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Abstract: Soil constitutes an important part of terrestrial ecosystems, prone to be adversely impacted
by human activities. During the last decades, several methods have been developed aiming at its
remediation, including the use of biochar as a soil amendment. In the present work, we have assessed
the reduction of Pb, Cd, and Cu soil concentrations as a function of the mixing ratio of biochar added
to soil, as well as the source of biochar employed. Furthermore, we have investigated the effects of
biochar addition relating to the chemical forms of heavy metals (HMs) related to their bioavailability
and mobility. The concentrations of HMs were determined by the BCR (European Community
Bureau of Reference) sequential extraction procedure before and after biochar addition to the soils.
Five types of biochar were used, obtained as by-products of sugarcane bagasse (B), bamboo (BB),
rice straw (RSB), garden waste (GB), and paulownia (PB) treatment, respectively. Biochar derived
from sugarcane (B) reduced the availability of metals, as it decreased their concentration in the acid
extractable fraction, by 40.5, 66.6, and 50% for Pb, Cd, and Cu, respectively. In addition, (B) application
increased the residual fraction of Cu and Pb by 9% and 24.8%, respectively. Biochar derived from
garden residues (GB) and paulownia plant (PB) dramatically increased the residual fraction of Cd
over 97%, minimizing its availability. Sugarcane-derived biochar appeared to significantly increase
Cu and Pb residual fraction concentrations and decrease available Cd concentration. Similar changes
are caused by the types of biochar in the following order: biochar from sugarcane > paulownia >
garden wastes > bamboo > rice straw. The redistribution of HM concentrations causes a significant
improvement of environmental quality in polluted soils, as it limits the mobility and availability of
toxic metals to the soil ecosystem. The use of biochar is a low-cost and eco-friendly method for the
remediation of contaminated with HMs soils in the framework of a circular economy.

Keywords: heavy metals; BCR fractionation method; bioavailability; mobility

1. Introduction
1.1. The Soil as a Background for Human Activities

The soil represents the “living skin” of the planet, specifically, it is the upper layer of
the crust. Its main components are inorganic matter consisting of various minerals and
organic matter (OM), including a variety of living micro-organisms, along with air and
water [1,2].

The importance of the soil should not be overlooked because its ecosystem services
support life on the planet [3]. The soil is the substrate for sustaining all plant species, as
they absorb the inorganic nutrients and water that are necessary for their growth [4,5].
It composes a natural filter for water and controls the surplus water rejection. It stores
quantities of organic carbon as soluble organic carbon (SOC) [6]. Finally, soil contributes to
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the conservation of the biodiversity, whereas different species spanning microorganisms
and upper mammals interact in the numerous soil micro-habitats [2,7].

The effect of human activities on soil conditions is mainly harmful [3], exceeding the
capabilities of nature to heal itself. Among the ecological changes affecting soil quality,
the abrupt anthropogenic disturbances of the biogeochemical cycles of critical chemi-
cal elements, including carbon (C), nitrogen (N), phosphorus (P), and other metals is
prominent [8].

The result is the creation of remarkable environmental phenomena, namely: climate
change, acidification of the oceans because of the increased CO2 emissions, depletion of
stratospheric ozone, and depletion of renewable and non-renewable sources relating to
food [9] and environmental pollution (air, water, soil), particularly from non-degradable
pollutants that are transferred through the food chain to living organisms (bioaccumula-
tion) [10]. Furthermore, the widespread dispersion of pollutants, such as organic pesti-
cides [11] and fertilizers, concrete, ash, plastics, and their degradation products [8], along
with invasive species population growth, have led to a massive extinction of various species
and a loss of biodiversity [5,12].

1.2. The Heavy Metals (HMs) Soil Pollution

Pollution of soil by HMs is a serious environmental problem, associated with industrial
activities, land use patterns, local climatic conditions, socio-economic development issues,
and elevated population densities [13,14]. Heavy metals are metals and metalloids that
have an atomic mass higher than 20 and an elemental density higher than 5 g cm−3 [1,13].
The most common HMs detected in the environment are cadmium (Cd), mercury (Hg),
copper (Cu), arsenic (As), lead (Pb), chromium (Cr), uranium (U), and zinc (Zn) [15,16].
Nowadays, the term “potentially toxic elements” (PTEs) is used instead of the older term
“heavy metals”. Heavy metals have adverse health effects when their concentrations
exceed the permitted levels [16,17]. Potentially toxic elements pose many risks to human
beings and the environment [17,18]. They have a long half-life and remain active in the
environment for a long time without biodegrading. They are a cause of cancer and often
leukemia in children and adults [19,20]. They are responsible for problems in biochemical
systems, as they interfere with the normal functioning of enzymes (biocatalysts) [21].

