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Abstract: Nitrate is one of the most complicated forms of nitrogen found in aquatic surface systems,
which results in the eutrophication of the water. During the last few decades, due to agriculture and
animal husbandry activities, as well as urban development, a significant amount of pollutants have
accumulated in the Jajrood river in northern Iran. In this research, we simulated nitrate load in a
rural watershed to assess the outlet stream’s qualitative status and evaluate the influence of best
management practices (BMPs). To accomplish this, we prepared, processed, and integrated different
datasets, including land-use land-cover (LULC) maps, physiographic layers, and hydrological and
agricultural datasets. In the modeling section, the Soil and Water Assessment Tool (SWAT) was used
to simulate nitrate load over 28 years (1991–2019). Additionally, the multi-objective optimization
algorithm (MOPSO) was implemented to reduce the intended objective functions, including the
number of best management practices and the nitrate concentration considering different scenarios.
The calibration of the basin’s discharge and nitrate indicated that the SWAT model performed well in
simulating the catchment’s streamflow (R2 = 0.71) and nitrate (R2 = 0.69). The recommended BMPs
for reducing nutrient discharge from the basin are using vegetated filter strips on river banks and
fertilizer reduction in agricultural activities. According to the results from this investigation, the
integrated model demonstrates a strong ability to optimally determine the type, size, and location
of BMPs in the watershed as long as the reduction criteria change. In a situation of water scarcity,
the studies reported here could provide useful information for policymakers and planners to define
water conservation policies and strategies.

Keywords: water nitrate pollution; SWAT; best management practices (BMPs); multi-objective
optimization algorithm (MOPSO)

1. Introduction

Rivers are the primary source of water for human activities [1,2]. Additionally, they
provide a crucial ecosystem of services such as food production [3,4], carbon storage [5,6],
flood protection [7,8], and the preparation of spaces for recreation and transportation [9].
In the last few decades, due to the increase in water pollution caused by point (e.g., sewage
treatment plants and factories) and non-point (e.g., agricultural and animal feedlot runoff)
pollutants, water quality has become an important global concern [10,11]. Additionally,
water monitoring and management practices are more important than ever due to the
current situation of climate change and the expected increase in the intensity and fre-
quency of related events, including droughts [12–14], floods [15,16], landslides [17,18], soil
erosion [19,20], and water scarcity [21,22].

Optimal water management and conservation strategies, including water quality
monitoring and improvement, require adopting effective practices [23–25]. In this regard,
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the implementation of best management practices (BMPs) is the main component of hy-
drological pollution monitoring and management [26,27]. For this purpose, an integrated
modeling framework can be employed as a simulation optimization model to find optimal
solutions [28,29]. Structural or non-structural agricultural BMPs are usually employed to
reduce nitrate in vulnerable areas of the watershed, such as vegetated filter strips [30,31],
contour farming [32,33], nutrient management [34,35], cover crops [36,37], tile [26,38], no-
tillage [39,40], irrigation management [41,42], and grade stabilization structures [43,44]. To
identify the BMPs, investigate their efficiency, and find out the best combination of them,
well-organized and real-time studies are necessary to simulate the results and provide a set
of scientific recommendations.

A number of modeling and optimization approaches based on a variety of tools, data
sets, and practices have been studied in this context. In the modeling part, the integration
of watershed or river basin-scale models with optimization algorithms, such as the genetic
algorithm [45], multi-objective Non-dominated Archiving Ant Colony Optimization (NA-
ACO) algorithm [46], Bayesian Networks (BNs) [47], and Multi-Objective Particle Swarm
Optimization (MOPSO) [48], is the main methodology. For example, Zhang et al. [49]
compared five optimization algorithms, including genetic algorithms, a modified complex
mixed method, particle swarm optimization, differential transformation, and an artificial
defense system, and used the SWAT tool as a hydrological model. The results showed that
the particle swarm optimization algorithm outperformed the other models and could be
integrated efficiently into the SWAT model. Aalami et al. [50] utilized the SWAT and reser-
voir water quality simulation (CE-QUAL-W2) models coupled with a MOPSO algorithm
and used the ensemble model for the simulation. In another study, Taghizade et al. [51]
used a MOPSO multi-objective optimization algorithm and the Storm Water Management
Model (SWMM) to minimize quantitative objective functions. In terms of BMPs, different
practices based on various scenarios have been considered. For example, in the study by
López-Ballesteros et al. [52], the effectiveness of agricultural and combined BMPs (contour
planting, filter strips, reforestation, fertilizer application, and check dam restoration) was
assessed for the reduction of sediment and nutrients in the Segura River basin, Spain. In
another study by Himanshu et al. [53], using a hydrological model (SWAT) in the Marvel
watershed in India, evaluated and recommended BMPs (contour farming and filter strips)
to control watershed degradation. Another study by Liu et al. [54] developed a long-term
BMP (vegetated filter strips) optimization method (LBMP-OM), which was tested in the
Daning watershed, China, to recommend BMP maintenance and replacement strategies.
Several datasets, viz., remotely sensed [55–57], hydro-meteorological [58,59], agricultural,
and ones for other human activities such as urbanization [60,61] are used widely. An
exhaustive review of the literature shows that identifying BMPs is a rather complex process,
which requires real-time and precise information about the pollutant sources, activities,
hydrologic process, and landscapes. Additionally, the resulting BMPs are specific to time
and place and the different roles they played in different regions.

