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Abstract: Monitoring land cover changes in protected areas is crucial to control the conservation
efficiency of biodiversity and natural ecosystem conditions, especially in Ecuador, one of the most
megadiverse countries in the world. Therefore, the purpose of the present study has been to estimate
spatiotemporal changes in the landscape and the level of fragmentation using remote sensing in
Llanganates National Park (PNL), a protected area in central Andean Ecuador. To obtain land cover,
satellite images were processed using the Maximum Likelihood Classification (MLC) algorithm. After
statistical analysis, it was encountered that there is no significant difference in land cover change
between the years 1991 to 2016 nor among the three watersheds, while the level of fragmentation in
the PNL is low. Land cover changes in the study area are not evident, as it is a protected area where
ecosystems are usually expected to maintain their initial conditions over time. Therefore, with these
results it has been concluded that the biodiversity and landscape conservation processes in the PNL
are effective.

Keywords: ecological fragmentation; maximum likelihood; landscape metrics and indices; Patch
Analyst; IndiFrag; Ecuador

1. Introduction

Approximately 80% of the planet has changed its natural conditions due to the inci-
dence of anthropogenic activities [1]: humans and society have become a global geophysical
force, what is called as Anthropocene [2] and naturally occurring factors [3], mainly because
of changes in land cover and land use LULC [2,4,5]. Such changes are associated with envi-
ronmental, socioeconomic, and political factors [6] that affect the landscape over time and
space [3]. Mainly, the causes of land use change are the steady increase in population and
the expansion of the agricultural frontier [6,7]. For example, the development of agriculture
impacts water quality and the soil’s ability to store carbon because of wastewater discharge,
increasing the concentration of heavy metals and pesticides; these human activities also
have altered the global cycle of N [8,9].

Regarding the consequences, LULC changes are the main factor causing climate
change, water, soil, and air pollution [10], and loss of biodiversity and species habitat [1],
modifying ecosystems at the biotic and abiotic levels [11–13]. Likewise, land use changes
are one of the factors that most affect ecosystem services, as they alter the natural charac-
teristics, processes, and components of ecosystems [14,15]. Other consequences include
climate change, soil erosion, forest fragmentation, and increased natural disasters [6,16,17].
Therefore, knowing the rate of land cover change is essential to guide decision-making on
natural resources [1] assertively, environmental management, and planning [10], as this
allows qualitative and quantitative estimation of the changes generated by anthropogenic
activities on the landscape [18–20].
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Landscape fragmentation goes hand in hand with LULC changes, considering the
landscape as a heterogeneous expanse of land formed by ecosystem–human interaction [21]
and fragmentation as a continuous process of ecosystem degradation until small discontin-
uous areas are included [7,22]. Such processes are associated with anthropogenic activities’
spatial and temporal dynamics [23], such as mining, agricultural frontier expansion, for-
est fires, urbanization, and illegal logging [24]. Its effects are habitat reduction, species
isolation, soil erosion, and loss of cultural identity and biodiversity [24,25] Landscape
metrics can measure fragmentation, which caters to an area’s vegetation cover and change
over time [23]. These metrics reflect the relationship between land use and its ecological
processes, making it possible to quantify the adverse effects of LULC changes on landscape
ecology [10].

Human pressure on natural resources and concern for biodiversity conservation lead
to the creation of new protected areas [26], whose environmental conditions require con-
stant monitoring to ensure the preservation of the natural resources they protect [27].
The application of remote sensing is a practical and fast way to obtain, visualize and
analyze spatial data [27]. Therefore, assessing the efficiency of protected areas is a key
factor for sustainability. Thus, the conservation of ecosystems is vital, as they provide
several services such as regulating water sources and regional climate patterns and car-
bon sequestration [28,29] It is possible to classify ecosystem services into four categories:
Provisioning services (raw materials); supporting services (nutrient cycling and ecological
niches); regulating services (climate); and cultural services (spiritual values). Furthermore,
the capacity of ecosystems to provide their services depends on ecosystem health and
integrity and is threatened by anthropogenic factors, compromising their availability for
present and future generations [30].

The results of these technologies help decision-making on the quality of life in envi-
ronments modified by human activities [24], so it is necessary to precisely know the regions
where LULC changes occur [25].

Based on the above, it is strongly recommended to apply remote sensing technologies
to evaluate LULC changes and landscape fragmentation due to satellite images, and
multitemporal analyses are considered an efficient and low-cost alternative tool [1], in
addition to applying to areas of large extensions or remote and inaccessible zones [23],
reducing research time and obtaining more updated maps [31].

Maintaining ecological integrity is globally acknowledged as a strategic goal, but
there has yet to be a consensus on a practical and widely usable methodology to assess it;
some studies propose a comprehensive approach to quantify regional ecosystem integrity
based on FAIR data obtained using satellite remote sensing and image analysis. There are
three variables considered central to this approach: normalized difference vegetation index
(NDVI), at-satellite brightness temperature (BT), and vegetation surface heterogeneity (HG),
corresponding to ecosystem integrity indicators exergy capture, biotic water flows, and abi-
otic heterogeneity [32]. Standardized regional maps can help develop predictive models of
the transitional ecosystem dynamic, and facilitate boundary planning of protected areas to
maximize management and conservation [33]. There are several methods for mapping land
cover changes using remotely sensed data: conventional maximum likelihood classification;
post-classification; image different components change-detection techniques; vegetative
index differencing; post-classification change differencing; and multi-date unsupervised
classification. Land cover can be determined by analyzing satellite and aerial imagery, but
land use cannot be determined from satellite imagery. Land cover maps provide informa-
tion to help managers best understand the current landscape. Land cover maps for several
years are needed to see change over time [34].