The mobility and availability of HMs in the soil is determined by the nature of HMs,
as well as by the physical and chemical characteristics of the soil [22]. The concentrations of
HMs found in the soil may result from natural activities, mostly erosion of HM-containing
rocks and volcanism [14]. In addition, the soil concentrations of HMs may have an an-
thropogenic component [23]. This pollution of soil by HMs is nowadays an emerging
environmental problem. Soil pollution is gradually aggravated because of fast urbaniza-
tion, rapid population growth, and increasing industrialization [24]. Moreover, intensive
anthropogenic activities, such as mining, smelting, and usage of various metal-containing
substances and materials, as well as their degradation products, have a negative effect
on soil quality [25,26]. Heavy metals can reduce crop production or significantly inhibit
the quality of cultivated products [27,28]. In the research of Houri et al. [29], an adverse
effect of HMs on ordinary photosynthetic activities of the plants is presented. Cd stress
can reduce photosynthetic rate and pigment levels, ascorbate peroxidase, guaiacol peroxi-
dase, catalase, and superoxide dismutase enzyme activities, increasing g malondialdehyde
level [30]. The antioxidants in citrus plants after exposure to high Pb and Cu concentrations
were significantly increased as the metals promote lipid peroxidation, disrupt membrane
integrity, reduce growth and photosynthesis, and inhibit mineral nutrition Pb and Cu
treatments [31].

1.3. The Use of Biochar for Remediation of HMs Polluted Soils

Generally, there are different chemical and biological methods and strategies that aim
to the effective soil remediation and removal of HMs [32,33]. Zaheer et al. [34] have studied
the beneficial effect of the appropriate amount of biochar which, when incorporated into
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the soil, significantly improved the quality characteristics and yield of crops. Jakubus and
Bakinowska [20] found that the use of compost and fly ash influenced the content of Cu and
Zn in the soil, along with the bioconcentration factor, as well as the bioavailable amount
of metals and health risk index. In several studies, the use of different forms of carbon is
proposed for the reduction of HM availability [35–37]. In a study by Li et al. [38], it was
noted that the techniques of soil remediation can be classified in the following categories:
(a) ex situ remediation, which requires the excavation of the contaminated soil and the
subsequent treatment of pollutants, as well as (b) in situ remediation, which involves the on-
site treatment of the pollutant-target [9]. Furthermore, the remediation can be carried out
by certain species of microorganisms [39]. Comparatively, in situ remediation offers certain
possible technical, financial, and environmental advantages [40,41]. Even though the choice
of the most appropriate method depends on the soil characteristics, the HM concentration
and the intended use of the contaminated soil must be taken into account [42,43].

Banik et al. [44] have compared the effect of biochar on nutrient availability with
manure or other soil additives that are high in OM, although there is some concern about
the increase in CO2 due to the use of biochar in crops [45]. Ghorbani et al. [46] found
that biochar can make a considerable contribution to raising the effectiveness of organic
N-fertilizers, enhancing grain yield of wheat. Subsequent research efforts have proven
that biochar can reduce the HM concentrations in contaminated soil [47,48]. Specifically,
biochar is capable of effectively absorbing the HM cations from water and ties them up in
its mass [49,50]. For this reason, biochar has been considered as a promising remediation
material for the reduction of eco-toxicity in contaminated soils [51–53].

The use of biochar is often associated with:

(a) charcoal, which is a material of solid nature where the carbon composition often
exceeds 70%, formed by heating up under anoxic conditions, OM coming from plants,
wood, or animal tissues or bones [54].

(b) decarbonized OM, which comes from the thermochemical biomass conversion under
restricted oxygen conditions [55].

Pyrolysis is the most widely used thermochemical method of decomposition of
biomass at temperatures over 300–700 ◦C in the absence of oxygen [56]. In addition,
two other methods that are usually used for biochar production involve hydrothermal
carbonization and gasification.

Through the procedure of pyrolysis, the products can be solid, liquid, or gaseous,
and their composition depends on the characteristics of the procedure [43]. Pyrolysis is
characterized by: (a) the residence time of biomass under pyrolytic conditions, (b) the
maximum temperature which decisively affects the capacity to lock up carbon and the
stability of biochar, and (c) by the heating rate (intensity).

Based on the above, pyrolysis is divided into three categories: (a) slow pyrolysis,
(b) intermediate pyrolysis, and (c) fast pyrolysis. According to He et al. [55], the pyrolysis
conditions decisively affect the physicochemical properties of biochar.

In this way, however, pyrolysis also affects the effectiveness of biochar towards the
treatment of HMs [57]. More specifically, it causes variations in the pH values, the organic
carbon (OC) content of the biochar, the cation exchange capacity (CEC), the porosity of the
biochar, the specific contact surface, the functional groups, and the mineral content [58]. As
a result, these changes in the physicochemical properties of the biochar in combination with
the different composition of the soils modify the HM–biochar interactions and essentially
the mobility and bioavailability of HMs after the biochar application in the soil [59]. The
results so far suggest that biochar properties have a strong effect on the mobility and the
bioavailability of HMs in biochar-treated soils [60]. They affect HM concentrations either
directly, through specific metal–soil interactions, or indirectly, by affecting the properties
of the soil where they are applied [61]. In the following graph are presented biochar–HM
interaction mechanisms and physiochemical parameters that influence these mechanisms.
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In detail, the biochar–HM interaction mechanisms are listed below [41]:

- Electrostatic attraction: recent research proves that a high degree of biochar elec-
tronegativity attracts positively charged groups. The strength of this attraction de-
pends on the surface load of the negatively charged groups [62]. The overall negative
charge of biochar grows with the increase in pH [13,63].

- Ion exchange: in general, biochar is characterized by high CEC and, consequently, by
the presence of free cations, for example Ca2+ and Mg2+. Between biochar and soil,
an exchange of ions may be established [1,14]. The increase in biochar CEC could
increase its adsorption capacity for HMs. The oxygen-containing functional groups
in biochar, mostly carboxyl groups (-COOH), can also bind metal ions through ion
exchange [64].