Iran is a country in a severe water crisis and is regularly facing water quality issues
under the combined pressure of urbanization [62], agricultural activities [63], population
growth [64,65], fuel spillages [11], deforestation [66,67], and much more. The Latian dam is
one of the most critical and important water reservoirs in Iran, which supplies the main part
of the total water needs of Tehran. The streamflow is transferred to the reservoir by various
branch streams, especially to the Jajrood river. In recent decades, the nitrate concentration
in the Jajrood river has enhanced substantially due to poor management strategies, the
excessive use of fertilizers in agricultural production, urban development, and tourism
activities [68]. Considering the importance of the region, some previous studies have been
carried out on the Jajrood river and its watersheds to investigate the point and non-point
pollutants and their effects on water quality. Additionally, previous studies reported that
nitrate pollution is one of the leading causes of eutrophication in water reserves [69,70].
From previous studies, it is now clear that a significant amount of pollutants contaminate
the Jajrood River, and management practices must be implemented immediately to prevent
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further water pollution. However, the evaluation of different management scenarios and
the identification of BMPs are not well studied as of yet.

The literature review for this study demonstrated that the application of the SWAT to
simulate the impacts of BMPs on water quality urgently requires the attention of researchers.
Therefore, a semi-distributed hydrological model and the SWAT were integrated into the
MOPSO algorithm to identify the optimal BMPs for the Jajrood watershed. The main
objective of this study is to identify the most effective and practical management practices
to prevent pollution and improve water quality using a strategic combination of the SWAT
tool and the MOPSO algorithm. This study was conceived with the following objectives
considering the Jajrood watershed as the study area:

1. Develop a hydrological model for the simulation of streamflow and nitrate loading;
2. Evaluate the effects of different combinations of BMPs on nitrogen load reduction;
3. Explore the optimal combinations of BMPs and the best set of decisions that can

control the water quality of the Jajrood river.

2. Materials and Methods
2.1. Study Area

This study was executed in the Jajrood watershed (approximately 710 km2) of the
upper Latian dam in Northeast Tehran, Iran. It is located between a longitude of 51◦22′ and
51◦55′ E and a latitude of 35◦45′ and 36◦50′ N (Figure 1). The Jajrood river originates in
the Kholeno mountains at the height of the central Alborz mountain range at an elevation
of 4375 m. The slope of the Jajrood river from the beginning to the Latian dam is 19.8%,
its average slope is 20.2%, and the length of its main branch is 40 km [71,72]. Piezometric
explorations prove that the Jajrood basin has some minor aquifers of the suspended type in
the central and southern parts of the basin. In the lower southern regions, the aquifer is
divided into basins separated by a clay layer [71].
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Figure 1. The geographical location of the Jajrood river watershed.

Meteorological observations from 1991 to 2019 (Firuzkuh Station: Lat. 35◦50′ N;
Long 52◦50′ E; 1975.6 m a.s.l (Height above mean sea level)) characterized the mean
annual precipitation and mean annual temperature to be around 650 mm and 15 ◦C,
respectively [73,74]. This study area is shared by the three cities (Lavasan, Roodak, and
Fasham) and 34 villages with a total population of around 52,000 (Iran Population and
Housing Census 2016). According to the De Martonne climate classification, the climate
of the study area is cold and semi-arid. The climograph of the studied area is shown in
Figure 2. Climatology studies show that the air masses in the region are Mediterranean
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from the west and arctic from the north and northwest in the winter, and in the summer,
tropical air flows from the Iranian desert and northwest currents flow from Central Europe.
The study area’s landscape is composed of a variety of LULC classes, including build-up
areas, grasslands, rainfed and irrigated farmlands, and barren lands.
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2.2. Research Methodology