Remote sensing has become an essential tool applicable to developing and under-
standing the global, physical processes affecting the earth [34], especially in protected areas
such as Llanganates National Park, which is characterized by having a wide altitudinal
range that varies between 1200 to 4638 masl, highly irregular topography, with steep,
almost vertical, slopes where we can find immense rocky walls, lagoons and foothills
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forests. According to preliminary analysis, the park has some areas with natural vegetation
and others with disturbed vegetation, determining the presence of more than 800 species
of vascular plants, including some rare and endemic to the region that had not been
recorded before. In comparison, the fauna consists of 231 species of birds, 46 mammals,
and 23 amphibians and reptiles [35]. Biodiversity inside PNL is invaluable because some
studies carried out in recent years have allowed the description of new species, such as
frogs of the genus Pristimantis (Strabomantide) [36,37], new species of plants of g. Brunellia
(Brunellianceae) [38], and species of fungus of the genus Xylaria [39]; moreover, this has
determined the ample mammal richness existing in this protected area [40]. Pollen records
also provide information (radiocarbon dates) that indicates that the local paramo vegetation
was relatively stable with only minor fluctuations since the mid-Holocene. The paramo
vegetation was characterized mainly by Asteraceae, Cyperaceae, and Poaceae. The regional
lower mountain rainforest vegetation is primarily represented by Moraceae/Urticaceae,
and the upper mountain rainforest by Melastomataceae, Polylepis, and Weinmannia. Be-
tween ca. 4100 to 2100 cal yr BP, paramo was the primary main vegetation type with a
low presence of mountain rainforest, probably reflecting conditions; however, between ca.
2100 cal yr BP and the present, the proportion of paramo vegetation increased with a de-
creased occurrence of mountain rainforest, suggesting cooler and moister conditions [41].

We have chosen the protected area of the Llanganates National Park due to its relevance
to the environment, and considering all the ecosystem services it provides. Subsequently,
the predominant purpose of the current study has been to evaluate the land cover and
land use changes from 1991 to 2016 (25 years) through remote sensing technologies and
geographic information systems. Furthermore, we also measure the degree of fragmenta-
tion in this protected area by calculating landscape metrics and indices with the safeguard
space database information for the conservation of biodiversity of the Parks, necessary for
designing and implementing measures for correct LULC use.

2. Materials and Methods
2.1. Study Area

The study was conducted in the Llanganates National Park (PNL), a protected area
in the central Andean region of Ecuador, coordinates 01◦08′ S and 78◦14′ W. It covers
approximately 220,000 hectares and occupies certain areas of the Tungurahua, Napo,
Cotopaxi, and Pastaza Provinces. Its altitudinal range goes from 1200 to 4638 masl. It
was declared a protected area in 1996 due to its rich biodiversity and Ramsar sites of
interest [11].

The study area was divided into three watersheds to emphasize the research’s ecologi-
cal purpose: the Pastaza, Yanayacu, and Jatunyacu rivers (Figure 1). The three watersheds
share similar morphometric characteristics: their oblong shape derived from compactness
indices more significant than 1.5, hypsometric curves with waterways in their juvenile
stage, the terrain has a medium to steep slope (10-, low drainage density, high runoff time
and an unstable flow regime).

2.2. Satellite Image Processing

Satellite images for this study were obtained from the U.S. Geological Survey website.
Three 30-m resolution satellite images were used to cover a 25-year study period (from
1991 to 2016), with minimal cloud cover possible. For each date, a mosaic of the satellite
images of continuous quadrants 60 and 61 covered the entire extent of the watersheds.

From the Landsat satellite, it was obtained following datasets with their respective
acquisition dates: Landsat 5 Thematic Mapper (TM) (15 October 1991), Landsat 7 Enhanced
Thematic Mapper (ETM+) (3 November 2001), Landsat 8 Operational and Land Imager
(OLI) (20 November 2016), the Path row was 10–60 and 61, while the processing level
was collection 2 Level 2 Imagery Products with a spatial resolution of 30 m USGS (2022).
To improve The quality of satellite images and obtain better results in the classification
phase [21,42], the radiometric and atmospheric correction was performed by applying the
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parameters and procedures of the FLAASH method in the ENVI 5.3 software [43] Based on
this, the Top-of-atmosphere reflectance (TOA) was obtained [27].
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2.3. Supervised Classification

To identify the land cover in the three watersheds associated with the PNL, the ecosys-
tem classification system of Ecuador was used as the basis for this study; the following
covers were recognized: (1) forest; (2) agricultural areas; (3) shrub and herbaceous vegeta-
tion (3.1) flooded grassland paramo, (3.2) grassland paramo; (4) water bodies; (5) anthropic
areas; (6) areas without vegetation cover; (7) snow; and (8) no information—clouds.