- Complexation: the functional groups on the surface of the biochar can immobilize
HMs, forming stable complexes [58]. The functional groups provide binding points
for HMs to form association complexes, increasing the rate of the specific adsorp-
tion [41,65]. This is more effective for biochar possessing a low mineral content. The
complexation is enhanced by the increase in Fe, Mn, and C content. In this way, insol-
uble and stable metal complexes are formed. Additionally, inorganic ions containing
Si, S, or Cl present in biochar, can form complexes with HMs, further reducing their
mobility in the soil.

- Precipitation: biochar contains minerals that can bind HMs, yielding insoluble sedi-
ments. Indeed, precipitation has been observed in the case of absorption of inorganic
phosphorus by biochar [41]. Nevertheless, after the modification of the soil by addition
of biochar, its characteristics, including pH, SOC, sulphate concentrations, and CEC,
may change [1,38], affecting the HMs–biochar interactions and, finally, the mobility
and bioavailability of HMs in the soil.

- pH: pH has a significant influence on the chemistry of both soil and biochar [13].
More specifically, it affects the speciation and the mobility of HMs in the soil [66].
Generally, biochar is usually alkaline, and its application in the soil increases its pH,
especially when the contaminated soil is acidic. In this way, however, the hydrolysis
of HMs is increased, leading to an enhanced adsorption by the soil and an accelerated
transformation of oxidizable and residual fractions of the pollutants. In addition, the
increase in pH enhances the complexation of HMs [10], resulting in a decrease in the
HM risks.

- Cation Exchange Capacity (CEC): since the CEC of biochar is particularly high, it en-
hances the corresponding property of the soil when added to it. It has been suggested
that the reduction in HM concentration and solubility in the soils is partly due to the
high proportion of cations exchange points on the biochar surface [1,13].

- The presence of inorganic elements: biochar may contain high concentrations of
elements, such as Na, K, Mg, Ca, and P [67]. These inorganic elements are free in the
contaminated soil and, possibly, after adding biochar, contribute to cation-exchange
processes between biochar and soil [47]. Additionally, the oxides of Ca, Si, and Mn
that are contained in biochar may function as additional absorption points for metal
cations present in the soil.

- Change in the organic carbon content: the addition of biochar to the soil results in a
release of OC dissolved. In this way, a reduction of the mobility and bioavailability of
HMs could be caused by the enhancement of complexation between biochar functional
groups and HMs [58].
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According to Manyà et al. [68], pyrolysis results in the formation of three new products:
(1) the desired biochar, (2) a volatile fraction that can be compressed and give bio-oils, and
(3) various gaseous products, mostly CO, CO2, and CH4 και H2.

The study of the possible effects of the five types of biochar derived from various raw
materials possessing different physicochemical properties constitutes the purpose of the
present study, aiming at reducing the concentration of HMs in soils.

2. Materials and Methods

The basic features of the different types of soils and biochar that have been applied
are listed in Table 1. The soil samples used had an acid reaction and high percentage of
organic carbon.

Table 1. The contaminated soils and the basic features of biochars used.

Contaminated Soils

Soil pollution source Metal foundry
wastewater effluent

Copper smelter
gaseous emissions Wastes disposal Mining activities

HMs pollutants Cd, Cu, and Pb Cd, Cu, and Pb Cd, Cu, Pb, and Zn Cd, Cu, Pb, and Zn
pH 5.8 <6.0 5.5 5.5

OC (g kg−1) 14.5 10 23.4 23.4

Physicochemical properties of biochar types

Feedstock sugarcane bagasse Bamboo
rice straw garden wastes paulownia by-products

Treatment method/◦C pyrolysis/450 ◦C pyrolysis/750 ◦C
pyrolysis/500 ◦C

(1) pyrolysis/400 ◦C
(2) pyrolysis/600 ◦C pyrolysis/700–800 ◦C

Particle size <2 mm (1) < 0.25 mm
(2) < 1 mm <0.1 mm <0.1 mm

References [69] [51] [70] [71]

Chemical fractionation of HMs was carried out to determine their bioavailability and
mobility by sequential extraction [72]. The fractions of the metals, which we consider deter-
mining their availability and mobility, are usually the water-soluble and the exchangeable.

Awad et al. [70] used 1 g of each soil sample or mixture of soil and biochar into a
100 mL polycarbonate tube and the following steps: the acid-soluble fraction using 0.11 M
acetic acid, the Fe/Mn oxide bound fraction using 0.1 M hydroxylamine hydrochloride
(pH 2), the OM bound fraction using 30% w/v H2O2 and 1 M CH3COONH4, and the
residual fraction using HNO3-HF-HClO4. Lu et al. [51] followed a four-step BCR procedure
as follows: 0.11 M acetic acid to extract the acid extractable fraction; 0.1 M hydroxylamine
hydrochloride (pH 2) to extract the fraction bound to Fe/Mn oxides; 30% m/v H2O2 and
1 M CH3COONH4 to extract the fraction bound to OM; and HNO3-HF-HClO4 to extract
the residual fraction of the metals.