The research methodology consisted of a number of tasks, including data collection
and preprocessing, simulating the catchment’s streamflow and nitrate load based on the
SWAT model, model calibration and validation using SWAT-CUP, BMP application and
evaluation, and BMP optimization (see Figure 3).
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2.3. SWAT Model and Input Dataset

The soil and water assessment tool is a comprehensive, continuous, physically based,
semi-distributed, and data-intensive model that estimates streamflow, sediments, and
chemical pollutants on a daily time scale basis and simulates the effects of BMPs [75–78].
This model divides each watershed into sub-basins and hydrological response units (HRUs)
based on the digital elevation model, LULC, and soil layers. HRUs are a part of the sub-
basin with unique land use, management, and soil characteristics. In our research study
area, 25 sub-basins and 823 HRUs were created.

In this study, the Shuttle Radar Topography Mission (SRTM 1 Arc-Second Global)
elevation data with a resolution of 1 arc-second (30 m) was used to consider the elevation
and slope information (see Figure 1). A soil map with a scale of 1:250,000 was procured
from the Geological Survey and Mineral Exploration of Iran (Figure 3). For the LULC map-
ping, we used the capabilities of the Google Earth Engine (GEE) cloud computing platform
and Sentinel-2 (S2) spectral and temporal metrics. Accurate and precise LULC mapping
requires a sufficient number of training and validation samples that can be collected during
in situ measurement or from very high-resolution (VHR) satellite images. Therefore, as
a first step, we used VHR satellite imagery in Google Earth (GE) and visual inspection
to collect a sufficient number of training and validation samples. Following that, to pro-
duce the LULC map, the GEE cloud computing platform was used to generate S2 image
collections, and conduct preprocessing, feature extraction, classification, and accuracy as-
sessment. To accomplish this, the S2 surface reflectance products (“COPERNICUS/S2_SR”)
between 1 April to 30 September (during the growing season) with a cloud cover of less
than 30% were used (number of images = 27). Furthermore, in addition to spectral bands,
we calculated vegetation indices, including SAVI (Soil Adjusted Vegetation Index), NDVI
(Normalized Difference Vegetation Index), GNDVI (Green Normalized Difference Vege-
tation Index), and DVI (Difference Vegetation Index). Finally, using the spectral bands
and vegetation indices, spectral and temporal metrics were generated based on statistic
roles, including median, standard deviation, minimum, maximum, and 25th, 50th, and
75th percentiles [79,80]. For the LULC classification, we used the above-mentioned samples
(70% of all samples) and the S2 spectral–temporal features (98 STMs) to train the random
forest (RF) model. The accuracy assessment results (with 30% of samples) confirmed that
further analysis could be conducted based on the produced LULC map (Table A3). The
LULC and soil maps used are shown in Figure 4.
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The meteorological parameters (daily precipitation, temperature, and relative humid-
ity) from 8 different gauge stations were obtained from the Iran Meteorological Organization
for a 28-year period (1991–2019). In addition, daily streamflow (1991–2019) and nitrate
concentration (2014–2016) data were also collected at the Roodak gauging station of the
Iran Water Resource Management Company. Additionally, management data (i.e., fertil-
izer application, irrigation, etc.) and point sources of pollution from towns, villages, and
tourism populations were procured from the agriculture organization of Tehran province.
The input of the management information in the model, including planting, irrigation,
harvesting, tillage, fertilizer, and manure, is shown in Table 1. Additionally, the livestock
which traditionally grazes in pastures, fallow lands, and forests were included. Assuming
the weight and amount of waste produced, multiplying it by the number of livestock
and taking into account the area of pastures and forests in the basin, which is equal to
61,108 hectares, the waste produced from each cow, sheep, and goat was calculated to be
1.54, 1.72 and 0.21 kg/day/ha, respectively.

Table 1. Management data and standard fertilizer application in the Jajrood river watershed.

Crop Plant Harvest Tillage Irrigation
(mm)

Fertilizers (kg/ha)

Manure K P N

Apple 21 March 22 September to
21 November - 1006 25,000 170–230 150 200

Cherry 21 March 22 May to 21
August - 1006 25,000 120 70 80

Apricot 16 March to 25
March 6 August - 700–1000 25,000 180–200 50 80

Peach 16 March to 25
March 22 September - 360 25,000 170–230 20–50 150–200

Spring wheat 7 October to 21
November 21 June to 21 July Disk 264 15,000 100 100 200

Winter wheat 23 September to 21
November 5 June to 21 July Disk - 15,000 100 100 200

Spring barley 7 October to 21
November

21 May to 21
June Disk 204 15,000 100 100 200

Winter barley 23 September to 21
November 5 June to 21 July Disk - 15,000 100 100 200

