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Abstract: Unplanned and rapid urban growth requires the reckless expansion of infrastructure in-
cluding water, sewage, energy, and transportation facilities, and thus causes environmental problems
such as deterioration of old towns, reduction of open spaces, and air pollution. To alleviate and
prevent such problems induced by urban growth, the accurate prediction and management of urban
expansion is crucial. In this context, this study aims at modeling and predicting urban expansion
in Seoul metropolitan area (SMA), Korea, using GIS and XAI techniques. To this end, we examined
the effects of land-cover, socio-economic, and environmental features in 2007 and 2019, within the
optimal radius from a certain raster cell. Then, this study combined the extreme gradient boosting
(XGBoost) model and Shapley additive explanations (SHAP) in analyzing urban expansion. The
findings of this study suggest urban growth is dominantly affected by land-cover characteristics,
followed by topographic attributes. In addition, the existence of water body and high ECVAM grades
tend to significantly reduce the possibility of urban expansion. The findings of this study are expected
to provide several policy implications in urban and environmental planning fields, particularly for
effective and sustainable management of lands.

Keywords: urban growth model; explainable artificial intelligence (XAI); extreme gradient boosting
(XGBoost); Shapley additive explanations (SHAP)

1. Introduction

Unplanned and rapid urban growth requires the reckless expansion of infrastructure
including water, sewage, energy and transportation facilities [1,2], and thus causes envi-
ronmental problems such as deterioration of old towns, reduction of open spaces, and air
pollution [3]. In addition, the transition from forests and agricultural areas to urbanized
areas can severely reduce the habitats and biodiversity of wild animals and plants [4]. To
alleviate and prevent such problems induced by urban growth, the accurate prediction and
management of urban expansion is crucial [5].

In this context, many researchers have conducted urban expansion modeling and
prediction studies over several decades. In the early stages, cellular automata (CA) were the
most representative methods used to predict urban expansion. The CA model focuses on the
simulation of spatial patterns of urban expansion rather than spatiotemporal interpretation.
However, it has been pointed out that this method cannot take into account socioeconomic
and demographic features in predicting urban growth [6,7]. To overcome this limitation,
researchers have utilized not only statistical methods including multiple [8,9] and logistic
regression [10,11], but also several machine learning (ML)-based techniques such as decision
trees [12,13], random forest [14], support vector machine [15,16], and neural network [17,18].
They predicted future urban growth of a given region or nation by learning urbanization
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patterns from the past to the present and examined the effects of physical and socio-
demographic characteristics on such urbanization [19].

This study proposes several research gaps from existing studies that dealt with the
modeling and prediction of urban growth, including both theoretical and methodological
aspects. First, the majority of existing studies have adopted the distances from each
object (e.g., land cover) as major influencing factors in urban growth modeling [20,21]. This
approach is intuitive, but is not suitable to reflect the areal and morphological characteristics
of various features in explaining urban expansion [22]. In addition, since the influence of
each object on urban expansion is not linear [23], it is necessary to define the optimal range
of spatial extent that can maximize the accuracy of urban expansion modeling.

Second, there have been limitations in accuracy and explanatory power in machine
learning methodologies used by previous works to predict urban expansion. White-box
approaches, including regression and decision tree models, exhibited easier to understand
outcomes of urban growth models, but sometimes the accuracy was not high enough to
utilize them in predicting urban expansion [24]. Black-box model approaches (including
Support Vector Machine (SVM) and Deep Neural Network (DNN)), on the other hand,
tend to have higher prediction accuracy—but it is very difficult to interpret how such
outcomes are derived [25,26]. To fully adopt AI techniques in urban expansion modeling,
the criteria and process of determining how AI made such a judgement should be verified.
To overcome this limitation, explainable artificial intelligence (XAI) has been highlighted in
recent studies [27]. The XAI is a methodology that strengthens the interpretive aspects of
machine learning algorithms so that humans can easily understand the model results [28].