The methods used by the researchers mostly included four stages, simulating the BCR
method and its many modifications. The method of Tessier et al. [73] suggests five steps,
giving satisfactory results for five different fractions of metals, namely: (a) acid extractable,
(b) bound to carbonates, (c) bound on Fe/Mn oxides, (d) organic fraction, and (e) residual
fraction. Nie et al. [69] followed the five-step sequential extraction method to assess the
effect of biochar treatments on the bonding forms and redistribution of Cd, Cu, and Pb
in soil. The heavy metals obtained from each step were designated as exchangeable (F1),
bound to carbonates (F2), bound to Fe/Mn oxides (F3), bound to organics (F4), and bound
to residual (F5), respectively. The concentrations of the metal fractions were quantified
using an atomic absorption spectrometer or an ICP-OES.

In several studies, the available and water-soluble metals concentrations were ex-
tracted using the DTPA and the CaCl2 extracting solutions [36]. These concentrations of
metal trace elements are compared to those extracted in the corresponding fractions of the
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fractional extraction methods. Additionally, in the majority of methods used to extract the
total and residual amount of metals, a mixture of strong acids is used. A strongly alkaline
environment may be used to rapidly extract the total mineral concentration [74].

3. Results

Figures 1–3 show the fractions of Pb, Cd, and Cu, respectively. The distribution
of these metals was initially examined overall for all fractions (Figures 1a, 2a and 3a)
and, subsequently, for each fraction of the methods used. It must be considered that
the percentage held by the acid fraction in relation to the total concentration depends
both on the nature of the metal and on the nature of the added biochar. Figure 1b–f,
Figures 2b–f and 3b–f show the different fractions of Pb, Cd, and Cu, respectively, labeled
as b, c, d, e, and f according to the type of biochar used, derived from sugarcane, bamboo,
rice straw, garden waste, and paulownia, respectively.
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size <0.25 mm (BB1) and <1 mm (BB2)) at 0, 1, and 5% on the immobilization of Cu (mg kg−1) in
contaminated soils. (d) Impact of biochar additives (rice straw biochar sifted at particle size <0.25 mm
(RSB1) and <1 mm (RSB2)) at 0, 1, and 5% on the immobilization of Cu (mg kg−1) in contaminated
soils. (e) Impact of biochar additives (garden wastes biochar pyrolyzed at 400 ◦C (GB1) and 600 ◦C
(GB2)) at 0, 2, 4, and 6% percentages the immobilization of Cu (mg kg−1) in contaminated soils.
(f) Impact of biochar additive (paulownia by products biochar (PB)) at 0, 2, 4, and 6% percentages the
immobilization of Cu (mg kg−1) in contaminated soils.

3.1. Acid Extractable/Exchangeable Fraction

In Table 2, the acid fraction of the three metals studied is presented.

Table 2. Acid extractable fraction of Pb, Cd, and Cu (mg kg−1) after biochar application.

Biochar Type Temperature
(◦C)

Particle
Size (mm)

Biochar Soil
Application

Amount
Pb Cd Cu

Sugarcane
bagasse (B) 450

0 t ha−1-control 74a 0.12a 34a

<2
1.5 t ha−1 55ba 0.08ab 24ab
2.25 t ha−1 49ba 0.04b 17b

3 t ha−1 44b 0.04b 17b

Bamboo (BB) 700

0%-control 71a 0.4a 190a

<0.25
<1

1%
5%
1%

71a
69a
71a

0.4a
0.4a
0.4a

175ab
158ab
175ab

5% 65a 0.4a 144b

Rice straw
(RSB) 500

0%-control 71a 0.4a 190a

<0.25
<1

1%
5%
1%
5%

68a
51b
67a
49b

0.3a
0.3a
0.3a
0.4a

173b
127c
180b
123c

Garden
wastes (GB)

400

0%-control 138a 1.8a 2a

<0.1

2% 120a 1.5a 1.3b
4% 95ba 1.4a 0.9c
6%
2%

67b
125a

1.4a
1.6a

0.5c
1.3b

600 4% 104a 1.4a 0.9c
6% 86ba 1.4a 0.5c

Paulownia
(PG) 700–800

0%-control 137a 1.9a 2a

<0.1
2% 126a 1.7a 1.7ab
4% 125a 1.6a 1.5ab
6% 123a 1.6a 1.3b

Note: In the case of the applied sugarcane biochar to the contaminated soil samples, the metal concentrations in
acid extractable and carbonate bound fractions (unstable metal fractions) have been calculated together, as is also
the case for the organic and residual metal fractions (stable metal fractions).

3.2. Carbonate Bound Fraction

In Table 3, the carbonated bound fractions of Pb, Cd, and Cu (mg kg−1) after biochar
application are presented.
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Table 3. Carbonate bound fraction of Pb, Cd, and Cu (mg kg−1) after biochar application.

Biochar Type Temperature
(◦C)

Particle
Size (mm)

Biochar Soil
Application

Amount
Pb Cd Cu

Sugarcane
bagasse (B) 450

0 t ha−1-control 74a 0.12a 34a

<2
1.5 t ha−1 55ba 0.08b 24b
2.25 t ha−1 49b 0.04c 17c

3 t ha−1 44b 0.04c 17c

Bamboo (BB) 700

0%-control 0 0 0

<0.25
<1

1%
5%
1%

0
0
0

0
0
0

0
0
0

5% 0 0 0

Rice straw
(RSB) 500

0%-control 0 0 0

<0.25
<1

1%
5%
1%
5%

0
0
0
0

0
0
0
0

0
0
0
0

Garden
wastes (GB)

400

0%-control 0 0 0

<0.1

2% 0 0 0
4 % 0 0 0
6%
2%

0
0

0
0

0
0

600 4% 0 0 0
6% 0 0 0

Paulownia
(PG) 700–800

0%-control 0 0 0

<0.1
2% 0 0 0
4% 0 0 0
6% 0 0 0

Note: In the case of the applied bamboo, rice straw, garden wastes, and paulownia biochar the concentration of the
metals carbonate bound metal fraction is considered negligible.