Alfalfa 3 April to 21 May 5 June to 6
December Disk 967 25,000 500 100 100

Tomato 5 May to 21 June 22 August to 22
October Disk 854 10,000 100 100 100

Cucumber 22 April to 5 June 22 June to 6 July Disk 202 25,000 370–400 170–200 350–400

Potato 21 March to 21 April 22 June to 22
October Disk 742–803 35,000 50–100 90–130 180–200

Sensitivity Analysis of Model Parameters, Calibration, and Validation

The sensitivity analysis of several parameters was performed to check their impact on
the desired outputs of the model. This analysis was conducted with SWAT-CUP software
(SWAT calibration and Uncertainty Procedures) and the SUFI-2 (Sequential Uncertainty
Fitting version 2) algorithm. In the sensitivity analysis, t-stat and p-value are calculated
for each parameter to show the sensitivity and importance of one parameter compared to
other parameters. Based on this analysis, 10 parameters affecting flow rate (Table 2) and
5 parameters affecting nitrate (Table 3) were determined. These parameters are described
in Tables A1 and A2.
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Table 2. Streamflow-sensitive parameters in the study area.

Sensitive
Parameter Min Value Max Value Fitted Value t-Stat p-Value

CN2 25 90 65 1.436597 0.246872971
TLAPS −10 10 9.5 21.64841 0

SNOCOVMX 0 500 305 −1.22826 0.632632198
SFTMP −5 5 4.87 −0.39213 0.695139901

ALPHA_BF −0.03 0.42 0.21 −2.12301 0.045010265
ESCO 0 1 0.33 −1.82773 0.064480029
TIMP 0 1 0.98 9.2514896 0.0014584

SURLAG 1 24 9 2.516264 0.004710358
GW_DELAY 0 500 169 16.4289 0
SLSUBBSN 10 150 21 −1.35082 0.025778202

Table 3. Nitrate-sensitive parameters in the study area.

Sensitive
Parameter Min Value Max Value Fitted Value t-Stat p-Value

ERORGN 0 5 1.2 8.0254612 0.00575489
NPERCO 0 1 0.15 −1.055649 0.01626484

RCN 0 15 2.5 15.6549056 0
BC3_BSN 0.02 0.04 0.038 −0.953108 0.25848901
BC2_BSN 0.2 2 1 −0.5219501 0.7619523

After selecting the sensitivity parameters, the initial stage is the calibration and valida-
tion of the streamflow. The model was calibrated and validated for eight hydrometric gauge
stations in the Jajrood watershed with monthly observed streamflow data and plotted for
the model’s qualitative performance evaluation. Monthly streamflow data from these
stations were calibrated using data from 1991 to 2011 and validated from 2012 to 2019.
After calibrating the streamflow, the calibration and validation of nitrate were performed
from 2014 to 2015 and 2015 to 2016, respectively.

The performance of the SWAT model was evaluated based on NSE (Nash–Sutcliffe
efficiency) and R2 statistical indices for streamflow and nitrate simulation [81–83]. One of
the main drawbacks of R2 is that it quantifies dispersion when considered alone [84]. The
Nash–Sutcliffe coefficient has been utilized to evaluate the performance of hydrological
models to eliminate these limitations related to using the correlation coefficient. These
coefficients are defined as [85]:

R2 =

 ∑n
i=1
(
Qi −Q

)(
Pi − P

)√
∑n

i=1
(
Qi −Q

)2
√

∑n
i=1
(

Pi − P
)2

2

(1)

NSE = 1− ∑n
i=1(Qi − Pi)

∑n
i=1
(
Qi −Q

) (2)

where Qi and Pi are observed and simulated data, respectively, and Q and P are observed
and simulated means, respectively. The model performance is considered accurate for a
range of NSE of >0.75 [86,87], while model performance is deemed acceptable for a range
of 0.36 < NSE < 0.75 [85,88].

2.4. Evaluating the Performance of BMPs

Best management practices (BMPs) provide activities to reduce the pollution of surface
and groundwater discharges from agricultural lands [89–91]. The current research focuses
on the investigation of the experimental studies on the effects of BMP efficiency on hy-
drology and water quality, including the short-term efficiencies of BMPs [92,93], long-term
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performances of BMPs [94,95], the performance of BMPs over time taking into account
maintenance activities [96], management innovations in quantitative and qualitative water
issues [97,98], and existing BMP productivity data. According to the region’s conditions,
three management practices were applied in this study: fertilizer management, irrigation
management, and vegetated filter strips.

