022, 69, 101617. [CrossRef]

54. He, H.; Zhang, B.; Hou, Q.; Li, S.; Ma, B.; Ma, S. Variation Characteristic of NDVI and Its Response to Climate Change in Northern
China From 1982 to 2015. J. Ecol. Rural Environ. 2020, 36, 70–80.

55. Zhang, J.; Zhang, Y.; Sun, G.; Song, C.; Li, J.; Hao, L.; Liu, N. Climate Variability Masked Greening Effects on Water Yield in the
Yangtze River Basin During 2001–2018. Water Resour. Res. 2022, 58, e2021WR030382. [CrossRef]

56. Du, J.; Fang, S.; Sheng, Z.; Wu, J.; Quan, Z.; Fu, Q. Variations in vegetation dynamics and its cause in national key ecological
function zones in China. Environ. Sci. Pollut. Res. 2020, 27, 30145–30161. [CrossRef]

57. Ma, Y.; Guan, Q.; Sun, Y.; Zhang, J.; Yang, L.; Yang, E.; Li, H.; Du, Q. Three-dimensional dynamic characteristics of vegetation and
its response to climatic factors in the Qilian Mountains. CATENA 2022, 208, 105694. [CrossRef]

58. Piao, S.; Mohammat, A.; Fang, J.; Cai, Q.; Feng, J. NDVI-based increase in growth of temperate grasslands and its responses to
climate changes in China. Glob. Environ. Chang. 2006, 16, 340–348. [CrossRef]

59. Zhu, Y.; Zhang, J.; Zhang, Y.; Qin, S.; Shao, Y.; Gao, Y. Responses of vegetation to climatic variations in the desert region of
northern China. CATENA 2019, 175, 27–36. [CrossRef]

60. Dial, R.J.; Maher, C.T.; Hewitt, R.E.; Sullivan, P.F. Sufficient conditions for rapid range expansion of a boreal conifer. Nature 2022,
608, 546–551. [CrossRef]

61. Yuan, Y.; Bao, A.; Jiapaer, G.; Jiang, L.; De Maeyer, P. Phenology-based seasonal terrestrial vegetation growth response to climate
variability with consideration of cumulative effect and biological carryover. Sci. Total Environ. 2022, 817, 152805. [CrossRef]
[PubMed]

62. Kong, D.; Zhang, Q.; Singh, V.P.; Shi, P. Seasonal vegetation response to climate change in the Northern Hemisphere (1982–2013).
Glob. Planet. Chang. 2017, 148, 1–8. [CrossRef]

63. Hu, L.; Fan, W.; Yuan, W.; Ren, H.; Cui, Y. Spatiotemporal Variation of Vegetation Productivity and Its Feedback to Climate
Change in Northeast China over the Last 30 Years. Remote Sens. 2021, 13, 951. [CrossRef]

64. Geng, Q.; Wu, P.; Zhao, X. Spatial and temporal trends in climatic variables in arid areas of northwest China. Int. J. Climatol. 2016,
36, 4118–4129. [CrossRef]

65. du Toit, J.C.O.; O’Connor, T.G. Long-term influence of season of grazing and rainfall on vegetation in the eastern Karoo, South
Africa. Afr. J. Range Forage Sci. 2020, 37, 159–171. [CrossRef]

66. Wang, S.; Li, R.; Wu, Y.; Zhao, S. Vegetation dynamics and their response to hydrothermal conditions in Inner Mongolia, China.
Glob. Ecol. Conserv. 2022, 34, e02034. [CrossRef]

67. Ghorbanian, A.; Mohammadzadeh, A.; Jamali, S. Linear and Non-Linear Vegetation Trend Analysis throughout Iran Using Two
Decades of MODIS NDVI Imagery. Remote Sens. 2022, 14, 3683. [CrossRef]

68. Shi, S.; Yu, J.; Wang, F.; Wang, P.; Zhang, Y.; Jin, K. Quantitative contributions of climate change and human activities to vegetation
changes over multiple time scales on the Loess Plateau. Sci. Total Environ. 2021, 755, 142419. [CrossRef]

69. Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449.
[CrossRef]

70. Xu, H.-j.; Zhao, C.-y.; Wang, X.-p.; Chen, S.-y.; Shan, S.-y.; Chen, T.; Qi, X.-l. Spatial differentiation of determinants for water
conservation dynamics in a dryland mountain. J. Clean. Prod. 2022, 362, 132574. [CrossRef]

71. Sun, W.; Wang, Y.; Fu, Y.H.; Xue, B.; Wang, G.; Yu, J.; Zuo, D.; Xu, Z. Spatial heterogeneity of changes in vegetation growth and
their driving forces based on satellite observations of the Yarlung Zangbo River Basin in the Tibetan Plateau. J. Hydrol. 2019, 574,
324–332. [CrossRef]

72. Chen, T.; Xu, H.-j.; Qi, X.-l.; Shan, S.-y.; Chen, S.-y.; Deng, Y.-f. Temporal dynamics of satellite-derived vegetation pattern and
growth in an arid inland river basin, Tibetan Plateau. Glob. Ecol. Conserv. 2022, 38, e02262. [CrossRef]

73. He, B.; Huang, L.; Chen, Z.; Wang, H. Weakening sensitivity of global vegetation to long-term droughts. Sci. China Earth Sci. 2018,
61, 60–70. [CrossRef]

74. Sun, T.; Bao, Y.; Li, W. Strategy on the development of grass-based livestock husbandry in the arid and semi-arid region based
on sustainable uti-lization of grassland resources: A case study of Altay, Xinjiang, China. Chin. J. Ecol. 2020, 39, 3509–3520.
[CrossRef]

75. Zheng, K.; Tan, L.; Sun, Y.; Wu, Y.; Duan, Z.; Xu, Y.; Gao, C. Impacts of climate change and anthropogenic activities on vegetation
change: Evidence from typical areas in China. Ecol. Indic. 2021, 126, 107648. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1039/D0RE00182A
http://doi.org/10.1051/e3sconf/20185303060
http://doi.org/10.3390/rs13214326
http://doi.org/10.1016/j.ecoinf.2022.101617
http://doi.org/10.1029/2021WR030382
http://doi.org/10.1007/s11356-020-09211-3
http://doi.org/10.1016/j.catena.2021.105694
http://doi.org/10.1016/j.gloenvcha.2006.02.002
http://doi.org/10.1016/j.catena.2018.12.007
http://doi.org/10.1038/s41586-022-05093-2
http://doi.org/10.1016/j.scitotenv.2021.152805
http://www.ncbi.nlm.nih.gov/pubmed/34982988
http://doi.org/10.1016/j.gloplacha.2016.10.020
http://doi.org/10.3390/rs13050951
http://doi.org/10.1002/joc.4621
http://doi.org/10.2989/10220119.2020.1725122
http://doi.org/10.1016/j.gecco.2022.e02034
http://doi.org/10.3390/rs14153683
http://doi.org/10.1016/j.scitotenv.2020.142419
http://doi.org/10.1126/science.1155121
http://doi.org/10.1016/j.jclepro.2022.132574
http://doi.org/10.1016/j.jhydrol.2019.04.043
http://doi.org/10.1016/j.gecco.2022.e02262
http://doi.org/10.1007/s11430-016-9119-8
http://doi.org/10.13292/j.1000-4890.202010.021
http://doi.org/10.1016/j.ecolind.2021.107648

	Introduction 
	Materials and Methods 
	Study Area 
	Data Collection and Processing 
	NDVI Dataset 
	Climate Dataset 
	Geomorphic and Vegetation Regionalization Data 
	The Digital Elevation Model (DEM) 

	Methods 

	Results 
	Interannual Variation in NDVI 
	NDVI ofterannual Trend in Geomorphic and Vegetation Types 
	Analysis of NDVI Abrupt-Change Year 
	Influence of Climatic Factors on NDVI Dynamic 

	Discussion 
	Conclusions 
	References