3.3. Fe/Mn Oxides Fraction

In Table 4, the fraction of Pb, Cd, and Cu (mg kg−1) bounded in Fe/Mn oxides after
biochar application is presented.

Table 4. Fe/Mn oxides fraction of Pb, Cd, and Cu (mg kg−1) after biochar application.

Biochar Type Temperature
(◦C)

Particle
Size (mm)

Biochar Soil
Application

Amount
Pb Cd Cu

Sugarcane
bagasse (B) 450

0 t ha−1-control 136a 0.4a 40a

<2
1.5 t ha−1 128a 0.4a 36a
2.25 t ha−1 130a 0.3b 35a

3 t ha−1 128a 0.3b 35a

Bamboo (BB) 700

0%-control 377a 0.2a 187a

<0.25
<1

1%
5%
1%

369a
343a
356a

0.1b
0.1b
0.1b

172ab
155ab
172a

5% 321a 0.1b 141b

Rice straw
(RSB) 500

0 %-control 377a 0.2a 187a

<0.25
<1

1%
5%
1%
5%

369a
400a
386a
412a

0.1b
0.1b
0.2a
0.1b

170ab
125b
177ab
121b
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Table 4. Cont.

Biochar Type Temperature
(◦C)

Particle
Size (mm)

Biochar Soil
Application

Amount
Pb Cd Cu

Garden
wastes (GB)

400

0 %-control 620a 0.5a 6.9a

<0.1

2% 561b 0.5a 6.3a
4% 614a 0.6ba 5.5b
6%
2%

593ab
583ab

0.7b
0.5a

4.3b
6.6a

600 4% 616a 0.6ba 6.4a
6% 593ab 0.7b 6.4a

Paulownia
(PG) 700–800

0 %-control 609a 0.5a 6.7a

< 0.1
2% 549b 0.5a 6.5a
4% 593ab 0.5a 6.3a
6% 558b 0.5a 5.9a

3.4. Organic Bound Fraction

In Table 5, the organic bound fractions of Pb, Cd, and Cu (mg kg−1) after biochar
application are presented.

Table 5. Organic bound fraction of Pb, Cd, and Cu (mg kg−1) after biochar application.

Biochar Type Temperature
(◦C)

Particle
Size (mm)

Biochar Soil
Application

Amount
Pb Cd Cu

Sugarcane
bagasse (B) 450

0 t ha−1-control 141a 0.3b 205a

<2
1.5 t ha−1 165ba 0.4a 218ab
2.25 t ha−1 168ba 0.4a 224ab

3 t ha−1 176b 0.4a 225b

Bamboo (BB) 700

0%-control 30a 0.1a 60a

<0.25
<1

1%
5%
1%

34a
31a
34a

0.1a
0.1a
0.1a

53a
56a
49b

5% 33a 0.1a 52a

Rice straw
(RSB) 500

0%-control 30a 0.1a 60a

<0.25
<1

1%
5%
1%
5%

38b
38b
38b
41b

0.1a
0.1a
0.1a
0.1a

56b
52b
51b
58a

Garden
wastes (GB)

400

0%-control 62a 0.1b 17a

<0.1

2% 96ba 0.1b 16a
4% 105b 0.2a 16a
6%
2%

109b
97ba

0.2a
0.2a

17a
17a

600 4 % 100b 0.2a 16a
6 % 100b 0.2a 17a

Paulownia
(PG) 700–800

0%-control 62a 0.1b 17a

<0.1
2% 91ba 0.1b 16a
4% 99ba 0.2a 16a
6% 100b 0.2a 15a

Regarding Cu, the maximum concentration of the organic fraction was observed when
sugar bagasse biochar was added to the soils (Figure 3b), followed by the concentrations
derived from the addition of garden waste (Figure 3e). The three metals studied have a
common chemical behavior, as they seem to have apparent complexation dynamics along
with the organic compounds included in the soil organic fraction.
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3.5. Residual Fraction

In Table 6, the residual concentrations of Pb, Cd, and Cu (mg kg−1) after biochar
application are presented.

Table 6. Residuals’ concentration of Pb, Cd, and Cu (mg kg−1) after biochar application.

Biochar Type Temperature
(◦C)

Particle
Size (mm)

Biochar Soil
Application

Amount
Pb Cd Cu

Sugarcane
bagasse (B) 450

0 t ha−1-control 141a 0 205a

<2
1.5 t ha−1 165ba 0 218a
2.25 t ha−1 168ba 0 224a

3 t ha−1 176b 0 225a

Bamboo (BB) 700

0%-control 23a 0.2a 60

<0.25
<1

1%
5%
1%

23a
20a
22a

0.2a
0.2a
0.2a

53
56
49

5% 20a 0.2a 52

Rice straw
(RSB) 500

0%-control 23a 0.2a 60

<0.25
<1

1%
5%
1%
5%

24a
22a
22a
20a

0.2a
0.3a
0.2a
0.2a

56
52
51
58

Garden
wastes (GB)

400

0%-control 197 0.1a 17a

<0.1

2% 194 0.1a 16a
4% 194 0.2b 16a
6%
2%

194
193

0.1a
0.2b

17a
17a

600 4% 187 0.2b 16a
6% 188 0.2b 17a

Paulownia
(PG) 700–800

0%-control 196a 0.1a 17a

<0.1
2% 187ba 0.1a 16a
4% 194ba 0.1a 16a
6% 181b 0.1a 15a

Note: In the case of the applied sugarcane bagasse biochar, the concentration of the organic bound metal fraction for
Cd is considered negligible.