2.4.1. Fertilizer Management

Proper nutrient management is essential to help maintain adequate nutrients for crops
in the field and off the production line [31,99]. Farmers must choose the best management
practices for their crops and land to maximize nutrient productivity and protect water
quality [100,101]. Considering the existence of farms and orchards in the Jajrood watershed
and the studies conducted, it is necessary to evaluate the effects of fertilization on river
water quality. Nitrogen fertilizer was reduced by 25, 50, and 75% after applying fertilization
management in the study area. Manure fertilizer was decreased by 50% in all these
scenarios, and its effect was evaluated.

2.4.2. Vegetated Filter Strips

Vegetated filter strips are designed to reduce the size of downstream water and
enhance the water quality of downstream water bodies [102]. A filter strip is a strip of
dense vegetation that separates and filters runoff from upslope pollutant sources [103]. This
filtration is conducted by reducing the speed of surface currents and, as a result, separating
pollutants through settling particles [104]. Considering the high slope of the area and the
reduction in nutrients under its influence, the widths of these filters were chosen to be 10 and
15 m.

2.4.3. Irrigation Management

By reducing irrigation, secondary water flows into rivers decrease. Due to the transfer
of organic nitrogen and nitrate in the form of water solution and the reduction in dilution
of agricultural runoff, it leads to an increase in nutrients. Irrigation management effec-
tively controls the input flow to the reservoir or lake [105,106]. Additionally, irrigation
management is the artificial application of water on land to help produce crops [107]. It
was determined that increasing irrigation would not be possible due to water scarcity, so
this study chose scenarios of 25 and 50% irrigation reduction.

2.5. Qualitative Optimization of the Model

After determining the type, size, and amount of BMPs suitable for the study area,
the subsequent discussion pertained to which places are ideal for applying these BMPs in
such a way that it has the most significant effect in reducing nutrients in the watershed’s
output. For this purpose, a MOPSO algorithm was implemented with quality objectives,
viz.: (1) nitrate concentration; and (2) the number of applied BMPs in sub-basins. Particle
swarm optimization (PSO) is a very efficient and effective method for solving complex
multi-objective problems where conventional optimization tools do not work well. Each
particle in the PSO optimization algorithm is like a bird in a flock, each with its own speed
and position [108]. Particles move through the solution space to obtain the optimal global
solution through self and social learning [109].

This algorithm selects suitable sub-basins and places for applying BMPs that signif-
icantly improve the quality of the basin’s output. Due to the many decision variables
and the nonlinearity and complexity of relationships between water quality parameters, a
simulation–optimization approach can be a suitable tool to determine the optimal combina-
tion of BMPs in watersheds.
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3. Results
3.1. Calibration and Validation Results for Streamflow and Nitrate

The model calibration and validation results for the streamflow simulation using
monthly streamflow data from 1991–2019 and for nitrate simulation using the monthly
nitrate data of 2014–2016 are depicted in Figures 5 and 6. Streamflow calibration and
validation were applied for seven hydrometric gauge stations in the Jajrood watershed. The
model performance illustrated calibration and validation are reasonable, and the simulated
discharges are in good agreement with the observed discharges. Based on the results in the
station scale, R2 and NSE ranged from 0.42 to 0.88 and 0.36 to 0.80 for calibration and from
0.35 to 0.71 and 0.39 to 0.65 for validation, respectively (Table 4). Calibration and validation
for nitrate were applied for Roodak Station. The model’s performance was satisfactory, as
the value of R2 and NSE for calibration were 0.82 and 0.64, respectively, and for validation
were 0.69 and 0.61, respectively.
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Table 4. Calibration and validation results of all seven stations for streamflow.

S. No. Gauge
Station

Calibration Validation

R2 NSE R2 NSE

1 Kamar Khani 0.75 0.72 0.35 0.39
2 Roodak 0.88 0.72 0.71 0.65
3 Oushan 0.66 0.61 0.69 0.56
4 Najjar Kola 0.72 0.68 0.71 0.55
5 Naron 0.62 0.6 0.7 0.58
6 Ali Abad 0.8 0.8 0.69 0.54
7 Kond Sofla 0.42 0.36 0.5 0.46

3.2. Investigating the Effect of BMPs on the Water Quality
3.2.1. Fertilizer Management

In this study, we considered three different types of practices to reduce organic nitrogen
and nitrate concentration. Based on the results of reducing 25%, 50%, and 75% of nitrogen
fertilizer, nitrate concentration decreased by around 5.24%, 6.6%, and 9.42%, respectively,
and organic nitrogen was reduced by 0.03%, 0.08%, and 0.11%, respectively (Table 5).