This study aims at modeling and predicting urban expansion in Seoul metropolitan
area (SMA), Korea, using GIS and XAI techniques. To this end, we examine the effects of
land-cover, socio-economic, and environmental features within the optimal radius from a
certain raster cell. For the optimization, a multiple buffer analysis is performed and the
prediction accuracy of each urban expansion model is compared. Then, this study combines
the extreme gradient boosting (XGBoost) model and Shapley additive explanations (SHAP)
in analyzing urban expansion. The findings of the study are expected to provide several
policy implications in urban and environmental planning fields, particularly for effective
and sustainable management of lands.

In this paper, Section 2 describes the materials and methodology of the study. It covers
the explanations of dependent and independent variables, and details of XGBoost–SHAP
models. Section 3 provides training, validation, and test results for urban growth models
developed in the study. In addition, the urban expansion in Seoul metropolitan area in the
near future is predicted. Lastly, Section 5 discusses the findings of the study and concludes
with several recommendations for future studies.

2. Materials and Methods
2.1. Study Area

The Seoul Metropolitan Area (SMA), which includes Seoul, Incheon, and Gyeonggi-
do province, is the fifth largest metropolitan area in the world [29]. It is located in the
northwestern part of South Korea and occupies the Han River, which crosses the region
(Figure 1). As of 2020, the territorial area of SMA is about 12,685 km2, and its population is
approximately 26 million (60% of the national population) [30].

Throughout the region, the SMA has experienced unprecedented urban growth due
to explosive population inflows during the last decades [27]. Since the mid-2000s, more
than ten new towns were developed around Seoul city, and essential infrastructures such
as roads, energy, and water facilities were constructed to support them [31]. The direction
of urban growth in SMA has been skewed to the southwestern part, since the northern
and eastern parts of the region area dominantly covered by dense mountainous area [32].
Currently, the SMA consists of 64 administrative districts, where 25, 8, and 31 districts are
included in Seoul, Incheon, and Gyeonggi-do province, respectively [33].
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Figure 1. (a) Spatial extent and (b) land cover of study area (as of 2019).

2.2. Data

To develop the urban growth model in SMA, we constructed land-cover, topographic,
socio-economic, and environmental features of the region for 2007 and 2019, respectively.
Table 1 describes the dependent and independent variables used in the study.

Table 1. Description of variables used in the study.

Data Source (Year)

Dependent
Variable

Dummy variable for urbanization from 2007 to 2019
(0: Non-urbanized area, 1: Urbanized area)

Land Cover Map
(2007 and 2019)

Independent
Variable

Topographic features
Elevation (m) Digital Elevation Map

(2007 and 2019)Slope (◦)

Socio-economic features

Population density (person/km2)
SGIS and KOSIS
(2007 and 2019)GRDP per capita

(1,000,000 won/person)

Land-cover features
(within 50~1000 m

buffer radius)
Urban areas

Residential area (m2)

Land Cover Map
(2007 and 2019)

Commercial area (m2)

Industrial area (m2)
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Table 1. Cont.

Independent
Variable

Land-cover features
(within 50~1000 m

buffer radius)
Non-urban areas

Recreational area (m2)

Transportation area (m2)

Public facility (m2)

Rice paddy (m2)

Farmland (m2)

Facility cultivated area (m2)

Orchard (m2)

Other cultivated area (m2)

Broadleaf forest (m2)

Coniferous forest (m2)

Mixed stand forest (m2)

Natural grassland (m2)

Artificial grassland (m2)

Inland wetland (m2)

Coastal wetland (m2)

Natural bareland (m2)

Artificial bareland (m2)

Inland water (m2)

Ocean (m2)

Environmental features
Ecological ECVAM grade ECVAM

(2007 and 2019)Legislative ECVAM grade

2.2.1. Dependent Variable

The dependent variable was a dummy variable that indicated whether a certain raster
cell was urbanized or not from 2007 to 2019. In this study, ‘urban areas’ included residential,
commercial, and industrial areas on the land-cover map, and the rest were defined as ‘non-
urban areas’. When a certain region that was a non-urban area in 2007 changed to urban
area in 2019, we defined that the region was ‘urbanized’. On the other hand, a certain
region was considered as ‘non-urbanized’ when it remained a ‘non-urban area’ in both
2007 and 2019. We excluded raster cells that were already ‘urban areas’ in 2007 from study
samples, because they would not be either ‘urbanized’ or ‘non-urbanized’ in 2019. For
the analysis, this study extracted both ‘urbanized’ and ‘non-urbanized’ samples with the
random sampling method. To avoid spatial autocorrelation issues, the minimum distance
between each sample was selected as 50 m. Figure 2 illustrates the classification procedures
for urbanized and non-urbanized areas in the study.