Supervised classification is a data-driven (practical) modeling tool that derives sta-
tistical relationships between the input and the ground truth habitats [44]. A semantic
classification of aerial/satellite images is essential for land cover and land use mapping,
change detection, emergency response or management, and various other applications [45].
Conventional approaches to training a supervised image classification aim to describe all
classes spectrally and fully. Therefore, extensive training is typically required to describe
each feature space type comprehensively [46]. Supervised Classification methods usually
give successful results with high overall accuracy for determining LULC studies [47]. These
methods have been widely used to identify land cover [48] and require knowing the spec-
tral attributes of the study area (in this study, the spectral characteristics were obtained
by a Principal Component Analysis—PCA). Among the different supervised classification
methods, Maximum Likelihood Classification is reported as the one with higher accuracy,
good separation from classes [49] and the most common algorithm for LULC analysis [50].

The supervised classification was carried out with the maximum likelihood method that
depends on Bayes’ theorem and assumes that the data obey a Gaussian distribution [3,27]
It is based on a pixel analysis, where each pixel is assigned to the class with the highest
likelihood according to its spectral distribution [3,27]. It is a simple and effective method,
widely used in remote sensing due to its robustness and degree of sophistication [23,31,51].

The training phase for supervised classification consisted of selecting pixels repre-
senting known patterns based on knowledge of the study area [52]. Thus, the training
zones were defined to ensure spectral separability of the classes and taking the most
Homogeneous Regions of Interest (ROI), being revised and modified until reaching a
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Jeffries–Matusita Distance as close as possible to two [27,53]. In addition, a 3 × 3 window
majority filter was applied on the generated land cover map to reduce the “salt and pepper”
effect and improve the resulting map’s visual quality [52].

2.4. Post Classification

Satellite image classification processes require the evaluation of accuracy as a fun-
damental part of the validation of results, defining the quality and significance of the
results [53]. Therefore, a confusion matrix was constructed for each scenario with which
the percentage of correctly classified pixels about the land covers present in the study area
is visualized. In addition, the overall accuracy of the classification process was evaluated
by calculating the non-parametric Kappa test. The acceptable value for land use change
maps should be more excellent than 85% [3,31]. Its calculation is given by the equation [43]:

K =
N ∑r

i=1(xii)−∑r
i=1(xi+ ∗ x+1)

N2 −∑r
i=1(xi+ ∗ x+1)

where: N: total number of observed pixels, i and r: number of rows in the confusion
matrix, xii: number of observed pixels in row i and column I, xi+: total number of marginal
observations in row i, and x+i: total number of marginal observations in column i. The
overall map accuracy, given by the ENVI software, was also calculated.

2.5. Landscape Metrics and Indices

Landscape metrics give the configuration and structure of an ecosystem, the main
ones being the number, size, and shape of patches in the different classes that compose
the landscape [53]. Once the land covers for the study area were obtained, the files were
imported into ArcGIS software. Next, the landscape metrics were generated using the
fragmentation analysis extension Patch Analysis [23], a spatial analysis program for maps
in vector format [53].

Landscape metrics were calculated to assess ecological fragmentation in the PNL,
from which the number of patches, mean patch size and the coefficient of variance of patch
size were selected for their respective analysis. It should be noted that the results of all
landscape metrics will not be presented. Many were redundant and some did not apply to
the study area, so only those considered appropriate to the landscape under analysis were
selected [21]. The IndiFrag v2.1 software was also used to calculate some multitemporal
indices described in Table 1.

Table 1. Selected landscape metrics and indices.

Landscape Metric Description Value Range Reference

Mean Patch Size (MPS) Average patch size. MPS ≥ 0 [54]

Shannon’s Evenness Index (SEI)
SEI = −∑m

i=1(p∗(ln p))
ln m

The measure of patch distribution
and abundance is based on

several classes.
m: number of classes.

p: relation between class area and
landscape area.

From zero (0) to one (1).
0: distribution of patches is low.

One or near: distribution of
classes is more even.

[54,55]

Rate of change (RC)

RC = 1
t2−t1

∗ ln
(

At2
At1

)
∗ 100

Measure an overall area change in
classes through time. It is expressed

in percentage.
From (0) to 100%. [55]

Expansion Index
(LEI)

LEI = lw
Pw
∗ 100

Measure of growing type: infilling,
edge-expansive and outlying.

lw: shared perimeter length between
new and former patch

Pw: perimeter of new patch

From zero (0) to 100%. [55]
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In each period (1991–2001 and 2001–2016), the thematic maps and index values were
compared to find the level of vegetation cover change [3].

3. Results
3.1. Land Cover Classification

During the training phase of the classification process, the separability of the classes
for each scenario (for each watershed in each year) was determined, obtaining values
above 1.6, which indicates that the courses have been correctly defined and there is no
significant overlap in the spectral signatures [6]. However, there is a slight similarity in the
reflectance of the classes: grassland paramo, flooded grassland paramo, agricultural areas,
and anthropogenic zones (in particular, green areas spaces parks) because they have plant
species in similar growth stages.