Table 5. Percentage reduction in organic nitrogen and nitrate concentrations at varying reductions of
nitrogen fertilizer.

Type of Practice NO3-Out (Nitrate Concentration) (%) OrgN (Organic Nitrogen)(%)

25% reduction of nitrogen fertilizer 5.24 0.03
50% reduction of nitrogen fertilizer 6.6 0.08
75% reduction of nitrogen fertilizer 9.42 0.11

3.2.2. Vegetated Filter Strips

An analysis of modeling results indicated that a 10 m filter reduced nitrate concen-
tration by 4.12% and organic nitrogen concentrations by 51.5%. Furthermore, a 15 m filter
reduced nitrate concentration by 6.35 % and nitrogen concentration by 57.52% (Table 6).

Table 6. Percentage reduction in the concentration of organic nitrogen and nitrate in different widths.

Type of Practice NO3-Out (Nitrate Concentration) (%) OrgN (Organic Nitrogen) (%)

Width of 1 m 4.12 51.5
Width of 5 m 6.35 57.52

3.2.3. Irrigation Management

In this study, changing the method and amount of irrigation did not have much effect
on the nitrate output. Therefore, we did not consider applying this management method
(Table 7).

Table 7. Percentage reduction in the concentration of organic nitrogen and nitrate at varying reduc-
tions of irrigation.

Type of Practice NO3-Out (Nitrate
Concentration) (%)

OrgN (Organic Nitrogen)
(%)

25% reduction of nitrogen
fertilizer 1.05 0.01

50% reduction of nitrogen
fertilizer 0.85 0.03
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3.3. Results of Qualitative Optimization of the Model with the MOPSO Algorithm

In order to optimize the model, three scenarios were considered (Table 8). The first
scenario assumed that optimal management practices do not exist (S1). The second scenario
was based on vegetated filter strips (S2), and the third scenario dealt with the reduction in
fertilization in each sub-basin (S3). Scenarios were applied to the model utilizing SUFI-2 of
the SWAT_CUP model separately to the entire basin and then to each sub-basin. Then, the
combination of scenarios was discussed so that both management methods were applied
first, reaching a total of 97 iterations. These results were introduced and recognized as
intervals to the optimization objective functions in the MOPSO algorithm in MATLAB.

Table 8. Proposed scenarios for application in sub-basins.

S1 S2 S3

No BMPs have been applied
in the sub-basins

Application of vegetated filter
strips with a width of 5 m in

sub-basins and the land use of
the orchard, irrigated, and

pasture lands

Reduction of fertilizer by 50% in
sub-basins and the land use of
the orchard and irrigated lands

Furthermore, the optimization was carried out by introducing objective functions to
the algorithm and specifying the number of variables to 25 and their change interval as well
as the number of populations to 100 members, an archive of 50 members, and 60 repetitions.
The results obtained from implementing the MOPSO optimization algorithm include an
archive with 13 non-dominated members. It represents the algorithm’s selected scenarios to
minimize the objective functions, which determines the best modes in terms of the lowest
output nitrate concentration and the number of BMPs in the sub-basins. These results are
presented as a Pareto-front diagram, as shown in Figure 7, and the corresponding extracted
information is provided in Table 9.
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Table 9. The information extracted from MOPSO.

No. Number of Applied
BMPs

Output Nitrate
Concentration

(mg/L)

Subbasins
Under the S2

Subbasins
Under the S3

1 13 13.75 20/17/9 20/9/8/7/5/4/2
2 12 13.84 18/15/9/5 20/15/8/7/3/2
3 7 14.25 20/5/2 9/7/5/4
4 6 14.34 20/15/14/2/1 8/5/1
5 14 13.69 18/15/9/8/4/2 20/9/8/7/5/4/2
6 11 13.92 18/14/7/3/4/2 20/9/8/7/5/4/2
7 2 14.91 5 2
8 18 13.67 18/7 20/9
9 4 14.71 20/15/14/2/1 9/7/5/4

10 10 14.04 9/7/4/3/1 20/5
11 5 14.41 14/7/4/3 10/9/8/5
12 8 14.106 20/18/5 15/14/2/1
13 9 14.092 3/1 9/7/5/4

According to the results, subbasins 5, 8, 9, 10, 15, 17, 18, and 20 could be treated
with vegetated filters and fertilizer reduction simultaneously, assuming 15.02 mg/L of the
output nitrate. Additionally, the fertilizer reduction method could be applied in sub-basins
1, 2, 3, 4, 7, and 14 (Figure 8).
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4. Discussion