2.2.2. Independent Variable

The urban growth of a city is affected by various factors. To model and predict urban
growth patterns, researchers have shown that urbanization was significantly associated
with the city’s land-cover [16,34], topographic [35], socio-economic [18,36], and environ-
mental [3] features.

The independent variables in this study consist of (1) land-cover, (2) topographic,
(3) socio-economic, and (4) environmental features. Land-cover and topographic features
were derived from remotely sensed and digitized data, and socio-economic and environ-
mental features were achieved from several national statistics databases. Figure 3 illustrates
the independent variables (as of 2019) used in the study.
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(e) GRDP per capita, (f) Ecological ECVAM, (g) Legislative ECVAM.

First, this study utilized a 10 m resolution of national land-cover maps to derive the
land-cover area within a radius from each raster cell. For 2007 and 2019, we calculated
the area of 22 land-cover types within 50 m to 500 m buffer distances, by 100 m unit, from
every single cell in SMA using ArcGIS software (ver. 10. 1). Second, this study achieved
the elevation and slope of each raster cell in SMA by using a 10 m resolution of digital
elevation map, which was provided by the National Spatial Data Infrastructure Portal
(NSDI, http://www.nsdi.go.kr, accessed on 1 December 2022).

Third, we adopted population density and gross regional domestic product (GRDP)
per capita as socio-economic features that affect urban growth patterns. These variables
were provided as polygon data by Statistical Geographic Information Service (SGIS, https://

http://www.nsdi.go.kr
https://sgis.kostat.go.kr
https://sgis.kostat.go.kr
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sgis.kostat.go.kr, accessed on 1 December 2022) and Korean Statistical Information Service
(KOSIS, https://kosis.kr, accessed on 1 December 2022). The spatial unit of population
density and GRDP per capita were census block group and county level, respectively. All
raster cells that pertained to a certain census boundary were assigned its corresponding
socio-economic values for 2007 and 2019.

Last, the Environment Conservation Value Assessment Map (ECVAM) was adopted
as the environmental feature. It is provided annually by the Ministry of Environment
(https://ecvam.neins.go.kr, accessed on 1 December 2022) and evaluates the environmental
conservation value of national land in Korea [37]. The ECVAM is divided into two types:
(1) the legislative and (2) ecological grade. Each grade is evaluated from grade 1 to 5, based
on various environmental aspects of the entire nation. If the ECVAM grade of a certain
region is close to 1, it means that the region has relatively high preservation value in terms
of the environmental aspect and thus has low possibility of urbanization [38].

2.3. Methods
2.3.1. Research Process

The overall research process of the study is illustrated in Figure 4. First, we classified
urbanized and non-urbanized areas from 2007 to 2019 and constructed an independent
variable that corresponds with each dependent variable. To test the sensitivity of buffer
distance on the model accuracy, all variables were calculated within 50 m to 1000 m radius
from each raster cell in SMA.
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Second, this study divided the dataset into training and testing parts, which account
for 70% and 30% of total samples, respectively. Using the training dataset, the urban growth
models were developed using XGBoost techniques. To optimize the model, several hyper-
parameters were tuned using the ‘Pycaret’ package in Python. This package automatically
adjusts many hyper-parameters when the number of folds is specified. We adopted a
five-fold cross validation method to tune the hyper-parameters. To test the validity of
the urban growth model, we utilized test dataset and predicted outcomes. Then, we
tested the sensitivity of the XGBoost model with respect to buffer distance from raster
cells and derived SHAP values for the optimal model. The SHAP analysis provides the
relative importance and direction of independent variables in determining the possibility
of urban growth.