4. Discussion

The addition of the different types of biochar to the contaminated soil samples that
have been selected for this study caused a redistribution among HMs fractions, which
resulted in changes in their final availability to plants. The chemical fractions that bioavail-
ability and mobility can be relatively determined are usually the acid extractable and the
exchangeable fraction, as well [36]. On the other hand, the reducible metallic fraction of
every soil pollutant-HM, linked with the Fe/Mn oxides, is thermodynamically variable and
potentially available in the absence of oxygen [43]. These metal fractions are characterized
as highly variable due to the particularly loose bonds between metals and solid surface of
oxides. For this reason, they can be easily affected by environmental conditions, such as pH
variation [61]. Additionally, it should be noted that the fraction of HMs that is found bound
to the OM (organic fraction) [58] can be oxidized, potentially affecting the bioavailability of
the HMs under oxidizing conditions [75].

4.1. Acid Extractable/Exchangeable Fraction

The acid extractable/exchangeable fraction of metals is presented in Table 2. The
addition of sugarcane bagasse biochar to the contaminated soil caused a reduction in the
concentration of the unstable metal fractions (acid extractable/carbonate bound). More
specifically, their concentration was reduced after the addition of 3 t ha−1 of the biochar
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as follows: Pb (from 74 to 44 mg kg−1), Cd (from 0.12 to 0.04 mg kg−1), and Cu (from
34 to 17 mg kg−1). The use of biochar caused a significant reduction in metal availability,
as Abbas et al. [9] have also observed. The application of biochars obtained by bamboo and
rice straw led to a reduction of the concentration of unstable acid extractable fraction Pb and
Cu in the soil. The greatest change was noted after adding 5% of the rice straw biochar and
especially with a particle size of 1 mm. Additionally, the reduction of their concentrations
was: Pb (from 71 to 49 mg kg−1) and Cu (from 190 to 123 mg kg−1). No significant change
was observed for Cd fraction concentration after bamboo biochar application. However,
a decrease was observed after the addition of rice straw biochar at 1% and 5% and with
particle size of 0.25 and 1 mm.

The addition of biochar produced by the garden wastes biochar caused a significant
reduction of metal concentration in both acid extractable and exchangeable fractions. The
Pb concentration remarkably changed after the biochar application obtained from pyrolysis
with a temperature of 400 ◦C. Its greatest reduction was observed after the application of
6% of garden wastes biochar under this pyrolysis temperature (from 138 to 67 mg kg−1).
The acid extractable fraction concentrations of Cd and Cu were also reduced after the
application of the biochar, but it seems that the pyrolysis temperature had no effect upon
the experimental outcome. The application of 6% of paulownia biochar mostly reduced the
acid extractable fraction concentration of the three pollutants: Pb (from 137 to 123 mg kg−1),
Cd (from 1.9 to 1.6 mg kg−1), and Cu (from 2.0 to 1.3 mg kg−1). Alam et al. [67] discussed
the presence of inorganic ions, either in the plant or in the soil solution. The coexistence of
ions in an aqueous environment in contact with the solid surface of the soil often alters the
available fractions of both toxic and trace (nutrient) elements [13].

The acidic and exchangeable fraction of Pb was almost constant for all types of biochar
added to the soil as depicted in Figure 1b–f. However, in the case of Cd, the fluctuations
in the concentration of the acidic fraction are quite high. We noticed the lower values
were obtained when sugar bagasse biochar was added (Figure 2b), while higher values,
up to 70%, were noticed when biochar derived from garden waste and paulownia gas was
incorporated (Figure 2e,f).

Regarding Cu, the maximum concentration of the acidic fraction was observed when
biochar from bamboo (Figure 3c) and rice waste (Figure 3d) was added to the soils. When
biochar derived from garden waste was added, the availability of Cu was significantly
reduced. This is probably due to the large percentage of organic matter contained in
the specific type of biochar and the fact that Cu easily forms complexes with the groups
contained in the organic molecules [13,70]. As is obvious from Table 1, the contaminated
soil has high values of both salinity and alkalinity. The presence of salts with elevated
ionic strength can change the values of soil electrical conductivity and in some cases may
cause changes in soil reaction (pH). These changes in soil physicochemical parameters can
significantly affect metal mobility [1,17].

4.2. Carbonate Bound Fraction

Table 3 shows the variations in metal concentrations after the addition of biochar
derived from sugarcane bagasse. When the maximum amount of biochar was added (i.e.,
3 t ha−1), the maximum reduction in the concentration of Pb, Cd, and Cu was achieved.
Pb and Cu in the fraction of carbonates are lower compared to the other fractions. Cd,
however, shows a greater affinity for this fraction, as it appears to be bound in a larger
amount compared to the organic and residual fractions. Devi and Bhattacharyya [10] found
that the carbonated soil fraction may contribute to metal availability, as the metals are
loosely captured by the solid soil phase.