This study analyzed and compared simulated and measured streamflow at seven sta-
tions as well as simulated and measured water quality values at Roodak Station and found
that simulated and observed values indicate a similar trend. Despite some overestimates,
the fitting effect of the model is satisfactory, leading to further studies that can be conducted
with this model. There is a comprehensive sensitivity analysis for streamflow, nitrate, and
their respective best parameter values, as presented by Jamshidi et al. [110] in the study
area. It was determined that the temperature lapse rate (TLAPS) and groundwater delay
time (GW_DELAY) parameters had the most significant effect on the outflow of the basin
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compared to the other parameters. The flow rate was also influenced by the fraction of
snow volume (SNOCOVMX), the initial SCS runoff curve number for moisture conditions
(CN2), the snowfall temperature (SFTMP), the baseflow alpha factor (ALPHA_BF), the soil
evaporation, the compensation coefficient (ESCO), the snow temperature lag factor (TIMP),
the surface runoff lag coefficient (SURLAG), and the average slope length (SLSUBBSN).
Due to its large area, pastureland use was chosen as the most sensitive land.

Furthermore, several parameters that affect nutrients are the organic nitrogen enrich-
ment ratio (ERORGN), nitrogen percolation coefficient (NPERCO), the nitrogen concentra-
tion in rainfall (RCN), the rate constant for the hydrolysis of organic nitrogen to ammonia
(BC3_BSN), and the rate constant for the biological oxidation of NO2 to NO3 (BC2_BSN),
which was more sensitive than other parameters. According to Figure 6, the simulated
monthly nitrate follows the trend of observed nitrate, but most of the simulated peaks
differ from the observed ones. In this case, rainfall data is uncertain, which could lead
to high simulated monthly nitrate levels. A seasonal variation in the concentration of
simulated nitrate was also observed in response to changes in rainfall patterns and fertilizer
applications. This result aligns with the findings of Cerro et al. [111] and Zheng et al. [112].
Based on the results of the model, the average annual nitrate load in the output of the
basin for 2019 was about 1200 tons per year, and according to the calculations, the share of
the agricultural sector was about 60% of the total nitrate load. This result highlights the
importance of using BMPs to control water pollution in the basin.

According to the calibrated and fitted model, the model can be used to evaluate the
effectiveness of BMPs in the studied watershed. By applying the management practices
suggested in this study, conservation plans could be implemented more effectively to
reduce pollution. As a result of the implementation of BMPs, nitrate concentrations in the
watershed have decreased significantly. However, the irrigation management was slightly
effective in reducing nutrients and did not have any significant impact on the nitrate and
organic nitrogen concentration. The findings of this study agree with previous studies
that reported irrigation reduction does not significantly reduce nitrogen loads, especially
in soluble forms [113,114]. Implementation of the reduced nitrogen fertilizer scenarios
increased the nitrate (NO3-) losses (5.24% for a 25% fertilizer reduction, 6.6% for a 50%
fertilizer reduction, and 9.42% for a 75% fertilizer reduction) but did not significantly affect
organic nitrogen losses (0.03% for a 25% fertilizer reduction, 0.08% for a 50% fertilizer
reduction, and 0.11% for a 75% fertilizer reduction). These results have been observed in
studies conducted by Pandey et al. [115], Li et al. [116], and Craswell [117].

The vegetated filter strips BMP was effectively applied to reduce nutrient yields
throughout the watershed. The implementation of the filter strip scenarios (1 m width and
5 m width) increased nitrate losses (4.12% and 6.35%) and organic nitrogen losses (51.5%
and 57.52%). A filter strip with a 5 m width was selected due to its more remarkable and
tangible effect on the reduction of nutrients in the watershed. This study confirms previous
findings [78,118–120] regarding these BMP and nitrate output concentrations. Nevertheless,
it is important to keep in mind that there are several factors that can affect the effectiveness
of filter strips, including the slope, geography, size, and scope of the areas where they are
situated.