Last, this study predicted the spatial patterns of SMA’s urban growth in 2031, based
on the constructed XGBoost model. While the process of urbanization is not linear, we use
the urban growth tendency of previous 12 years to predict next 12 years. To this end, the

https://sgis.kostat.go.kr
https://sgis.kostat.go.kr
https://kosis.kr
https://ecvam.neins.go.kr
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land-cover map in 2019 and surrounding land-cover, topographic, socio-economic, and
environmental features were adopted as predictors. Outcomes include the probability of
urban growth for every single raster cell in SMA, from 0 to 1.

2.3.2. XGBoost Model

The extreme gradient boosting (XGBoost) model is a decision tree-based algorithm
that sequentially combines a number of weak learners to build a strong learner [39] and
continuously reflects the residuals of the previous model into the next one to finally derive
the optimal tree model [40]. It is also one of the most commonly used algorithms for
solving problems with machine learning, and it is usually faster and more accurate than
gradient boosting machines (GBMs) due to its mechanisms to prevent overfitting through
regularization. Thanks to its high predictive accuracy and speed for both categorical and
continuous variables, researchers in various fields have utilized the XGBoost model to
predict their outcome which is also used in this paper [41].

The XGBoost algorithm consists of four main steps. First, the initialized tree model ŷi

for a given dataset {(xi, yi)}
N

i = 1
is defined as follows:

ŷi = argminγ ∑N
i=1 L(xi, γ) (1)

where argminγ indicates the constant value γ that minimizes the function, and L(y, F(x))
denotes a differentiable loss function of γ.

Second, for m number of iterations, the negative gradient of loss function gm(xi) is
calculated as:

gm(xi) = −
[

∂L(yi, f (xi))

∂ f (xi)

]
f= fm−1

(2)

Here, gm(xi) is a derivative of previous loss function fm−1(x).
Third, a base learner (or a weak learner) solves the optimization problem θm as:

θm = argminθ ∑N
i=1 L(yi, Fm−1(xi) + θt(x; µm)) (3)

where L(yi, Fm−1(xi) + θt(x; µm)) denotes the loss function on each node i.
Last, the tree model is repeatedly updated as below:

fm(x) = fm−1(x) + θmt(x; µm) (4)

Here, θm and t(x; µm) denote the learning rate and the selected node, respectively.

2.3.3. SHAP Values

To interpret the outcomes of AI-based models, several techniques including the local
interpretable model-agnostic explanations (LIME) and the Shapley additive explanations
(SHAP) were utilized [42]. While the LIME generates the surrogate model by randomly
modifying input data and provides explanations, the SHAP provides the predictive ability
of each variable [43,44]. Since the independent variables used in the study are diverse
and nonlinear [45], we examined the relative importance of each feature through the
SHAP model.

The Shapley Additive exPlanations (SHAP) is a methodology that provides explana-
tions of results derived from machine learning models [46]. The SHAP value represents
the average contribution of each attribute on predictor, by considering every possible
combination [47]. For group F{i}, the SHAP value φi assigned to each feature i is calculated
as below:

φi = ∑
S∈F{i}

|S|!(|F| − |S| − 1)!
|F|!

[
fS∪{i}

(
xS∪{i}

)
− fs(xs)

]
(5)
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where fS∪{i}(xS∪{i}) − fs(xs) represents the differences of contribution between when
feature i is used in the model or not.

3. Results
3.1. Descriptive Analysis

Table 2 summarizes the mean value of the independent variables of SMA in 2007
for areas which have been urbanized and non-urbanized by 2019. First, urbanized areas
showed higher population density and GRDP per capita compared to non-urbanized areas.
It seems reasonable in that densely populated areas with economic development are more
advantageous for urban growth [48,49]. In addition, non-urbanized areas were found to
have relatively higher elevation and slope than urbanized areas. This implies that harsh
topographic environment is one of the powerful obstacles to urban growth [50].

Table 2. Descriptive statistics.