4.3. Fe/Mn Oxides Fraction

The fraction of metals bound to Mn/Fe oxides (Table 4) can contribute to the availabil-
ity of metals to plants, depending on environmental conditions. Lu et al. [49] have studied
the adsorption of metallic toxic elements on iron and manganese oxides. In Figures 1–3,
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the concentration of Pb, Cd, and Cu bounded to the Fe/Mn oxides was reduced after the
application of sugarcane bagasse biochar. The biochar application amount of 3 t ha−1 had
the greatest effect, as the reduction was as follows: Pb (from 136 to 128 mg kg−1), Cd (from
0.4 to 0.3 mg kg−1), and Cu (from 40 to 35 mg kg−1).

The bamboo biochar and the rice straw biochar reduced the fraction concentration of
the soil pollutants [51]. The greatest reduction of Cd and Cu concentrations was accom-
plished when 5% of rice straw biochar with the particle size of 1 mm was incorporated
in the soil, as follows: Cd (from 0.2 to 0.1 mg kg−1) and Cu (from 187 to 121 mg kg−1).
On the other hand, the Pb concentration reduced after the application of 5% of bamboo
biochar with the particle size of 1 mm (from 377 to 321 mg kg−1) and increased after
the incorporation of 5% of rice straw biochar with the particle size of 1 mm (from 412 to
377 mg kg−1).

The researchers Khan et al. [14], Taraqqi-A-Kamal et al. [61], and Amin et al. [37]
discussed intensively about the impact of different types of biochar on the retention of
metals in different soil fractions. The biochar obtained by garden wastes leads to a reduction
of Pb concentration (from 593 to 602 mg kg−1), an increase in Cd concentration (from 0.5 to
0.7 mg kg−1), and a reduction of Cu concentration when it was applied in soils. The metals
seem to have a different chemical affinity with the Fe–Mn oxides. This has been extensively
discussed in the review paper of Amoah-Antwi et al. [6]. Pb and Cu show higher affinity
with the Fe-Mn oxides than Cd. The addition of 6% of paulownia biochar mainly reduced
the Fe/Mn oxides Pb and Cu concentration, although it had no effect on Cd concentrations.

4.4. Organic Bound Fraction

In Table 5 the Pb, Cd, and Cu concentrations related to organic soil fraction are
presented. The maximum concentrations of the organic fraction of Pb and Cd were observed
when sugar bagasse biochar was added to the soils (Figures 1b and 2b). Cd’s organic fraction
increased over 97% after application of biochars derived from garden residues (GB) and
paulownia plant (PB). When an amount of 2.25 t ha−1 biochar, derived from sugarcane
bagasse, was used, Cu’s organic fraction increased over 10%. Chen et al. [75] discussed the
metal immobilization by OM of soils. The chemical affinity of Cu and Pb with the OM of
the soil is significant, as chelate complexes between metal ions and ligand molecules with
various molecular weight [56,57,74]. In the organic fraction, the metals are bound, forming
complex compounds with low molecular weight organic compounds. The percentage of
metals bound to the fraction may vary with environmental conditions. The value of the
soil reaction (pH) and the normal redox potential affect the oxidation number of the metals
and the type of ligands of the complex compounds [70,75].

4.5. Residual Fraction

In Table 6, the residual fractions of the metals studied are presented. The highest
concentrations of the residual fraction of Pb and Cu were observed when biochar from
garden residues (Figures 1e and 3e) and from paulownia (Figures 1f and 3f) was added
to the soils, probably due to organic molecules in the plant residues present in both cases.
On the other hand, Cd appears in low concentrations in the residual fraction of Cd were
observed when biochar from garden residues (Figure 2e), as well as from paulownia
(Figure 2f), which was added to the soils. The residual fraction of metals corresponds to the
fraction that is not available to plants and, therefore, not available to humans. Therefore,
it is important to find the ideal conditions for biochar preparation and the appropriate
mixing ratios with the contaminated soils in order to increase the percentage of metals in
the residual fraction, minimizing their availability [70,71].

The effect of biochar from the paulownia plant on metal-contaminated soil was sig-
nificant, causing changes in its physicochemical properties, such as pH, OM content, and
EC [71]. After the application of paulownia biochar, pH and OM content increased, while
EC decreased. This behavior was probably due to the absorption of salts in paulownia
and their retention, which decreased the EC value of the soil solution and the soil surface
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area. Through the formation of stable complexes of HMs with biochar functional groups,
the application of this biochar type reduced the toxicity of the studied HMs as soil pol-
lutants by stabilizing their soluble forms [6,58]. Generally, the application of paulownia
proved to be effective in immobilizing the pollutants. This result must be attributed to the
increased pH and the EC values that are associated with the increased content of paulownia
functional groups. As it has been proved in previous cases of acidic and contaminated
soils amendment by application of biochar, the increasing addition of paulownia biochar
resulted in an increase in the pH, inversely correlated to the available concentration of the
studied HMs [17,22].