Combined scenarios were assessed and optimized to determine which mitigation mea-
sure would reduce pollutants most significantly. Therefore, the BMP optimization process
was used to select and place BMPs in sub-basins to manage and control water quality. It
was achieved using the MOPSO multi-objective optimization algorithm, which minimized
the objective functions, including the number of best management practices applied in
the sub-basins and the nitrate concentration of each sub-basin. The fertilizer management
(S2) and vegetated filter strips with fertilizer management (S2 and S3) scenarios were the
most effective in minimizing the nitrate concentration level. Figure 7 shows the percent
improvement in the water quality objective function on the Pareto front considering BMPs
in the watershed.
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In the sub-basins where the combination of two scenarios has been allocated, a signifi-
cant area includes pastures, orchards, and irrigated agriculture. In areas where livestock
grazing primarily occurs, using vegetated filter strips helps significantly reduce nitrate
entering the stream. Nitrate fertilizer reduction in irrigated fields and orchards also leads to
a decrease in nitrate concentration from the agricultural runoff into the river’s mainstream.
The simultaneous use of these two scenarios and their effect on nitrate reduction has been
used in past studies [121–123]. One of the main limitations of implementing this method
in the study area is farmers. Implementing effective BMPs identified in this research de-
pends heavily on the farmers. Because the implementation of these BMPs includes BMP
installation costs, it can be a financial problem for farmers.

5. Conclusions

Estimating the outlet nutrients of the Jajrood river watershed and evaluating BMPs to
reduce the load of outgoing pollutants are the main goals of this research. In this study,
through a combination of the MOPSO optimization algorithm and the SWAT model, the
water quality in the Jajrood river watershed has been modeled. The hydrological and
semi-distributed SWAT model was implemented to simulate the streamflow and water
quality in the watershed. The calibration and validation of streamflow and nitrate were
completed after sensitivity analysis. The calibration of the basin’s discharge and nitrogen
indicated that the SWAT model performed well in simulating the catchment’s streamflow
and nitrate.

Furthermore, the SWAT model was coupled with MOPSO algorithm to simulate
and find the optimal combination of the BMPs in the watershed. Three scenarios were
considered: (1) assumes that optimal management practices do not exist; (2) is based on
vegetated filter strips; and (3) considers a reduction in fertilization in each sub-basin. The
best-recommended management practices for reducing nutrient discharge from the basin
are using vegetated filter strips on the riverbanks and decreasing fertilization in agricultural
activities. The methodology and the results presented aim to facilitate decision-making for
determining the type, size, and location of BMPs in the watershed as long as the reduction
criteria change.

Applying these two items simultaneously in the whole basin will reduce the nitrate
output from the basin by about 10%. Due to the constant slope of the watershed, this
method is considered one of the effective solutions. For policymakers and management
communities, our findings can offer a variety of ideas and updated information that will
help them enhance current processes and develop new management practices.

As part of future and comprehensive research in the study area, it is suggested that
the Latian dam and nutrients in the reservoir be modeled along with surface currents of
the basin and that management strategies with structural performance be employed to
control the nutrient concentration in the reservoir. Additionally, the high slope difference
in the basin, the large volume of runoff, and the location of the Latian dam reservoir
downstream cause a significant transfer of sediment downstream. Therefore, it is suggested
for future research to estimate the amount of transferred sediment and examine the best
management methods to reduce sediment. Additionally, in terms of economic analysis, it is
recommended to calculate the cost-effectiveness of BMPs at the local scale and in watershed
areas.
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Appendix A

Table A1. Description of sensitive parameters for stream flow in SWAT.

Parameter Description

TLAPS The temperature lapse rate
GW_DELAY Groundwater delay time
SNOCOVMX The fraction of snow volume

CN2 The initial SCS runoff curve number for moisture condition
ALPHA_BF The baseflow alpha factor

SFTMP The snowfall temperature
ESCO The compensation coefficient
TIMP The snow temperature lag factor

SURLAG The surface runoff lag coefficient
SLSUBBSN The average slope length

Table A2. Description of sensitive parameters for nitrate pollution in SWAT.

Parameter Description

ERORGN The organic nitrogen enrichment ratio
NPERCO Nitrogen percolation coefficient

RCN The nitrogen concentration in rainfall

BC3_BSN The rate constant for the hydrolysis of organic nitrogen to
ammonia

BC2_BSN Rate constant for biological oxidation of NO2 to NO3

Table A3. Accuracy assessment results of LULC map used in SWAT model.

FO 1 RE 2 CR 3 GR 4 WA 5 BL 6

FO 1000 0 2 1 0 0
RE 0 200 0 16 0 12
CR 10 4 3077 132 18 20
GR 0 0 130 2208 18 29
WA 2 0 5 12 528 5
BL 0 0 12 30 31 242

UA 7 98.81 98.04 95.38 92.04 88.74 78.57
PA 8 99.70 87.72 94.36 92.58 95.65 76.83

Kappa 91.06%
OA 9 93.11%

1 FO: forest, 2 RE: residential, 3 CR: cropland, 4 GR: grassland, 5 WA: water, 6 BL: barren land, 7 UA: user accuracy,
8 PA: producer accuracy, 9 OA: overall accuracy.
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