Urbanized Non-Urbanized

Number of samples 187,906 227,338
Socio-economic features

(within 50 m buffer radius)
Population density (person/km2) 1274.89 232.40

GRDP per capita (1,000,000 won/person) 31.76 24.68
Topographic features

(within 50 m buffer radius)
Elevation (m) 69.85 199.93

Slope (◦) 6.13 17.15

Land-cover
features

(within a 50 m
buffer radius)

Urban areas
Residential area (m2) 6703.92 1007.55
Commercial area (m2) 1828.96 281.35

Industrial area (m2) 928.06 121.83

Non-urban areas

Recreational area (m2) 85.30 44.95
Transportation area (m2) 3451.60 639.87

Public facility (m2) 1062.93 443.57
Rice paddy (m2) 34,875.41 24,232.09
Farmland (m2) 36,507.37 6652.93

Facility cultivated area (m2) 1123.34 202.86
Orchard (m2) 2730.18 722.37

Other cultivated area (m2) 5443.78 453.72
Broadleaf forest (m2) 6370.02 49,135.73

Coniferous forest (m2) 12,857.34 38,601.25
Mixed stand forest (m2) 8023.05 23,830.90
Natural grassland (m2) 1128.68 771.91
Artificial grassland (m2) 594.87 151.98

Inland wetland (m2) 1242.11 901.35
Coastal wetland (m2) 1505.63 1509.19
Natural bareland (m2) 60.29 24.00
Artificial bareland (m2) 11,949.39 1485.91

Inland water (m2) 2890.11 6484.35
Ocean (m2) 319.54 299.99

Environmental features
(within 50 m buffer radius)

Ecological ECVAM grade 3.82 2.25
Legislative ECVAM grade 3.28 2.35

In terms of land-cover features, areas that were urbanized from 2007 to 2019 showed
higher residential, commercial, and industrial area with respect to those that were not ur-
banized. In addition, urbanized areas have relatively high agricultural, grassland, wetland,
and bareland area, but low forest and water area compared to non-urbanized areas. The
results suggest that urban growth is more prevalent in areas that are likely to be developed
near urban areas [51,52]. Last, urbanized areas showed higher ECVAM grade for both
ecological and legislative perspectives compared to non-urbanized areas. Since a higher
ECVAM grade indicates lower environmental and ecological conservation value, the results
imply that urban development is more active in areas with less legal regulations [53].

Figure 5 illustrates the spatial distribution of urban and non-urban areas in 2007 and
2019, as well as the urbanization from 2007 to 2019 in SMA. Over the 12 years, urban areas
spread around Seoul city, particularly toward western and southern directions. This reflects
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the spatial distribution of the new towns that were developed to alleviate the housing
problems in Seoul city from mid-2000s [32].
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3.2. Model Results
3.2.1. Hyper-Parameter Tuning

The hyper-parameters of the XGBoost model are summarized in Table 3. The optimal
hyper-parameters vary as the buffer radius from each raster cell changes. However, Table 4
shows the hyper-parameter tuning results when a 50m buffer radius was adopted as a
representative value. For the number of iterations, the model repeated 280 times to derive
an optimized decision tree. In this model, the maximum depth of the decision tree is
designated as 11, which indicates the level of complexity of a tree [54]. The ratio of the
training dataset was 0.7, and the learning rate from the previous tree model was tuned to
0.2. The higher the learning rate is set, the more conservative the overall boosting process
becomes [55]. In addition, the ‘Alpha’, ‘Lambda’, and ‘Gamma’ value of the XGBoost model
was 1, 0, and 0, respectively, which controls the conservative level of the decision tree [56].

Table 3. Hyper-parameter tuning (XGBoost model with 50 m buffer radius).

Parameters Values

Number of iterations 280
Max depth 11

Subsample ratio 0.7
Learning rate 0.2

Colsample_bytree 0.9
Alpha 1

Lambda 0
Gamma 0
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Table 4. Confusion matrix.

Predicted Value

TRUE FALSE

Actual value
TRUE TP FN
FALSE FP TN

3.2.2. Sensitivity Testing

Using the tuned hyper-parameters, we developed several urban growth models,
by differentiating buffer radius from 50 m to 1000 m. To test the sensitivity of model
accuracy, we calculated four accuracy metrics: accuracy, precision, recall, and F-1 score
(Figure 6). Based on the confusion matrix (Table 4), each accuracy metrics can be calculated
as the following:

Accuracy =
(TN + TP)

(TN + FP + FN + TP)
(6)

Precision =
TP

(FP + TP)
(7)

Recall =
TP

(FN + TP)
(8)