The satellite images were qualified in the ENVI software with the Maximum Likeli-
hood method. Three land cover maps were obtained for each watershed corresponding to
each year of study. Figure 2 shows the land covers found for the Jatunyacu (seven classes),
Yanayacu (six courses), and Pastaza (eight classes) river basins.

The Jatunyacu River basin shows forest as the dominant cover that maintains a rela-
tively constant area from 1991 to 2016. However, in 2016, the presence of clouds decreased
the visibility of the surfaces, especially in the northern sector of the basin. The change from
moorland flooded grassland to moorland grassland is also observed in both periods. The
agricultural areas extend north of the basin over time, while the snow and water bodies do
not change transparently. Areas without vegetation cover remain constant and are mainly
associated with the slopes of the extinct active Antisana (northeast) and Cotopaxi (north)
volcanoes [56,57].

In the Yanayacu River basin, it is observed that between 1991 and 2001 anthropogenic
areas did not change significantly, while from 2001 to 2016, an increase in anthropogenic
areas was noted in the west–east direction of the basin. Agricultural areas occupy a similar
place in all years. Flooded grassland paramo increased from 1991 to 2001 but decreased
slightly by 2016.

The most notable change in the cover is from flooded grassland paramo to grassland
paramo and vice versa. There are very few discontinuously distributed forest patches in
this watershed. Water bodies remain constant, the most important being the Pisayambo
Lagoon and the Anteojos Lagoons to the southeast of the basin.

The forest is the dominant cover in the Pastaza River basin, and there has been no
considerable variation over the years. Agricultural areas roughly conserved their site
from 1991 to 2001 and increased their size slightly until 2016. Anthropic regions are in the
southwestern part of the watershed, and no evident variation is observed during the two
periods. Areas without vegetation cover had the same area in 2001 but decreased in 2016,
replaced by forest and grassland paramo cover. Very few patches of floodable grassland
paramo and small size are distributed discontinuously in the northwestern part of the
watershed. The water bodies remain constant over the years.

3.1.1. Confusion Matrix and Overall Accuracy

To verify the quality of the classification, the overall accuracy of the land cover map
was calculated, and in parallel, the Kappa coefficient, using the ENVI 5.3 software. The
results are presented in Table 2.

In general, the excellent quality of the classification is evidenced since it has high
accuracy and precision with Kappa coefficients close to 1 and accuracy percentages more
significant than 90%; this value is higher than the acceptable value (85%) established by [3].
With this, it is assumed that the defined classes and the classification method are suitable for
the study area. On the other hand, the confusion matrix contains the number or percentage of
pixels adequately classified according to the field land cover concerning those organized by the
software [51]. For this study, a bar chart representing this percentage was chosen to improve the
visualization of the data as they have been very extensive for the reader (Figure 3).



Land 2023, 12, 500 7 of 21Land 2023, 12, x FOR PEER REVIEW 7 of 22 
 

 
Figure 2. Geospatial distribution and land cover changes in the years 1991, 2001, and 2016 of three 
basins of the Llanganates National Park. Figure 2. Geospatial distribution and land cover changes in the years 1991, 2001, and 2016 of three

basins of the Llanganates National Park.



Land 2023, 12, 500 8 of 21

Table 2. Kappa (κ) coefficient and overall accuracy of the supervised classification.

1991 2001 2016

Kappa
Coefficient

Overall
Accuracy (%)

Kappa
Coefficient

Overall
Accuracy (%)

Kappa
Coefficient

Overall
Accuracy (%)

Jatunyacu River Basin 0.95 96.00 0.91 92.69 0.92 95.23

Yanayacu River Basin 0.94 95.27 0.92 93.44 0.96 96.91

Pastaza River Basin 0.94 95.97 0.95 96.95 0.95 96.24
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From the modified confusion matrix, most image pixels were correctly classified,
except for the flooded grassland paramo in 2016 areas without vegetation cover in 2001
within the Jatunyacu River basin and the flooded grassland paramo in 2001 within the
Pastaza River basin. In the first case, the flooded grassland paramo was classified as
agricultural areas, probably because the software erroneously interpreted the amount of
irrigation water in the terrain instead of the flooding regime of the paramo. Something
similar occurred with the areas without vegetation cover identified by the software as
agricultural areas because the land used by farmers could have been left uncultivated
during that month in 2001. Regarding the other land covers, it is observed that the accuracy
of their classification is higher than 85%.
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3.1.2. Landscape Metrics and Indices

Over time, the magnitude of ecosystem modifications is measured through landscape
metrics and fragmentation indices. The mean patch size for each watershed is presented in
Figure 4.

In Figure 4a the forest patch size was more prominent in 2001. However, this does
not necessarily mean that there has been a growth in the area of this cover since, with the
help of the coverage map, it is observed that a significant number of clouds covered the
study area in 1991 and 2016, reducing the interpretation of the software concerning the
terrain in reality. Something similar occurs with the snow and grassland cover, which is
also affected in its visibility by the layer of clouds covering the area. In the case of water
bodies, the most extensive is the “Laguna de la Mica”, located in the northern part of the
basin on the slopes of snowy Antisana, progressively increasing its extension from 1991 to
2016. Concerning the coverages, the variation in patch size is narrow.