4.6. Effects of Pyrolysis Temperatures and Application Percentages of Biochar Used

Both biochar types (GB400, GB600) contributed to the toxicity reduction of the soil
HMs by stabilizing the soluble forms of HMs. The GB400 was found to be more effective in
immobilizing the metal forms of the pollutants than that the GB600. The immobilization of
HMs was affected by functional groups containing O, K, Ca, Mg, and P elements, leading to
insoluble forms of HMs [24]. Complexes were also formed after an exchange between HMs
cations and Ca2+, Mg2+, K+, and Na+, which are located on groups containing O, S, and P
elements in biochar. As expected, the addition of biochar at a 6% percentage had a greater
effect on the studied HMs than the other two applications at 4% and 2%, respectively.

Pyrolysis at low temperatures (slow pyrolysis) induces the formation of outer sphere
complexes, resulting in a ‘’short term” immobilization of HMs, but also resulting in a
‘’strong absorption” of their concentrations from the biochar [33]. On the other hand,
pyrolysis in high temperatures (fast or intensive pyrolysis) leads to the formation of negative
surface charges, i.e., internal sphere complexes, resulting into a ‘’long term” immobilization
of HMs, but resulting in a ‘’weak absorption” of their concentrations [68]. Functional
groups, which essentially represent the sites at which the metals can bind, are found in
the bioindicators obtained at low temperatures (300 ◦C–500 ◦C). This was also discussed
further in the research of Manyà et al. [68] and Meng et al. [56].

The contaminated soil pH, in which the action of GB400 and GB600 has been studied,
was acidic. In this case, the increase in the pH observed was also associated with an
increased amount of added biochar. This is also confirmed by the results obtained regarding
the effect of the two garden waste biochar types on the concentrations of the soil pollutants.
More specifically, a decrease in their acid extractable/exchangeable fraction was found to
be proportional to the increase in the biochar added amount. The reaction effect (pH) of
the soil environment is crucial for the sequestration and reduction of metal mobility [1,13].
On the other hand, it was observed that the soil pollutants fraction bound to OM (organic
fraction) increased after the application of the two biochar types and this is shown by
comparing their concentrations with those in the control sample. The decreases in the acid
extractable/exchangeable fraction concentration of the soil pollutants were accompanied by
the increases in their fraction bound to OM concentration. Those changes proceed in parallel
dependent on the added amount and pyrolysis temperature of GB400 and GB600. This
occurs because HMs can form stable, organic complexes, which are precipitated in biochar,
further enhancing their immobilization and reducing their concentration in the soil solution.
It should also be noted that the pH increase, proportional to the increase in the biochar
amount, enhanced the adsorption of HMs and, consequently, their immobilization [14].

The increased adsorption on the biochar surface and the formation of insoluble
forms contributes significantly to the solubility reduction of the pollutants. In the case
of the paulownia biochar, most Pb concentration as a soil pollutant was bound to Fe–
Mn oxides, possibly because of the high chemical affinity of Pb with the Fe–Mn oxides.
Amoah-Antwi et al. [6] and Liang et al. [47] have discussed the availability of metals
in soils.

The biochar addition on the contaminated soil is characterized by its ability of im-
mobilizing HMs, but this mechanism has not been fully determined. It is likely that
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HM stabilization in a modified soil after biochar addition is due the action of various
mechanisms [41], such as:

- the physical adsorption on the biochar surface
- the chemical bonds with the ions on the biochar surface
- the formation of complexes with the active functional groups
- the precipitation on the biochar surface by the phosphate ions
- the precipitation due to the pH increase in the contaminated soil, especially when the

soil is acidic

Every mechanism responds to one or more specific soil pollutants. Its activation
depends on the characteristics of the soil pollutant. Usually, Cd is mostly absorbed on the
biochar surface area, and Cu is chemically bound on the biochar surface area, whereas Pb
is precipitated via complexation with the biochar functional groups [41].

5. Conclusions

The study of the effectiveness of five different types of biochar on the distribution
fractions of Pb, Cd, and Cu was the main purpose of the present study.

The nature of the materials used to prepare the different types of biochar, the pyrolysis
temperature, the final dimensions of their grains, along with their physicochemical proper-
ties, contributed to their capacity in reducing the mobility and availability of metals in soil.
The amounts of OM, salinity, and alkalinity in the soils were also discussed. On the other
hand, the nature of metals effectively determined their interactions with the added types of
biochar, along with the redistribution of their concentration in the fractions, determined by
the BCR fractionation method.

The decrease in their acid extractable/exchangeable fraction was found to be propor-
tional to the increase in the biochar added amount. On the other hand, it was observed
that the soil pollutants fraction bound to OM (organic fraction) was increased after the
application of the garden waste types of biochar. In the present study, Pb was found
captured, and consequently less was available in the residual fraction. Cd is commonly
absorbed on the biochar surface area, reducing its presence in the exchangeable (available)
fraction. Cu is chemically bound on the biochar surface area, making chelate complexes
with organic groups.

The pyrolysis temperature and the amount of biochar added into the contaminated
soils are decisive factors in enhancing the effectiveness of the approach. Furthermore, the
remediation of the contaminated soil effected by biochar addition (organic amendment)
may also significantly affect the HM mobility and bioavailability, which depend on the
metal type, the nature of soil, and its physicochemical parameters. The use of biochars is an
easily applicable, inexpensive, and eco-friendly method for the remediation of HM-polluted
soils in the context of circular economy, as it has immediate effects and leads to a reduction
of the available amounts of Pb, Cd, and Cu in moderately contaminated soils.
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