F1 score = 2× (Precision× Recall)
(Precision + Recall)

(9)
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Overall, the prediction accuracy of the XGBoost model was higher than 75% regardless
of buffer radius. The highest model accuracy was from approximately 90% to 95%, when a
50 m buffer from each raster cell was utilized as the independent variables. It is noteworthy
that as the buffer radius from each raster cell increased, the overall accuracy of urban growth
prediction decreased. This finding suggests that urban expansion is greatly influenced by
the physical and socio-economic characteristics of immediate vicinity, rather than those of
longer distances [57].
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3.2.3. Factor Importance (SHAP)

Based on the XGBoost model developed in the study, we calculated SHAP values
for each independent variable (Figure 7). Figure 7a illustrates the relative importance of
variables, and Figure 7b shows the direction of variables in determining whether a certain
area is being urbanized or not. The red- and blue-colored points indicate the high and low
values of a certain variable, respectively, and the distribution of these points in the SHAP
interval indicate the direction in which a variable contributes to the prediction [45].
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First, agricultural areas including farm and rice paddy were the most influential factors
of urban growth, followed by slope. This is line with previous studies’ findings that flat
and wide lands, such as agricultural areas, are more likely to be further developed [58]. In
a similar vein, bareland and artificial grasslands were also found to be promoting factors
of urbanization.

Second, developed areas including residential, transportation, and industrial areas
within a 50 m buffer radius were positively associated with urban expansion. The inland
water, however, showed more diverse impacts on whether a certain raster cell is urbanized
or not. This implies that urban growth tends to occur near urbanized areas, while the
existence of water may affect the level of urbanization [49]. Furthermore, the probabil-
ity of urban growth of a certain raster cell was found to be negatively associated with
the surrounding slope and elevation levels. It is not surprising that harsh topographic
environment is one of the obvious obstacles in urban development [27].

Third, the socio-economic attributes including GRDP per capita and population den-
sity showed no significant effects on urban growth. The ecological and legislative ECVAM
grades, on the other hand, showed slightly positive associations with urbanization. These
findings suggest that urban growth is more dependent on land-use regulations than its
economic and social driving factors [59].

3.3. Urban Growth Prediction in SMA

By applying the urban growth model of SMA from 2007 to 2019, we constructed the
prediction map of urban growth in 2031 (Figure 8). The dependent variable of the urban
growth model was whether a certain raster cell is urbanized or not from 2007 to 2019. In
this kind of binary decision tree-based model, the predicted outcome is a number between
0 (non-urbanized at all) to 1 (100% sure of urbanization). The red-colored raster cells
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indicate areas that were already urbanized in 2019, and the others indicate the probability
of urbanization in SMA.
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For 95% and 90% probability, the predicted areas of urbanization in 2031 were
2514.14 km2 and 4651.07 km2, which accounts for 21.5% and 39.8% of the total areas
in SMA, respectively. Considering that the proportion of urban areas in 2019 was only
4.7% of the total, our results suggest that future urban expansion may take place faster
than before.

One of the noticeable points in the urban expansion map is that the southern part
of SMA showed relatively high probability compared to northern and eastern parts of
the region. It corresponds to the study’s model results in that the majority of agricultural
areas are currently distributed in the southern region (See Figure 1). In a similar vein,
the northeastern part of the SMA dominantly consists of mountainous areas with high
elevation and slope, and thus showed low probability of urbanization.

In addition, the probability of urban growth in 2031 seems to be spatially correlated
with existing built-up areas in 2019, particularly for the distribution of urban sprawl area.
It seems mainly due to the fact that that dense urban centers do not have enough land to be
urbanized, but as they go to the outer areas, more developable areas such as farmlands and
barelands are distributed around them [20].

4. Discussion

Urban growth is complex process in that various factors including physical, socio-
economic, and political characteristics may affect the spatiotemporal changes of a city’s
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land-use patterns [60]. For this reason, analyzing and predicting the urban expansion
has long been an area of interest in urban and environmental planning fields. However,
from both methodological and theoretical perspectives, the existing literature had several
limitations that required improvement.