In the Yanayacu River basin it is observed that the flooded grassland paramo had
a high total class area/number of patches ratio in 1991, which decreased in 2001 and
increased slightly in 2016. This may be because initially, the extent of this cover is less
extensive. Still, there are few large patches, while in 2001 the volume increased and the
number of patches increased, decreasing the ratio. In addition, there is approximately the
same extent in 2016 as in 2001, but fewer patches. The other land covers have a similar
mean patch size in all years with proportional variations in the number and area of patches.

In the Pastaza River basin, the interference generated by clouds on the mean forest
patch size is slightly noticeable, mainly because its extension is similar in the three years.
Still, the number of patches varies, causing this parameter to go from one year to another.
Regarding snow, it was found that in 1991 the snow patches to a certain extent; in 2001, the
volume increased, and the patches decreased, but in 2016, the snow disappeared utterly.
The areas without vegetation covered several patches in 1991 to a more significant extent
causing a low value of mean patch, which increased in 2001 due to the decrease in the
number and area of patches, decreasing even more by 2016. These areas were replaced by
grassland paramo and forest cover. The other coverages show a slight variation concerning
this landscape metric.
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To more clearly and numerically evidence the changes that occurred in the three
watersheds associated with the PNL, the change ratio expressed in percentage and the land
cover expansion index were calculated for the two study periods (1991 to 2001 and 2001 to
2016), as listed in Tables 3–5.

The forest, grassland paramo, snow, and areas without vegetation cover increased
in the first period. In contrast, agricultural zones, water, and floodable grassland paramo
cover decreased (negative sign) by 2 to 6%. The growth of areas without vegetation cover
has been mostly isolated, i.e., patches of different sizes were formed in 2001 in sites utterly
separate from the continuous patches present in 1991. The growth of the forest has been
filling because the clouds in the center of the forest in 1991 were not present in 2001, leaving
the natural ground cover visible. The grassland paramo had a filler type of growth because
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there were areas of different surfaces surrounded by this cover that were modified to
grassland paramo. In the case of snow, it had an expansive type of growth; that is to say,
the area of increase in the cover was continuous concerning the extension that existed
initially. In the second period, only the agricultural areas increased their expansion with an
expansive type of growth, living; in 2016, new plots of crops continued to those existing in
2001. At the same time, the rest of the coverages decrease between (>) 0 to 12%.

Table 3. Rate of change and expansion index: Jatunyacu River Basin.

Period: 1991 to 2001

Classes RC (%)

Expansion Index (LEI)
km2/Year and Percentage

Infilling Edge-Expansive Outlying

Area without land cover 4.28 0.30
(10.28%)

1.11
(37.50%)

1.54
(52.22%)

Agricultural Use −6.51 0.32
(6.88%)

2.81
(59.74%)

1.57
(33.38%)

Water −2.85 0.00
(0.39%)

0.24
(64.72%)

0.13
(34.89%)

Wood 0.84 13.81
(72.93%)

4.92
(25.96%)

0.21
(1.11%)

Floodable grassland Paramo −3.33 1.29
(45.84%)

1.32
(46.95%)

0.20
(7.21%)

Grassland Paramo 1.29 10.57
(58.49%)

6.92
(38.32%)

0.58
(3.19%)

Snow 6.39 0.00
(0.24%)

0.55
(80.46%)

0.13
(19.29%)

Period: 2001 to 2016

Area without land cover −7.99 0.06
(14.94%)

0.26
(61.53%)

0.10
(23.54%)

Agricultural Use 8.26 0.55
(3.04%)

11.41
(63.22%)

6.09
(33.73%)

Water −4.59 0
(0%)

0
(100%)

0
(0%)

Wood −0.28 2.66
(35.93%)

3.59
(48.47%)

1.16
(15.59%)

Floodable grassland Paramo −7.44 0.15
(24.90%)

0.32
(52.52%)

0.14
(22.58%)

Grassland Paramo −2.48 2.86
(66.75%)

1.30
(30.34%)

0.12
(2.91%)

Snow −11.79 0.01
(1.24%)

0.64
(79.51%)

0.15
(19.25%)

For the Yanayacu river basin, the results presented in Table 4 were obtained.
In the first period, agricultural areas, forests, and moorland flooded grassland, and

anthropogenic zones increased between 1 and 10%. Water and grassland paramo decreased
between 1 and 4%. Agricultural areas and flooded grassland paramo had an expansive
type of growth. The forest and the anthropic regions had an isolated change. In the second
period, agricultural areas, water, and anthropic zones grew between 0.5 and 5%. All these
coverages presented an expansive type of growth. Forest cover and the two types of
grasslands decreased between 0.6 and 11%. For the Pastaza river basin, the results are
presented in Table 5.
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Table 4. Rate of change and expansion index: Yanayacu River Basin.