In this context, the study takes a step forward in modeling urban growth in several
aspects. First, the study adopted the XAI modeling techniques in examining and predicting
urban expansion in SMA. More specifically, we integrated the XGBoost model and SHAP
interpretations to interpret the relative importance and direction of various influencing
factors on urban growth. It enabled the determination of the priorities in understanding
the spatial patterns of urbanization, which had not been fully investigated in black-box
models from previous literatures [61]. Furthermore, by utilizing the urban growth model
developed in the study, we constructed a 10 m resolution map of urban growth prediction
in 2031.

In addition, we compared several urban growth models with different buffer distances
from raster cells, and the results showed that the overall accuracy of urban growth predic-
tion is maximized (93%) when the physical and socio-economic attributes within a 50 m
radius were used as predictors. When we developed additional urban growth models
for a 10 m and 30 m radius, the prediction accuracy was 86% and 89%, respectively. This
suggests that the effects of independent variables’ spatial extents are not linearly associated
with urban growth, and thus the optimal influencing distances need to be evaluated in
prior to developing urban growth models.

From a theoretical perspective, the present study is novel in that it took into account
land-cover, topographic, environmental, and socio-economic attributes in predicting urban
growth patterns. The findings showed that urban growth was promoted when a certain
area was close to agricultural and bareland areas with gentle elevation and slope. In
addition, the existence of water body and high ECVAM grades tended to significantly
reduce the possibility of urban expansion. It is noteworthy that both ecological and
legislative regulations on land use were found to be significant factors in urban growth
prediction. This suggests that the spatial patterns of urban expansion can be effectively
controlled through institutional interventions [62].

Based on the study’s findings, several policy implications in urban and environmental
planning fields can be suggested. First, planners and practitioners in a given city (or nation)
need to analyze the urban growth patterns and predict the spatial distributions of future
urban areas. Such a prediction map of urban growth can help to estimate how cities will
expand, and thus establish long-term strategies to prepare and mitigate problems [63]. Sec-
ond, to control excessive urbanization and its spatial imbalance, the appropriate ecological
and legislative restrictions on land-use development can be utilized. In order to apply such
legal measures more effectively, the direction of policy measures need to be focused on
public interest, such as designating national lands as a development restricted zone, rather
than for individual benefit [64].

Third, the findings of the study showed that agricultural and forest areas that adjacent
to built-up areas tended to be further urbanized. However, such tendency of urbanization
may affect ecological systems within the city, such as a reduction of wildlife habitat and
diversity [65]. In developing short- and long-term plans for urban growth, planners should
consider not only its impact on humans, but also other species for sustainable urban
development. Last, the application of XAI techniques can contribute to the development of
both precise and interpretable urban growth models. The utility of XAI models is likely
to increase in urban and environmental planning fields as it effectively supplemented the
black-box features of AI, which has been one of the biggest obstacles.

5. Conclusions

This study developed an urban growth model in SMA, Korea by integrating XGBoost
and SHAP models, and predicted future urban growth patterns in 2031. Results showed that
urban growth is dominantly affected by land-cover characteristics, followed by topographic
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and legal regulations. Based on these results, we suggested several policy measures that
can be utilized in establishing and managing the sustainable urban development.

Despite the study’s contribution in modeling and predicting urban growth, there is
still some room for improvement in future research. First, as the study constructed the
urban growth model by utilizing two cross-sectional attributes in 2007 and 2019, the process
of urbanization during this period has not been fully reflected in the model. To overcome
this in future studies, it will be necessary to construct a more precise urban growth model
by collecting and analyzing time-series datasets regarding urbanization.

Second, the XGBoost–SHAP model used in this study does not guarantee the optimal
prediction of urban growth among various XAI techniques. It is required to compare the
accuracy of urban growth models by utilizing algorithms such as automated machine
learning (AutoML). Thus, the prediction of urbanization can be further improved in future
research [66].

Last, the effects of urban decline on the distribution of urban areas in future were not
fully considered in this study. In South Korea, for example, urban decline was recently
highlighted as one of the most urgent issues in urban planning fields [67]. While this study
predicted urban growth in 2031 by reflecting the trends from 2007 to 2019, future works
should also fully consider reduction in urban areas due to population decrease.
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