Period: 1991 to 2001

Classes RC (%)

Expansion Index (LEI)
km2/Year and Percentage

Infilling Edge-Expansive Outlying

Agricultural Use 1.48 0.87
(31.43%)

1.41
(50.82%)

0.49
(17.75%)

Water −1.51 0.0002
(7.96%)

0.0016
(75.30%)

0.0004
(16.73%)

Wood 10.55 0.04
(7.13%)

0.20
(39.45%)

0.27
(53.42%)

Floodable grassland Paramo 9.53 0.35
(8.13%)

2.88
(66.40%)

1.10
(25.46%)

Grassland Paramo −3.72 0.17
(45.88%)

0.15
(40.13%)

0.05
(14.00%)

Antropic Zones 1.43 0
(0%)

0
(0%)

1.63
(100%)

Period: 2001 to 2016

Agricultural Use 1.10 0.42
(14.05%)

2.23
(74.36%)

0.35
(11.59%)

Water 0.53 0.0015
(5.67%)

0.02
(92.74%)

0.0004
(1.59%)

Wood −10.79 0.0001
(1.67%)

0.0040
(55.72%)

0.0031
(42.61%)

Floodable grassland Paramo −2.65 0.13
(25.85%)

0.29
(59.08%)

0.07
(15.06%)

Grassland Paramo −0.60 0.82
(51.73%)

0.73
(45.61%)

0.04
(2.66%)

Antropic Zones 4.78 0.33
(25.32%)

0.61
(46.76%)

0.36
(27.93%)

In the first period, the forest, moor grassland, snow, and anthropic zones increased
their extension by 0.5 to 15%. The growth of the forest has been of the filling type, the
moor grassland and snow have been of the expansive type, and the anthropic zones of
the isolated type. On the other hand, the areas without vegetation cover, agricultural and
livestock areas, water, and flooded moor grassland decreased in size by 2 to 22%.

In the second period, agricultural areas, moorland flooded grassland, moorland
grassland, and the anthropic regions increased their extension by 0.3 to 4%. The growth of
the farming areas was expansive, the floodable grassland paramo and the anthropic zones
had an isolated type of growth, and the moorland grassland had an infill type of growth.
Areas without vegetation cover, water, and forest reduced in extent by 0.5 to 5%. Snow is
recorded as no data because the formulas cannot be applied for a cover with 0 km2 area
since this cover disappeared entirely from 2001 to 2016.

Finally, the Shannon Uniformity index was calculated, the results of which are pre-
sented in Figure 5.
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Table 5. Rate of change and expansion index: Pastaza river basin.

Period: 1991 to 2001

Classes RC (%)

Expansion Index (LEI)
km2/Year and Percentage

Infilling Edge-Expansive Outlying

Area without land cover −12.91 0.02
(21.02%)

0.08
(75.00%)

0.0042
(3.97%)

Agricultural Use −2.46 0.67
(20.30%)

1.70
(51.67%)

0.92
(28.03%)

Water −7.31 0.03
(2.60%)

0.64
(58.72%)

0.42
(38.68%)

Wood 1.47 10.08
(70.76%)

3.69
(25.92%)

0.47
(3.32%)

Floodable grassland Paramo −22.34 0.0001
(1.05%)

0.0008
(9.43%)

0.0076
(89.52%)

Grassland Paramo 0.70 1.35
(42.58%)

1.62
(51.05%)

0.20
(6.38%)

Snow 13.71 0
(0%)

0.21
(85.00%)

0.04
(15.00%)

Antropic Zones 1.51 0.03
(6.09%)

0.14
(33.09%)

0.27
(60.83%)

Period: 2001 to 2016

Area without land cover −0.66 0.0001
(0.04%)

0.03
(10.79%)

0.28
(89.17%)

Agricultural Use 1.81 0.87
(18.40%)

2.55
(53.96%)

1.31
(27.65%)

Water −5.08 0.01
(5.07%)

0.09
(33.96%)

0.17
(60.96%)

Wood −0.54 1.19
(56.11%)

0.84
(39.41%)

0.096
(4.48%)

Floodable grassland Paramo 2.18 0
(0.00%)

0
(0%)

0.0088
(100.00%)

Grassland Paramo 0.37 0.83
(45.14%)

0.69
(37.17%)

0.33
(17.69%)

Snow No Data No Data No Data No Data

Antropic Zones 3.76 0
(0%)

0
(0%)

0.75
(100.00%)
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According to the graph, the three watersheds show a uniform distribution of biodi-
versity since the SEI values are far from zero (0) and close to one (1). In addition, there
is a slight noticeable variation over time. The Yanayacu River basin has the highest SEI
values; therefore, its biodiversity is possibly high and more-evenly distributed than the
other basins.

3.1.3. Statistical Analysis

From the data on the number of patches present in each watershed, a statistical analysis
was applied to test for significant differences in the land covers of the three watersheds
associated with the PNL. Similarly, the standard deviation of patch size was used to
measure variability to find discrepancies between land covers within the study period
(1991 to 2016). Regarding the first question, the result was a frequency histogram (Figure 6)
showing many small-sized patches with a high frequency in the three watersheds that
make up the Llanganates National Park. This, in turn, is attributed to the fact that the
patches are homogeneously distributed throughout the study area.
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Based on the evident leftward bias in the frequency histogram of the number of
patches, the Kruskal–Wallis nonparametric test for independent samples was performed
with a significance level of 0.05. The trial resulted in a p-value of 0.001, which is less than
the significance level and allows us to interpret that there is a significant difference between
the ecosystems present in some of the three watersheds associated with the PNL.

After verifying the difference between the watersheds, a multiple-range test was
performed, finding that the Yanayacu River watershed has a significant difference from
the Jatunyacu River watershed, and that there is no significant difference concerning the
Pastaza River watershed. The differences between the basins are because each basin has
its extension and specific land covers, in addition to the fact that these are distributed
differently. Continuing with the second question, a histogram of frequencies of the patch
size standard deviation (PSSD) was made for each year of study in each of the watersheds.
The results are presented in Figure 7.

In Figure 7 the non-parametric Kruskal–Wallis multiple range test was applied, it
can be interpreted that during the study period, from 1991 to 2016, there is no significant
difference in patch size for the three watersheds, i.e., land covers do not vary significantly
over time.
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4. Discussion

The analysis of land cover changes using the map and landscape metrics showed that
these changes are insignificant. It is also worth mentioning that the most “abrupt” changes
within the three watersheds occur in most cases outside of the protected area boundaries.
For example, agricultural areas increased in all three watersheds due to the conversion of
forest land or land with shrub and herbaceous cover to agrarian land because of population
increase and the constant food demand that occurs in Ecuador and worldwide [1,58]. The
Jatunyacu River basin was in the northern sector, the Yanayacu River basin in the western
sector and the Pastaza River basin in the central~southern sector. However, there was a
slight increase in anthropogenic zones in the Yanayacu and Pastaza river basins, showing
the urban expansion in the region.

The dynamism of vegetation cover is typical of ecosystems and their volatility. A
study in China presents similar results to the present research: changes in land cover and
land use affect the entire territory, and the volatility of these changes overlap in specific
extensions of the protected areas of this country; this does not necessarily mean that there
is a deficiency in the ecosystem protection system of the protected areas, but rather that
they present a natural dynamism over the years [59].

There is also a similar trend in land cover change in different parts of the world: in the
Yellow River Basin (YRB), China, urbanized areas grew by 15 to 26% in a decade, compared
to the study area that grew by 1.4 to 4.8% per year. Moreover, forests in YRB and the study
area have varied dynamics over the decades, expanding and decreasing without a fixed
trend, grasslands decrease, and other natural areas such as water bodies and deserts (in
YRB) reduce and increase in a non-predictive way [60]. Similar results were also found in
South Africa [21] and Cambodia [52].

Another aspect of the land cover maps is the clear presence of dominant land covers,
such as the forest in the Jatunyacu and Pastaza River basins and the two types of paramo
grasslands in the Yanayacu River basin [61]. This factor is vital because the predominance
of one vegetation cover may indicate a low level of fragmentation in the study area [53].
In addition, a medium level of fragmentation can be attributed to the forest cover in the
Yanayacu River basin because its patches are small and isolated on most occasions, creating
the possibility that in the long term, this cover will disappear [62]. Something similar
occurs with the paramo-flooded grassland in the Pastaza River basin, which has tiny and
distant patches. A notable annotation is that the land covers in the three watersheds present
medium to large extensions and tend to be continuous, indirectly indicating that the edges
and shape of the patches are not complex, which helps to reduce the possible adverse
effects of localized fragmentation processes that could occur in the study area [62].

Since there is low or no fragmentation in the protected area, it is possible to intuit
the efficiency of protection and conservation of ecosystems and biodiversity at the local
scale, which is high. It is relevant that Andean ecosystems are being protected, as they
provide water and energy to specific populations, making it necessary to find strategies
(declaration of new protected areas in critical conservation sites) to reduce the impact of
human activities [12,29]. Landscape fragmentation implies the disruption of continuity,
connectivity, and ecological functionality, decreasing the ability of species to move to other
landscapes and endangering their survival [63]. On the contrary, in the study area, there
are continuous patches of large extensions, which ensure that connectivity is recovered,
except for the forest cover in the Yanayacu River basin and the flooded paramo grassland
in the Pastaza River basin.

From the post-classification phase, relatively good quality of the process was obtained,
which is vital. Currently, the accuracy of land cover classification processes has gained
importance in the field of climate change, significantly contributing to efforts to control and
mitigate this problem [3] The landscape metrics and calculated indices allowed observing
the study area’s spatiotemporal dynamics of land covers, noting that both natural and
anthropogenic factors cause a medium dynamism. However, the changes are insignificant
to the point of inducing landscape fragmentation processes. These parameters closely relate
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to ecosystem services’ quality, quantity, and distribution [25] Thus, ecosystem services in
the study area are not strongly affected as there is low or no degree of fragmentation in the
landscape and long and continuous habitats [63].

A study in Ghana recognized the potential adverse effects of soil changes on ecosystem
services. However, they also state that adopting sustainable agricultural practices is critical
to reducing soil degradation and meeting the food demand of the population [21] Therefore,
it is essential to exempt protected areas from these changes and adopt a land use planning
policy appropriate to the study region. It will fulfill two main objectives: the conservation
of ecosystems and the sustainable satisfaction of human needs.

Another relevant study was conducted in Ethiopia, where four possible scenarios of
LULC changes affecting ecosystem services were analyzed. The scenario related to ecosys-
tem protection and agricultural development suggests a sustainable integration between
these aspects. For this case, it was found that by 2051 the value of ecosystem services would
amount to 960.5 million USD, being one of the most efficient ways to apply as a governance
policy [58]. However, these land cover changes can also affect the water sources of a
watershed in aspects such as runoff, infiltration, and water quality at different scales [64]
For example, in the Yanayacu River basin, agricultural areas are advancing towards the
central zone of the bay, getting dangerously close to the largest and most important body
of water, the “Laguna de Pisayambo,” which could cause water contamination. Therefore,
sustainable management of the watershed concerning the direction of growth of this cover
is vital for conserving water quality.

These effects are also reported by Sugianto et al. 2022 [65] in their research on Sumatra
Island (Indonesia), where the analysis of LULC changes and their impact on the water
variables of percolation, infiltration, and groundwater recharge was carried out. These
effects occur because anthropogenic and natural activities can modify soil structure [66].
In contrast to the PNL watersheds, the Krueng Teunom watershed showed a high level of
degradation and significant changes in land covers, which led to the conclusion that vege-
tation plays a vital role in water discharge, as watersheds with little vegetation discharge
water quickly and suddenly, leading to flooding, the effect of which is enhanced by high
slopes [65].

Concerning Shannon’s Uniformity Index, biodiversity in the three watersheds is
homogeneously or uniformly distributed throughout the land they occupy. Being an
efficient, protected area, the values do not change significantly over time, thus contributing
to the conservation of biodiversity and ecosystems [67]. In the study by [59], USHAN values
in the range of 0.65 to 0.73 are obtained, interpreted as high biodiversity. Consequently, the
area of interest in this study, with values of 0.4 to 0.7, has medium to increased biodiversity,
with the Pastaza River Basin having the lowest biodiversity of the three studied.

Lastly, the analysis allows us to highlight the importance of watersheds for properly
managing protected areas. This contributes to maintaining ecological integrity, biodiversity,
and ecosystems [68,69]. Likewise, Ref. [70] mentions that the cost–benefit of repairing an
ecosystem is much higher than conserving it from the early stages, for which establishing
protected areas is fundamental. Saving the Ecuadorian Andes is accurate as it is a mega-
diverse country that suffered from deforestation and expansion of the agricultural frontier
in vulnerable regions such as the paramos [41]. However, the present is different due
to the study area selected still having the opportunity of being well managed; a study
carried out in three various PAs in Tehran Province, namely Lar National Park, Jajrud PA,
and TangehVashi National Natural Monument, has presented severe LULC changes and
uncontrolled development of human activities [71]. We can also compare it with some
studies carried out in such coastal ecosystems as Gorgan Bay and Gomishan Wetland,
known as unique ecosystems in the south-eastern part of the Caspian Sea. This study
demonstrated periodic changes in these ecosystems and the data over a period of 40 years,
also using Landsat satellite imagery from 1978–2018. MSS, TM, and OLI imagery along
with NDWI index. In general, remote sensing was an efficient tool for monitoring and
managing ecosystems [72].
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5. Conclusions

Once the level of fragmentation in the study area is almost zero or low, it can be
concluded that the protected area of Llanganates National Park is actively fulfilling its
mission, since the vegetation cover is maintained over time throughout the entire protected
area, leaving the most accentuated changes outside its limits, especially those related to
the increase in agricultural and livestock areas and anthropogenic zones. Since it is a
protected area, the LULC changes were insignificant in the 25 years of the study. However,
these have contributed to understanding the dynamism of natural and anthropogenic
factors in the PNL. However, strategies must be implemented to prevent agricultural and
urban expansion outside the PNL from entering the protected area and disrupting its
natural balance.

On the other hand, several factors can affect the conservation effectiveness of a pro-
tected area; constant control and monitoring are essential to preserving the ecosystems and
their biodiversity. It should be noted that it is necessary to include ecosystem services as a
secondary axis of conservation, considering that they are affected by LULC changes and
represent an opportunity to achieve sustainable management of watersheds and protected
areas. Currently, the accuracy of land cover classification processes has gained importance
in the field of climate change, significantly contributing to efforts to control and mitigate
this problem.

Lastly, the analysis allows us to highlight the importance of watersheds for properly
managing protected areas. Although this aspect contributes to maintaining ecological
integrity, biodiversity, and ecosystems, the cost–benefit of repairing an ecosystem is much
higher than conserving it from the early stages, for which establishing protected areas is
fundamental—in particular, saving the Ecuadorian Andes due to it being a mega-diverse
country, which for many years suffered from deforestation and expansion of the agricultural
frontier in vulnerable areas such as the paramos. For example, at the Yanayacu river basin,
agricultural areas are advancing towards the central zone of the basin, getting dangerously
close to the largest and most important body of water, “Laguna de Pisayambo,” which
could cause water contamination. Therefore, sustainable management of the watershed
concerning the direction of growth of this coverage is vital for conserving water quality.
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